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Chapter

Wavelets for Differential
Equations and Numerical
Operator Calculus
Riccardo Bernardini

Abstract

Differential equations are commonplace in engineering, and lots of research
have been carried out in developing methods, both efficient and precise, for their
numerical solution. Nowadays the numerical practitioner can rely on a wide range
of tools for solving differential equations: finite difference methods, finite element
methods, meshless, and so on. Wavelets, since their appearance in the early 1990s,
have attracted attention for their multiresolution nature that allows them to act as
a “mathematical zoom,” a characteristic that promises to describe efficiently the
functions involved in the differential equation, especially in the presence of singu-
larities. The objective of this chapter is to introduce the main concepts of wavelets
and differential equation, allowing the reader to apply wavelets to the solution of
differential equations and in numerical operator calculus.

Keywords: wavelets, differential equations, numerical analysis,
finite element method, meshless, multiresolution analysis

1. Introduction

Partial differential equations (PDEs) are used commonplace in science and in
engineering to model the behavior of physical systems. Because of their importance,
many numerical techniques for their solutions have been developed: finite differ-
ence methods (FDMs), finite element methods (FEMs), spectral methods, Ritz/
Galerkin approach, meshless approaches, and so on. The main characteristic of
PDEs is that the “unknown” is a function, that is, an object with an infinite number
of degrees of freedom. Because of this, it is usually impossible (even in principle) to
get an exact solution by numerical means. The objective of every technique for PDE
solving is to get a good approximation of the solution with limited computational
resources (CPU time, memory, etc.).

The first step of every PDE solution algorithm is to discretize the PDE, that is, to
approximate it with a finite-dimensional problem that can be solved by numerical
means. A popular discretization technique is to discretize the space where the solution
is searched by restricting the problem to a finite-dimensional vector space, that is, by
writing the solution as the linear combination of several base functions. If the original
PDE was linear, discretization will map it to a linear problem (typically a linear system
or an eigenvalue problem). Even techniques such as FDM (that discretizes the
domain) can be often reformulated as suitable discretization of the function space.
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Intuitively, better approximations of the solution require finer discretization
(the exact meaning of finer depends on the specific approach), especially if the
solution has some regions of large variability. Since finer discretization implies
larger problems (and, therefore, higher computational efforts), it is of interest to be
able to change locally the discretization resolution to the solution variability, possi-
bly in an adaptive way.

This need for different resolutions in different regions is the idea that links PDE
with multiresolution analysis. The birth of multiresolution analysis goes back to 1990
with the works of Mallat [1] and Meyer [2]. Since then there have been a large
number of papers ranging from very theoretical ones to application [3]. In a
multiresolution analysis, a space of signals (most commonly L2 IRð Þ, but not only) is
represented as a nesting of spaces with different levels of “resolution.” This allows
to write a signal as the sum of a “low-resolution” version plus some higher-
resolution “details.”

Because of the ability of changing the resolution used to observe the signal (by
adding or removing details), the multiresolution analysis is sometimes described as a
mathematical zoom. This fact inspired many applications, including numerical solu-
tion of PDEs where they sound promising, especially for those problems that contains
localized phenomena (e.g., shockwaves) or intra-scale interaction (e.g., turbulence).

The objective of this chapter is to introduce the reader to the application of
wavelets to PDE solutions. This chapter can be ideally divided in three parts: in the
first part, we recall briefly the main concepts about PDE and the main algorithms
for solving PDE; successively we do a brief recall of multiresolution analysis and
wavelets including also multiwavelets and second-generation wavelets that find
often application in PDE solutions; and finally, we will illustrate few techniques that
can be found in the literature.

1.1 Notation

Ω⊆ IRd is the domain where the functions of interest are defined. The boundary
of Ω is partitioned as follows: ∂Ω ¼ ΩD ∪ΩN, ΩD ∩ΩN ¼ ∅, where ΩD or ΩN can be
empty.

H Ωð Þ will denote a space of functions u : Ω ! IR defined on Ω⊆ IRd.
IR≥0 is the set of nonnegative reals.

2. Generalities on PDE

Most of the physical problems modeled by PDEs fall in one of the following
three large classes: equilibrium, propagation, or eigenvalue problems.

• In an equilibrium problem, we are interested in finding a function u∈ H Ωð Þ
such that

Du ¼ f in Ω (1)

u ¼ uD on ΩD (2)

∂u

∂n
¼ uN on ΩN (3)

In (1)–(3) D is an operator that includes derivatives and f ∈ H Ωð Þ is known.
Boundary conditions are typically given as constraint about u or its derivatives
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on regions of ∂Ω. Typical examples of physical systems giving rise to this type
of problem are systems in steady state (e.g., temperature distribution, potential
distribution, steady flows, and so on). Typically equilibrium problems are
elliptic, that is, D is an elliptic operator (a generalization of the Laplacian).

• In a propagation problem, we are interested in modeling the time evolution of a
physical system. The PDE can still be written as in (1)–(3), but the domain can
typically be written as Ω ¼ IR≥0 �W, whereW ⊆ IRd�1 and the first coordinate
represents time. Boundary conditions for t ¼ 0 are known as initial conditions.
Example physical problems are heat or wave propagation. Propagation
problems are typically hyperbolic or parabolic.

• Finally, in eigenvalue problems we are interested in finding u and λ that satisfy

Du ¼ λu (4)

A wide class of eigenvalue problems is represented by Sturm-Liouville problems
that can be written as

p � y0½ �0 þ q � y ¼ �λw � y (5)

where the apostrophe denotes derivation, the unknowns are λ, and function is
y∈ H a; b½ �ð Þ, while p, q, and w, all belonging to H a; b½ �ð Þ, are known. Sturm-
Liouville problems include Bessel differential equations (obtained by writing
Laplace, Helmholtz, or Schrodinger equation in cylindrical coordinates) and
Lagrange differential equation (obtained working in spherical coordinates).

2.1 Solution of differential equations

The field of numerical solution of differential equations is very wide, and many
techniques have been developed. Nevertheless, a categorization in few large classes
is possible. An important step in every solution algorithm is mapping the differen-
tial equation into a discrete version with only a finite number of degrees of freedom.
A first distinction can be done between techniques that achieve this objective by
discretizing the domain Ω or the function space H Ωð Þ.

2.1.1 Domain discretization

The most known technique based on a domain discretization is the FDM where
the unknown function is sampled in a finite number of points p1, p2,…, pN ∈ Ω and
the derivatives are approximated with finite differences. By writing the differen-
tial equation for every p, with the derivative approximated as finite differences,
one obtains a system of N equations in N unknowns that can be solved with
known techniques. If the original PDE was linear, the discretized system will be
linear too.

FDM is maybe the simplest approach and the most intuitive, and it can work
quite well for simple problems and geometries. Moreover, in the linear case, since
any approximation of a derivative in p will consider only few points around p, the
matrix of the discretized linear system will be very sparse, allowing for a reduction
in the computational effort. The application of FDM techniques becomes difficult,
albeit possible, in the case of complex problems.
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2.1.2 Function space discretization

Another class of techniques discretizes the function space H Ωð Þ by approxi-
mating it with an n-dimensional space Hn, that is, unknown function u is approxi-
mated as

u≈ ∑
n

i¼1
αibi, αi ∈ IR (6)

where bif gni¼1 is a basis of Hn.
By exploiting approximation (6), one can transform PDE (1)–(3) into a finite-

dimensional problem. The different solution techniques differ in how (6) is used
and in the way of choosing space Hn and its basis bif gni¼1.

One possibility is to choose functions bi that are infinitely differentiable and
nonvanishing on the whole Ω. This gives rise to so-called spectral methods. Typical
choices for basis functions can be complex exponential/sinusoidal functions (if the
solution is expected to be periodic), Chebyshev polynomials (for separable
domains, e.g., d-dimensional cubes), and spherical harmonics (for systems with
spherical symmetry). Spectral methods can work very well if the solution is
expected to be smooth; they can even converge exponentially fast. However, their
spatial localization is not good, and if the functions involved are not smooth (e.g.,
they are discontinuous), they lose most of their interest.

Another approach, very popular, is FEM that chooses functions bi by first
partitioning the domain Ω into a set of elements (triangles and their multidim-
ensional counterpart are a popular choice) and assigning to every element a suitable
finite-dimensional vector space. The final approximation of u is constructed in a
piecewise fashion by gluing, so to say, the approximations of u over every single
element.

In a typical implementation of FEM, all the elements are affine images of a single
reference element. This simplifies the implementation since it suffices to choose
only the vector space of the reference element T0. Another popular choice is to
choose the space associated to the elements as spaces of polynomials. The basis is
selected by choosing a set of control points in q1, q2,…∈ T0 and choosing as basis
vectors bi the polynomials that satisfy the interpolation property

bi qj

� �

¼ δi, j ¼
1 if i ¼ j

0 if i 6¼ j

�

(7)

Remark 2.1 (generalized collocation method).
A generalization of this idea is to choose a set of functionals σj mapping func-

tions defined over T0 to IR and requiring

σj bið Þ ¼ δi, j (8)

Eq. (8) gives back (7) if σj is defined as the functional that corresponds to
evaluating the argument of the functional in qj. Eq. (8) is, however, more general
than (7) since it can be used, for example, to control the flow through a face of the
element.

An issue with FEM is that creating the grid of elements can be expensive. This
is especially true in those problems where the geometry is not fixed but needs to
be updated. An example of this type of system is free-surface fluid flows, where
the interface between air and fluid changes with time, requiring a continuous
update of the mesh. In order to solve this problem, meshless methods have been
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developed [4]. A typical meshless approach is to approximate u with a discrete
convolution with kernel as a chosen function φ, that is,

u xð Þ ¼ Cρ ∑
I
αIϕ

x� xI
ρ

� �

(9)

where XI are a set of points of Ω and ρ is a scale factor that allows to change
the “resolution” of kernel function ϕ. Coefficient Cρ can be used to keep the energy
constant as ρ is changed.

2.1.3 Exploiting the discretization

After expressing u as linear combination of bi, we are left with the problem of
determining the coefficients of the linear combination. Several approaches are
possible; the easiest way to briefly present them is by rewriting the differential
equation as

Ru≔Du� f ¼ 0 (10)

where operator R : H Ωð Þ ! H Ωð Þ is called the residual.
If we restrict u to be a linear combination of bi, most probably we will not be

able to make residual (10) exactly zero; therefore, we will aim to make it as small
as possible. Since the result of the residual operator is a function, there are many
possible approaches in minimizing it.

With the collocation approach, we choose a number of points of the domain
p1, p2,…, pn ∈ Ω and ask that the residual is zero on the chosen points, that is,

0 ¼ Ru½ � pj

� �

¼ Du½ � pj

� �

� f pj

� �

j ¼ 1,…, n (11)

Eq. (11) represents a system of n equations having as unknown the coefficients
αi, i ¼ 1,…, n. For example, if D is linear, (11) becomes

f pj

� �

¼ D∑
n

i¼1
αibi

� �

pj

� �

¼ ∑
n

i¼1
αi Dbi½ � pj

� �

¼ ∑
n

i¼1
αiAj, i j ¼ 1,…, n (12)

where, clearly, Aj, i ¼ Dbi½ � pj

� �

. Note that (12) is a linear system in unknowns αi.

Remark 2.2.
With reference to Remark 2.1, one can generalize the collocation method by

using a set of linear functionals σj : H Ωð Þ ! IR. In this case one can obtain a gener-
alized version of (12), namely,

σjf ¼ ∑
n

i¼1
αiσj Dbið Þ
|fflfflfflffl{zfflfflfflffl}

Aj, i

j ¼ 1,…, n (13)

Another approach is to solve Ru ¼ 0 in a least square sense, that is, to search
for coefficients αi that minimize

Ruk k2 ¼ Ru;Ruh i (14)

Standard algebra allows to show that (14) is minimized when Ru is orthogonal
to ∂Ru=∂αi for every i, that is,

5

Wavelets for Differential Equations and Numerical Operator Calculus
DOI: http://dx.doi.org/10.5772/intechopen.82820



Ru;
∂Ru

∂αi

	 


¼ 0 i ¼ 1,…, n (15)

If D is linear,

∂Ru

∂αj
¼ ∂

∂αj
D∑

n

i¼1
αibi � f

� �

¼ Dbj (16)

and we get

0 ¼ Ru;
∂Ru

∂αj

	 


¼ D∑
n

i¼1
αibi � f ;Dbj

	 


¼ ∑
n

i¼1
αi Dbi;Dbj
� �

� f ;Dbj
� �

(17)

which is still a linear system.
The Galerkin method is inspired on the idea that in a least square approximation,

the error is orthogonal to the space where the approximating function lives. We
would like to approximate the solution of the PDE with a vector of Hn; however, we
do not know the solution, so we ask for the residual to be orthogonal to Hn, that is,

Ru; vh i ¼ 0 ∀v∈ Hn (18)

Eq. (18) is equivalent to

Du; vh i ¼ f ; vh i ∀v∈ Hn (19)

which can be interpreted as the original differential equation Du ¼ f in weak
form. Form (19) is often exploited by integrating by parts the left-hand side scalar
product, moving one differentiation from the unknown function u to the test
function v. This is often useful when a piecewise linear approximation is employed
and D contains second-order differential operators (that cannot be applied on
piecewise linear functions). Eq. (19) is verified for all v∈ Hn if and only if it is
verified for every vector in a basis of Hn, that is, (19) is equivalent to

Du; bj
� �

¼ f ; bj
� �

j ¼ 1,…, n (20)

If D is linear, from (20) one can easily derive the linear system in αi

f ; bj
� �

¼ ∑
n

i¼1
αi Dbi; bj
� �

j ¼ 1,…, n (21)

Finally, it is worth citing the method of weighted residuals that can be seen as a
generalization of the Galerkin PDE method. The idea is that instead of asking the
residual being orthogonal to the spaceHn used to approximate u, we ask the residual
to be orthogonal to a different n-dimensional space Kn ¼ span β1;…; βnf g where
βif gni¼1 is clearly a basis of Kn. One obtains

f ; βj

D E

¼ ∑
n

i¼1
αi Dbi; βj

D E

j ¼ 1,…, n (22)
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Remark 2.3.
It is worth observing that from the weighted residual method, Galerkin and least

square methods can be derived by a suitable choice of βi; even collocation method
can be derived if we allow βi to be a delta function (so that the scalar product needs
to be interpreted as a distribution pairing). Moreover, for every v since map
x↦ x; vh i is a functional, it is easy to recognize that every method can be considered
like a generalized collocation method, as described in Remark 2.1.

3. Wavelets

The idea of multiresolution analysis is to approximate vectors of L2 IRð Þ with
variable degrees of resolution. This is achieved through a multiresolution analysis
scheme defined by means of some axioms. The first axiom is the existence of a
sequence Vnf gn∈ Z

of subspaces of L2 IRð Þ nested one inside the other, that is,

⋯⊂V�2 ⊂V�1 ⊂V0 ⊂V1 ⊂V2 ⊂⋯ (23)

The idea is that if one approximates (in a least square sense) a function f with
vectors belonging to Vn, the approximation error gets smaller as n increases since
every vector of Vn also belongs to Vnþ1. Note, however, that (23) does not grant
that we will be able to approximate f with an error as small as desired; in order to
grant this, we need another axiom

⋃
n∈ Z

Vn ¼ L2 IRð Þ (24)

where the overline denotes set closure (in the topology induced by the norm on
L2 IRð Þ). Axiom (24) requires that every vector of L2 IRð Þ is in the closure of the union
in the left hand; this means that given any ϵ.0 and f ∈ L2 IRð Þ, it is possible to find
an element of the union whose distance from f is less than ϵ. In other words, (24)
means that whatever f ∈ L2 IRð Þ and whatever the chosen maximum approximation
error allowed ϵ, one can find a space Vn that approximates f with the required
precision.

An axiom dual to (24) is

⋂
n∈ Z

Vn ¼ 0f g (25)

that requires that there is only one “lowest resolution vector,” that is, the null
vector.

Remark 3.1.
In order to see that axiom (24) is not obvious, it is more convenient to work with

Hilbert space L2 0; 1½ �ð Þ. Recall that functions x↦ cos 2πnxð Þ, x↦ sin 2πnxð Þ, and
n∈ IN and the constant 1 are an orthogonal basis of L2 0; 1½ �ð Þ.

Define S0 ¼ sin 2π 2kð Þtð Þ; k∈ INf g as the set of all the even-numbered sines, and
define V0 as the space generated by S0, that is,

V0 ≔ spanS0 (26)

Now define spaces Vn, n,0 by removing one vector at time from the basis of
V0, and define spaces Vn, n,0 by adding one odd harmonic at time. More pre-
cisely, define
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Vn ¼ spanSn (27)

where

Sn ¼
Snþ1 sin 2π �2nð Þtð Þf g if n,0

Sn�1 ∪ sin 2π 2n� 1ð Þtð Þf g if n.0

�

(28)

It is clear that the sequence of spaces defined in this way satisfies axiom (23), but
not (24), since, for example, function cos 2πtð Þ is orthogonal to every Vn. Note that
this construction can be repeated for any Hilbert space using an orthonormal basis
of the space instead of sines and cosines. Another axiom makes more precise the
idea of “increasing resolution” by asking that vectors in Vn vary twice as faster than
the vectors in Vn�1. In order to make this more precise, define operator
S : L2 IRð Þ ! L2 IRð Þ as the rescaling operator Sf½ � xð Þ ¼

ffiffiffi

2
p

f 2xð Þ. Note that because
of the multiplication by

ffiffiffi

2
p

, S is unitary, that is, Sfk k ¼ fk k. The new axiom is

f ∈ Vn ⇔Sf ∈ Vnþ1 (29)

It follows that Vn ¼ S
nV0. With this position one can interpret (25) by saying

that the slowest function is the constant (and the only constant in L2 IRð Þ is the
zero).

The last axiom puts a constraint on the structure of V0 by asking that is gener-
ated by a function ϕ and its translations. In order to make this more precise, define
the operator τt : L2 IRð Þ ! L2 IRð Þ associated to a translation of t as τtf½ � xð Þ ¼ f x� tð Þ.
Note that also τt is unitary and that the exponential notation is convenient since
τaτb ¼ τaþb. Observe also the commutation relation Sτt ¼ τt=2S. The last axiom can
be written as

∃ϕ∈ L2 IRð Þ : V0 ¼ span τiϕ; i∈ Z
� �

(30)

Often as part of axioms, it is required that ϕ is orthogonal to its translations,
that is,

τiϕ; τjϕ
� �

¼ δi, j (31)

However, it is not necessary to include (31) explicitly in the axioms since, given
a ϕ that satisfies (30), it is possible to orthonormalize it, so that it satisfies (31), with
a well-known “Fourier trick” [3]. Therefore, we will suppose (31) satisfied.

It is worth to summarize here the axioms

⋯⊂V�2 ⊂V�1 ⊂V0 ⊂V1 ⊂V2 ⊂⋯ (32)

⋃
n∈ Z

Vn ¼ L2 IRð Þ (33)

⋂
n∈ Z

Vn ¼ 0f g (34)

Vnþ1 ¼ SVn (35)

V0 ¼ span τiϕ; i∈ Z
� �

∃ϕ∈ L2 IRð Þ (36)

The axioms above allow us to determine a property of ϕ. Note that since
V1 ⊃V0, ϕ∈ V1. Note also that set Sτiϕ ¼ τi=2Sϕi∈ Z

� �
is an orthonormal basis of

V1. It follows that one can write ϕ as linear combination of Sϕ and its half-integer
translations, that is,

8

Wavelet Transform and Complexity



ϕ ¼ ∑
i∈ Z

gi τi=2Sϕ (37)

for some sequence gi : Z ! IR. Eq. (37) is known as two-scale equation and it is
central to wavelet theory. Function ϕ is known as scaling function.

Remark 3.2.

Note that from the orthonormality of τi=2Sϕi∈ Z
� �

follows

gi; τ
2kgi

� �
¼ φ; τ�kφ

� �
¼ δk,0 (38)

where the left-hand side scalar product is the usual scalar product in ℓ
2
Zð Þ.

Remark 3.3.
Note that starting from a ϕ that satisfies a two-scale equation like (37), it is

possible to recover a full multiresolution analysis. Indeed, one defines V0 according
to (36) and Vn by repeated applications of (35). Two-scale Eq. (37) grants that the
nesting axiom (32) is satisfied.

Note also that (37) shows that ϕ is the fixed point of operator

O≔ ∑
i∈ Z

gi τi=2S (39)

This suggests that maybe one could start from a sequence gi and apply repeat-
edly O to a vector of L2 IRð Þ in order to obtain ϕ. This is indeed possible, but the
theoretical details are out of scope here; see [5].

Since Vnþ1 ⊃Vn one can consider the orthogonal complement of Vn in Vnþ1; call
it Wn, that is,

Vnþ1 ¼ Vn⊕Wn (40)

It is possible to find, starting from the two-scale Eq. (37), a function ψ such that
τiψ

� �

i∈ Z
is an orthonormal basis of W0. This implies that it must be for all

ψ ¼ ∑
i∈ Z

hi τi=2Sϕ ψ ∈ V1 (41)

ψ ; τiψ
� �

¼ δi orthonormal basis (42)

τjψ ; τiϕ
� �

¼ 0 ∀i, j∈ Z W0 orthogonal to V0 (43)

By using (41) and the orthonormality of τi=2Sϕ, it is possible to rewrite (42) and
(43) as conditions on hi, namely,

τ2khi; hi
� �

¼ δk,0 (44)

τ2khi; gi
� �

¼ 0 (45)

It is easy to verify that, given gi, a possible hi that satisfies (44) and (45) is

hi ¼ �1ð Þig�nþ1 (46)

This shows that sequences hi and gi are the impulse responses of a two-channel
orthogonal filter bank. Moreover, if gi and ϕ are known, one can obtain ψ by
choosing hi according to (46) and computing ψ according to (41). Function ψ is
known as wavelet, and it generates the whole L2 IRð Þ with its translations and
dilations.
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This has also another interesting consequence. Suppose f ∈ L2 IRð Þ and that

γ
1ð Þ
i ¼ τi=2Sϕ; f

D E

¼ Sτiϕ; f
� �

(47)

are the coefficients of its projection on V1. Suppose we need the coefficients

γ
0ð Þ
k ¼ τkϕ; f

� �
of the projection on V0. It is possible to exploit the two-scale

equation

γ
0ð Þ
k ¼ τkϕ; f

� �
¼ τk ∑

i∈ Z

giSτ
iϕ; f

	 


¼ ∑
i∈ Z

gi Sτiþ2kϕ; f
� �

¼ ∑
i∈ Z

giγ
1ð Þ
iþ2k ¼ g�

∗γ
1ð Þ
i

h i

2k

(48)

where g� is the time-reversed version of gi. Eq. (48) shows that it is possible to
go to the space at lower resolution by means of a filtering by g� and a decimation by

a factor of two. Similarly, by calling η
0ð Þ
k ¼ τkψ ; f

� �
the coefficients relative to the

projection of f on W0, one can obtain

η
0ð Þ
k ¼ ∑

i∈ Z

hiγ
1ð Þ
iþ2k ¼ h�

∗
γ

1ð Þ
i

h i

2k
(49)

Figure 1a shows this idea: the sequence of high-resolution coefficients are
processed with a two-channel orthogonal filter bank, and the coefficients relative to
the lower resolution space Vn exit from one branch, and the coefficients relative to
the “missing details” space Wn exit from the other. The idea can be iterated several
times; see Figure 1b. This is the basis of the well-known fast algorithm to compute
wavelet coefficients and also the origin of the minor, and very common, misnomer
in calling Figure 1b a “discrete-time wavelet transform.”

An interesting characteristic of wavelets is that they can be used to detect the
local regularity of a function. This is similar to what happened with Fourier trans-
form where a function that is discontinuous has a Fourier transform that decays as
1=ω; if the function is continuous but not derivable, its Fourier transform decays as
1=ω2 and so on. With the wavelet transform happens something similar, with the
scale playing the role of frequency. The interesting difference is that while a Fourier
transform that decays as 1=ω tells us that there is at least one discontinuity, but not
where, with the wavelet transform the slow decay with the scale is localized around
the discontinuity. The precise claim of this property requires the introduction of the
concept of Lipschitz regularity and would take us too far; see [6]. This suggests that
when approximating the unknown function in a PDE, we can keep high-resolution
coefficients only in the neighborhood of singularities, saving on computational
effort.

We will say that wavelet ψ has ℓ vanishing moments if

Z

IR
xkψ xð Þdx ¼ 0 k ¼ 0, 1,…,ℓ� 1 (50)

An interesting property of compactly supported wavelets with ℓ vanishing
moments is that the corresponding scaling function (not the wavelet itself) can repro-
duce polynomials of degree at most ℓ� 1 in the sense that if P xð Þ is a polynomial
with degree less than ℓ, there exist coefficients ci such that

10

Wavelet Transform and Complexity



P xð Þ ¼ ∑
i∈ Z

ciτ
iϕ

� �

xð Þ (51)

In other words, V0 contains all the polynomials of degree less than ℓ.
Example 3.1. (Haar wavelet).
The simplest example of wavelet is the Haar wavelet whose scaling function is

ϕH xð Þ ¼
1 if x∈ 0; 1½ �
0 else

�

(52)

It is immediate to verify that ϕH satisfies a two-scale equation

ϕH ¼ 1
ffiffiffi

2
p SϕH þ τ1=2SϕH

� �

(53)

with coefficients g0 ¼ g1 ¼ 1=
ffiffiffi

2
p

. Note that trivially τ2kϕH;ϕH

� �
¼ δk. In order

to create the corresponding wavelet, use prescription hi ¼ �1ð Þig�iþ1 to get

ϕH ¼ 1
ffiffiffi

2
p SϕH � τ1=2SϕH

� �

(54)

Note that the Haar wavelet is compactly supported, but it is discontinuous. This
makes it not well suited to approximate smooth functions.

Example 3.2 (Sinc wavelet).
An example in some sense opposite to the Haar wavelet is the Sinc wavelet. In

this case V0 is the space of “low-pass” functions, that is, functions whose Fourier
transform is zero outside interval �π; π½ �. As well known, V0 is generated by the
Sinc function

Figure 1.
(a) Splitting coefficient sequence into a low-resolution and a high-resolution one using a two-channel filter
bank. (b) Iteration of structure (a) makes a fast algorithm for computing the wavelet coefficients.
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sinc xð Þ ¼ sin πxð Þ
πx

(55)

and its translations, that is,

V0 ¼ span τksinc
� �

k∈ Z
(56)

This suggests to use ϕS ¼ sinc as scaling function. The fact that a two-scale
equation is satisfied is easily checked in frequency since V1 is the space of functions
whose Fourier transform is zero outside �2π; 2π½ �; therefore, every function of V0 is
contained in V1, as desired.

The corresponding wavelet ψS is easily characterized in frequency as the func-
tion whose Fourier transform is

ΨS ωð Þ ¼
1 if π, ∣ω∣, 2π

0 otherwise

�

(57)

It is easy to verify that ψS ∈ V1, ψS⊥V1, and τ2kψS;ψS

� �
¼ δk.

As said above, the Sinc example is somehow the opposite of Haar wavelet: it is
arbitrarily differentiable, but it has infinite support; actually, it decays very slowly
(as O 1=xð Þ), and this introduces several practical issues. Moreover, sequences gi and
hi are of infinite length, and they decay slowly too (they do not even have a z-
transform), making it difficult to implement it.

Example 3.3 (spline wavelet).
An example intermediate between Haar and Sinc wavelet is represented by

spline spaces of degree d. In this case V dð Þ
0 is defined as the space of piecewise

polynomial functions that are d times differentiable (with continuous derivative),
with the “breaking points” on the integer, more precisely

V
dð Þ
0 ¼ f ∈ L2 IRð Þ∩Cd�1; f

� �
�
k;kþ1½ � ¼ polynomial degree d∀k∈ Z

o

(58)

It is easy to see that V dð Þ
1 ¼ SV

dð Þ
0 is a similar space of piecewise polynomial

functions but with the breaking points in half integers. It follows that every func-

tion in V
dð Þ
0 also belongs to V

dð Þ
1 , giving rise to a multiresolution analysis.

A generator for V dð Þ
0 can easily be obtained as a suitable translation (necessary to

align the breaking points) of

rect∗ dð Þ xð Þ ¼
rect xð Þ ¼

1 if ∣x∣, 1=2

0 otherwise

(

if d ¼ 0

rect∗ d�1ð Þ∗rect xð Þ if d.0

8

><

>:

, (59)

that is, the rect convolved with itself d times. Function rect∗ dð Þ has compact
support but it is not, however, orthogonal to its own translations. It can be orthog-
onalized with the Fourier trick, but the result has no compact support. For more
details about this case, see [3].

3.1 Compactly supported wavelets: Daubechies’ wavelets

In the examples above, we found multiresolution analysis whose scaling func-
tion had at most two out of the following three desirable characteristics: orthogo-
nality, smoothness, and compact support. Is it possible to find a wavelet that has all
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these three characteristics? The answer was given by Daubechies. It turns out that
imposing all the three characteristics is very demanding and only a small family of
wavelets exists.

An easy observation is that if ϕ is orthogonal to its own translations, the coeffi-
cients gi in the two-scale equation can be obtained as

gi ¼ ϕ; τi=2Sϕ
D E

(60)

According to (60) if ϕ has compact support, then gi has a finite number of
coefficients that are different from zero. Since gi needs to be orthogonal to its even
translations, its length (i.e., the number of nonzero coefficients) must be necessar-
ily even [3].

Moreover, if the iteration of operator O in (39) converges, it is easy to see that gi
has a finite number of coefficients, and then the limit function has compact support.
This suggests that it “suffices” to find a finite length sequence gi that is orthogonal
to its own even translation and iterates operator O to obtain the desired scaling
functions. It actually turns out that this can be done, although there are lots of
technical details to be taken care of (e.g., about convergence of Ok and smoothness
of the resulting ϕ); see [5] for details.

Every member of the Daubechies family is identified by the length 2N of the
sequence gi (remember that the length of gi is necessarily even). It can be proven
that the resulting scaling function has N vanishing moments and its smoothness
grows with N; see Table 1. See also Figure 2 that shows the results of the first three
iterations of O (first row), the final scaling function (second row), and the wavelet
(third row) of three different Daubechies wavelets.

3.2 Extensions

The construction given above is the original idea of multiresolution analysis.
Since the early 1990s, many researchers worked in this field, and many variations
and extensions have been introduced. Here we briefly recall those that have more
interest in the field of differential equation solutions.

3.2.1 Multiwavelets

Multiwavelets are a generalization of standard multiresolution analysis in the
sense that now scaling functions and wavelets are vectors of functions. This means
that Vn is not generated by the translations of a single function but from the trans-
lations of many functions. Every idea of standard multiresolution analysis can be
reformulated without much difficulty in this case, with the most notable difference
that the two-scale equation now has vector function and coefficients that are
matrices. Multiwavelets can accommodate scaling factors different from two and
there is a larger choice for compact support wavelets. See [7] for more details.

N 2 3 4 5 6 7 8 9 10

βS 1 1.415 1.775 2.096 2.388 2.658 2.914 3.161 3.402

βH 0.550 0.915 1.275 1.596 1.888 2.158 2.415 2.661 2.902

Table 1.
Hölder βH and Sobolev βS regularity exponent of Daubechies’ wavelets as function of length 2 N of gi.
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3.2.2 Second-generation wavelets

Two-scale Eq. (37) and the resulting filter bank-based procedure work well
when the data are sampled on a regular grid and/or the functions of interest are
defined on IRd. Since there are many applications that do not satisfy this require-
ment (e.g., differential equations on general manifolds), the idea of second-
generation wavelet has been introduced.

The starting point is the so-called lifting form of filter bank (Figure 1). It is
possible to show that any two-channel filter bank (Figure 1) can be implemented as
shown in Figure 3. In the lifting approach, the input signal is split into odd and even
samples by a serial-to-parallel converter. The first branch is filtered, and the result
combined with the other branch; the result of this operation is filtered again and
combined with the first branch, and this iterated as long as necessary. Filter P is

Figure 2.
Daubechies’ wavelets. First three iterations of O (first row), the final scaling function (second row), and the
wavelet (third row) of three different Daubechies’ wavelets.

Figure 3.
Lifting implementation of the two-channel filter banks associated with a wavelet analysis.
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sometimes called the prediction step, and it is interpreted as a filter that predicts the
odd samples from the even ones; filter U is sometimes called update.

The advantage of this form is that, being similar to the Feistel structure used in
cryptography [8], it is exactly invertible even if operations are implemented in
fixed-point arithmetic. Actually, the invertibility does not depend on the detail of Pi

and Ui; that can be anything, even nonlinear. Another interesting advantage of this
predict/update idea is that it does not require a regular domain, allowing to bring
the wavelet concept to more general contexts. For example, [9] uses this idea to
solve differential equations on the sphere.

4. Some examples of application of wavelets to PDE

By now it should be clear how multiresolution analysis can be applied to differ-
ential equation solution: by using scaling functions and/or wavelets as basis func-
tions in approximation (6). All the approaches described in Section 2 can be used
with wavelet: collocation, Galerkin PDE method, weighted residual method,
meshless methods, etc. Before describing some details of few approaches described
in the literature, it is worth to do some general remarks.

What makes wavelet interesting is their multiresolution property and the fact
that a wisely chosen wavelet (smooth and/or with many vanishing gradients) has
interesting “singularity sensing” properties: in the neighborhood of a singularity
(discontinuity, nondifferentiability, etc.), the coefficients decay as a function of
scale with a speed that depends on the singularity involved (similar to what Fourier
transform does, only on a local level), but away from the singularity, they decade
fast [3]. This implies that good approximations can be obtained with few coeffi-
cients, using high-resolution decomposition only where it is necessary, reducing the
size of the matrices involved in the solution of the PDE. A similar effect can be
obtained, for example, in FEM by using a finer mesh around points of large varia-
tion. However, using this approach in an adaptive way would require to adjust at
running time the mesh, a potentially heavy operation. Wavelets have the potential
of employing an adaptive resolution in an easier way. See, for example, [10] for few
examples of adaptive techniques employing wavelets.

While orthogonality is considered an important feature in many theoretically
wavelet papers, in the context of differential equation solution, it plays a smaller
role. The reason is that basis functions enter in the scalar products associated with
the various methods via the differential operator D, and it is not guaranteed that D
will preserve orthogonality (that would give rise to many zero entries, that is,
sparser matrices).

Actually, orthogonality is preserved if the two basis functions have disjoint
support in space (since differential operators do not extend the support) or in
frequency (since differential operators are translation-invariant and in frequency
they become a product). This suggests that in the context of differential equations,
compact support and well-localization in frequency are more important than just
orthogonality. In a sense, they represent a “robust” orthogonality condition.

Remark 4.1.
It is true that true compact support in frequency is less common than compact

support in space. With the exception of few very special and theoretical cases (e.g.,
Sinc), the best we can get is a rapid decay in frequency. This means that the scalar
product of two basis functions separated in frequency will be maybe very small, but
not zero. Nevertheless, even this kind of “almost sparseness” can be exploited.

A general issue with wavelets is that it can be difficult to impose boundary
conditions since they have no natural interpolation property that would make
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boundary condition handling simpler. Another problem that can arise is that many
wavelets have no closed-form description, for example, Daubechies wavelets that
are described as the result of the iteration of operator O in (39). This can make their
application to PDE more difficult, for example, when computing scalar products
involved in weighted residual and other methods.

Finally, another common issue is that most of the known wavelets are defined
on a one-dimensional domain, while many physical systems are on a
multidimensional domain. The easiest way to create a multidimensional
multiresolution analysis by a one-dimensional one is the separable (or tensor product
or Kronecker product) approach that create a multidimensional function by the
product of several one-dimensional ones, e.g.,

ϕ3D x; y; zð Þ ¼ ϕ xð Þϕ yð Þϕ zð Þ (61)

This kind of approach, however, produces “cube-like” wavelets, and their
application to FEM schemes based on triangular elements can be difficult.

4.1 Some schemes from the literature

In this section we briefly summarize some interesting wavelet-based schemes
that can be found in the literature. As said above, wavelets and scaling functions can
be used as basis in the approximation used in collocation, weighted residuals, and
other methods.

Wavelets in Galerkin and weighted residual methods bring the advantage of
their multiresolution and localization properties while, however, suffering from
difficulties in handling complex boundary conditions. Moreover, nonlinear equa-
tions can turn out to be difficult to handle. Nevertheless, there have been many
successful examples in the application to elliptic, hyperbolic, and parabolic PDE
[11–27]. Wavelet-based collocation methods, where wavelet functions are used as
shape functions, also registered some success. The advantage of collocation methods
is that they are more easily applicable in nonlinear cases [28, 29] and irregular
boundary conditions [30]. A collocation method based on second-generation wave-
let and lifting is applied to a nonlinear vibration problem in [30, 31].

Much more popular seems to be the application of wavelets to FEM techniques.
In this case wavelets or scaling functions are used as shape functions instead of the
more traditional polynomials. Daubechies wavelets are particularly popular most
probably because of their compact support property. Also of interest is the fact that
Daubechies’ wavelets can have any number of null moments, making possible the
perfect interpolation of polynomials. Some examples of successful application
Daubechies wavelets to PDE (mostly mechanical problems) are [32–36]. Of special
interest is the proposal of Mitra [37] where wavelet-based FEM is used to transform
a wave propagation problem into ordinary differential equations that are succes-
sively solved.

Another popular solution for wavelet-based FEM is the wavelets based on spline
spaces. Although spline bases cannot have both compact support and orthogonality,
in differential equations, as explained above, we gladly give up on orthogonality if
we can get compact support and smoothness. Another important advantage of
splines is that a simple closed-form expression is known. Examples of spline appli-
cations can be found in [38–40]. Of special interest is the application of Hermite
cubic splines (HCS), a kind of multiwavelet [41] that shows promise in handling in
a numerically robust way boundary conditions. The HCS is a multiwavelet with four
smooth (twice differentiable) components defined on interval 0; 1½ �. Some examples
of application can be found in [42–44]. A problem with the application of wavelets
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to FEM techniques is the difficulty to adapt the wavelet construction to complex
meshes. In this case the use of second-generation wavelet based on an extension of
the lifting idea has attracted some attention [45–47].

Wavelets have attracted some interest also in the context of meshless methods
[9, 48, 49]. Of some interest for the special problem is [9] that uses a wavelet
approach to implement a meshless solver for differential equations defined on the
sphere. A problem with applying wavelets to generic manifolds like a sphere is that
it is not clear what a “rescaling by 2” should mean for a manifold that is not a
Euclidean space. The idea used in [9] is to use a so-called diffusion wavelet where the
dilation is replaced by a diffusion operator that looks like a kind of “low-pass filter-
ing” that smear out the details; see [9] for the precise definition.

5. Conclusions

This chapter introduced the reader to the field of applying wavelets to the
numerical solution of differential equations. Both wavelets and differential equa-
tions are research fields with many applications, contributions, and results. Their
combination gives rise to wide varieties of methods, each one suited for specific
applications. By looking at the literature, we can see that wavelets can be a very
powerful tool for solving PDE especially because of their multiresolution nature that
allows to optimize the level of detail where it is needed. Wavelets, however, are not
a silver bullet for all problems either, since they can have some characteristics
(multidimensional construction via tensor product, nonexistence of a closed-form
expression, difficulty in handling some boundary conditions, etc.) that can make
their application not trivial in some cases. We can say that this is a field where, more
than ever, no single solution fits all and that every practitioner needs to find the
solution specific for the problem at hand using knowledge in both fields and some
ingenuity.
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