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Abstract

Enteral nutrition is often mandatory, especially for patients in vegetative or 
minimally conscious state. However, its application is nonviable in certain cases due 
to various adverse effects. Some of these are explained by absence of the cephalic 
phase of digestion, during which exocrine, endocrine, and motor physiological 
responses prepare the digestive system to receive, digest, transform, and utilize 
ingested nutrients. These responses result from the stimulation by nutrients of 
cephalic sensory systems, mainly in the oropharyngeal cavity, and can also be 
elicited by food-related thoughts or expectations. The digestive system appears able 
to rapidly assess the suitability of food and transmit this information to the brain. 
The vagus nerve and its brainstem relays in the caudal nucleus of the solitary tract 
(NST) and parabrachial complex appear to participate in the anatomic pathway 
responsible for this rapid processing. Thus, blockade of the vagus nerve, NST, or 
external lateral parabrachial region (LPBe) interrupts expression of conditioned 
taste preferences induced by administration of “predigested” food, while LPBe 
activation by electric stimulation generates similar preferences to those observed 
after cephalic food administration. This review may help design enteral diets better 
adapted to digestive physiology and develop pharmacological interventions against 
adverse effects of enteral nutrition.

Keywords: enteral nutrition, cephalic phase, rapid processing of nutrients, vagus 
nerve, gelatinous subnucleus, external lateral parabrachial subnucleus

1. Introduction

Clinical nutrition refers to practices for supplying nutrients to individuals when 
oral administration is inadvisable, insufficient, or impossible [1]. These are essen-
tial to maintain the function of vital organs and systems, minimizing the effects 
of food deprivation and avoiding nutritional deficiencies [2]. In general, these 
techniques are divided between enteral nutrition, in which liquid diet is directly 
administered into the gastric or intestinal cavity, and parenteral nutrition, in which 
nutritional solutions are delivered intravenously (Figure 1; [3]).
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2. Enteral versus parenteral nutrition

Most clinical nutrition specialists report that enteral nutrition has multiple 
advantages over parental nutrition and should be selected whenever the gastroin-
testinal tract can be used [3–8]. Parenteral nutrition is more expensive [6, 7, 9] and 
is usually more invasive in comparison to enteral nutrition, exposing patients to 
greater risks [10]. Notably, there are important clinical reasons for preferring the 
enteral administration route because of the association of parenteral nutrition with 
severe complications, including thromboembolism, severe metabolic fluctuations, 
hyper- or hypoglycemia, hyperlipidemia, blood electrolyte abnormalities, infec-
tious complications [2, 7, 11, 12], and, more controversially [13], a greater risk of 
“bacterial translocation” [12, 14–17].

Bacterial translocation takes place when bacteria usually confined to the digestive 
tract penetrate the intestinal mucosa and invade the lymphatic system, blood system, 
and numerous internal organs [16–18]. This event has been described as one of the main 
causes of septicemia and as a risk factor for the onset and progression of multiple organ 
failure, characterized by the uncontrolled systemic inflammation of internal organs [14, 
16, 18–20]. The main factors proposed as possible triggers for bacterial translocation 
include intestinal mucosal barrier break (increased mucosa permeability), intestinal 
microflora alteration (bacterial overgrowth), and immune system impairment [5, 17, 
18, 21]. These changes are associated with parenteral but not enteral nutrition [21–24].

Figure 1. 
Enteral (nasogastric, nasoduodenal, nasojejunal, gastrostomy, jejunostomy) and parenteral nutrition.
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Under normal conditions, the gastrointestinal mucosa acts as an effective barrier 
against the migration of microorganisms into the systemic circulation [16, 21, 25]. 
The integrity of this barrier is determined by the renewal of epithelial cells that 
compose it and by the number and type of bacteria that it contains [20, 25, 26]. 
A key stimulus for mucosal cell proliferation and the maintenance of bacterial 
homeostasis appears to be the presence and availability of nutrients in the intestinal 
lumen [4–6, 16, 24–27]. The food itself and the hormones released in its presence 
exert trophic effects on mucosa throughout the gastrointestinal system, from the 
stomach, small intestine, and colon to the gallbladder and pancreas [5, 24–26]. Both 
stimuli preserve the intestinal flora [5, 6, 20–22], which in turn critically modulate 
the immune response by producing the enzymes needed to release immunostimu-
lant nutrients and by activating the secretion of cytokine-like molecules known as 
bacteriocins [23, 25, 28].

Hence, mucosa atrophy is favored when the gastrointestinal system is not used, 
as in patients receiving parenteral nutrition. This increases the risk of septic com-
plications [12, 20, 25] and compromises intestinal immunocompetence, because 
the expression and induction of specific immune responses critically depend on the 
local microenvironment [20, 25, 28]. These problems are less frequently encoun-
tered in patients receiving enteral nutrition [9, 12, 20, 21].

For these reasons, enteral (rather than parenteral) nutrition is recommended 
in a wide range of clinical situations, including organ transplantation [11], cancer 
[29], pancreatitis [3, 30], Crohn’s disease [31], intestinal resection or inflammation 
[5], critical disease [3, 6, 7, 9], and the postoperative period [3, 8, 11, 23]. It is also 
preferred for premature or low-birth-weight infants [12, 32], for the elderly, for 
neurological patients [29, 33–35], for patients with anorexia nervosa [29], and for 
those with AIDS [36]. Nevertheless, enteral nutrition is not free of drawbacks, as 
discussed below [1, 22].

3. Problems associated with enteral nutrition

There is a consensus among health-care professionals that the nutritional status 
of patients is lower in those receiving enteral nutrition than in those fed orally. 
Enteral feeding has been associated with several disorders, although it is sometimes 
difficult to establish whether they are caused by the disease, the specific diet, or by 
the food administration route [1].

However, regardless of their disease, patients on enteral nutrition often show a 
series of “secondary” symptoms that can be described as gastrointestinal tract reac-
tions to diet administration, including: pain, discomfort, gastric residual volume, 
delayed gastric emptying, abdominal bloating and cramps, nausea/vomiting, 
diarrhea [1, 4, 8, 9, 12, 20, 22, 32, 33–39], metabolic disorders [1, 12], and, when the 
enteral nutrition is longer term, ulcers and major weight loss [33, 34]. In addition, 
some patients are unable to tolerate enteral nutrition [9, 22], especially pediatric 
patients [38, 39].

The causes of these problems have not been fully elucidated, although some psy-
chobiological studies, mainly in animals, have suggested that they may in part result 
from the entry of food into the digestive tract in “nonphysiological” conditions [40, 
41]. The absence of oral stimulation means that the digestive system is not prepared 
to receive the food (with the appropriate endocrine and exocrine secretions or 
motor activity changes, etc.), hampering the optimal digestion, absorption, and 
utilization of the nutrients (see below).
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4. Animal models of enteral nutrition: intragastric feeding

In experimental studies, enteral nutrition is known as intragastric or intraintes-
tinal feeding and also appears to be accompanied by numerous disorders that affect 
the digestion, absorption, and metabolism of nutrients. In these feeding modalities, 
meals are directly delivered to the gastric cavity (intragastric feeding) or lower seg-
ments of the digestive tube, such as the duodenum or jejune (intraintestinal feed-
ing), generally using a permanently implanted catheter. A physiological variable or 
function is then studied and compared with results obtained for oral feeding or for 
sham feeding, in which the food is orally ingested but extracted via a cannula before 
reaching the stomach.

One of the first authors to document alterations in animals caused by intragas-
tric feeding was the Russian scientist Ivan Pavlov [42], whose studies masterfully 
demonstrated the marked importance of the passage of food through oropharyngeal 
systems for its subsequent digestion [43, 44]. This oropharyngeal stimulation, 
designated “psychic reflex” by Pavlov, is now known as the cephalic phase of diges-
tion, which comprises a set of autonomic and endocrinal responses to stimulation by 
the food of sensory perceptive systems in the head and particularly in the oropha-
ryngeal cavity. Nevertheless, although these cephalic responses are preferentially 
initiated by contact with the food, they can also be effectively elicited just by seeing 
or anticipating it or by thoughts or any learned cues associated with it [40, 42, 44].

The digestive events triggered by cephalic stimulation are mediated by vagal 
parasympathetic efferents except for salivary secretions, which are partly controlled 
by sympathetic and nonvagal parasympathetic fibers. These vagal efferents, which 
are distributed throughout the digestive tube and associated digestive organs (liver, 
pancreas, and gallbladder), largely originate in the dorsal motor nucleus of the 
vagus (DMV), which is localized in the caudal medulla oblongata close to the floor 
of the fourth ventricle and is closely related to the nucleus of the solitary tract, the 
main structure receiving visceral signals from the digestive system [40–44].

DMV activity is directly or indirectly modulated by centers at upper levels of 
the nervous system that are responsible for the changes in digestive function that 
take place during the cephalic phase of digestion. This descending control of the 
DMV has been reported for such structures as the insular cortex, medial prefrontal 
cortex, central nucleus of the amygdala, bed nucleus of the stria terminalis, teg-
mental ventral area, and nucleus accumbens. Many of these signals reach the DMV 
through relays in hypothalamic regions (posterior hypothalamus and paraventricu-
lar nucleus) and brainstem regions (e.g., periaqueductal gray matter or parabrachial 
nucleus) [40, 44–47].

Pavlov reported that when food was directly introduced into the stomach, the 
secretion of gastric juices was delayed and scant, with weak digestive power, con-
trasting with the rapid and abundant cascade of gastric secretions observed when 
the same nutrients passed through the oropharyngeal cavity after their real or sham 
intake. He concluded that the low gastric juice secretion in enteral nutrition delays 
and considerably prolongs digestion [42].

The absence of oropharyngeal stimulation also indirectly delays other digestive 
secretions. It was reported by Pavlov that intragastrically administered food is not 
accompanied by salivary secretions, whose arrival in the stomach cavity stimulates 
the release of gastric juices [42]. It has also been demonstrated that the digestion 
of carbohydrates and fats that starts in the mouth through the action of salivary 
amylase and lipase continues in the stomach [48–50]. Hence, the absence of saliva 
delays gastric secretion and hampers the digestion of some nutrients. There is also 
an indirect effect on the release of pancreatic juices, whose secretion is determined 
by the level of hydrochloric acid in the stomach [42].
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Absence of the cephalic phase impacts on digestion-related substances through-
out the digestive system, from the mouth or stomach (e.g., salivary enzymes, 
hydrochloric acid, gastrin, pepsinogen, immunoglobulins, etc.), as mentioned 
above, to the small intestine (bicarbonate or digestive enzymes), liver, or pancreas 
(numerous hormones) (for review, see references [40, 44]). Many secretions 
triggered by cephalic stimulation are also specific and adapted to the nature of the 
food [42, 51–56]. In other words, food components appear to be identified before 
they reach the stomach, allowing the digestive system to be specifically prepared for 
their transformation and utilization [40, 57].

Removal of the cephalic phase affects not only endocrine and exocrine secre-
tions but also gastrointestinal motor activity, with an anticipatory increase in 
cephalic stimulation [58–61]. The intragastric feeding of experimental animals 
has also been found to markedly accelerate the outflow of gastric contents into the 
duodenum [62–64], which might be responsible for the discomfort experienced by 
patients with “dumping syndrome” [62]. This syndrome is observed in humans who 
have undergone abdominal vagotomy and is characterized by the rapid emptying 
of gastric contents into the duodenum, producing nausea and epigastric pain [65]. 
In this regard, the intraintestinal administration of nutrients (fats) was found to 
significantly damage the intestinal mucosa [63, 66].

Disorders induced by the absence of oropharyngeal stimulation extend to 
postabsorptive stages [54, 57, 62, 64, 67–70]. In human studies, glucose intolerance 
(increased blood levels) and reduced blood glucagon levels were observed after 
intragastric glucose administration, but not when this was accompanied by oral 
sensory stimulation through modified sham feeding [71]. It has also been demon-
strated that lipolysis is slower with intragastric versus oral feeding, leading to higher 
plasma levels of fatty acids [62].

Responses that are affected by the absence of cephalic stimulation can be observed 
in other levels of the digestive system and beyond, including postprandial ther-
mogenesis, anticipatory rise in heart rate, increased respiratory rate in response to 
eating, and changes in the transport and intestinal absorption of nutrients and in bile 
flow and secretin release, among others [49, 72–75].

Taken together, published studies confirm that the cephalic phase not only opti-
mizes food digestion but also intervenes in processes related to nutrient absorption 
and metabolism. Many of these effects may be secondary to the release of gastrointes-
tinal hormones, whose secretion is stimulated by the anticipation and presence of food 
in the oropharyngeal cavity [76–79].

5. Is intragastric feeding stressful?

According to the above-reported studies, intragastric or intraintestinal feeding 
means that the digestive system is not prepared to receive, digest, process, or even 
appropriately utilize the administered nutrients. They would arrive in the system 
under nonphysiological, negative conditions, which may in part account for the 
digestive problems that can often make enteral nutrition nonviable.

Taste learning is one of the behavioral procedures used by scientists to deter-
mine whether individuals perceive the food reaching the digestive system as 
positive or negative. In these learning tasks, two nonnutritional flavored solu-
tions of water are offered, with the intragastric/intraintestinal administration of 
a nutritional stimulus being associated with one solution and of an innocuous, 
nonnutritional stimulus (e.g., physiological saline) with the other. The preference 
of animals is determined after multiple sessions pairing the taste and visceral 
stimuli [80–83].
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Studies using this technique have demonstrated that the direct administration 
of complex food into the gastric cavity is a powerful way to establish flavor-condi-
tioned aversions [66, 80, 84–86]. Thus, when rats were subjected to a discriminative 
flavor learning task using whole milk as visceral stimulus, they preferred the flavor 
associated with physiological saline and strongly rejected the flavor associated with 
the food, even after a 22-h food deprivation period [80, 84–86]. Similar results were 
observed with intraintestinal feeding, finding that association of the intraduodenal 
administration of fats or glucose with the oral intake of saccharose or water pro-
duced a strong rejection of both in subsequent presentations [66, 80, 81, 86–88].

Results obtained with the enteral administration of natural food markedly 
contrast with those obtained for the intragastric administration of food subjected to 
cephalic processing (aspirated from the stomachs of donor subjects shortly after its 
oral consumption). Unlike observations with natural food, the animals developed 
a strong preference for the taste stimulus associated with the administration of 
“predigested” food and rejected the stimulus associated with physiological saline 
[80, 81, 86–88]. Hence, enterally administered foods are experienced as rewarding/
positive when they have undergone oropharyngeal processing, and assistance of the 
cephalic phase appears to adapt enteral diets more closely to digestive physiology. 
According to these data, the digestive system also seems perfectly prepared for the 
rapid assessment of the suitability of foods and for the transmission of this infor-
mation to the central nervous system.

Results of research in animals have prompted numerous clinical studies. 
Although enteral nutrition was not a routine clinical practice until the 1960s, food 
had long been administered via gastric catheters, with the first case being published 
in 1564 by Matthew Cornax, a Viennese professor and physician. The first reports on 
gastric function and disorders in individuals fed via gastric catheters were presented 
by Coronel William Beaumont (1833) and the French physician Charles Richet 
(1879), who described the appearance of reddish blemishes and spots, scabs, and 
fragments of gastric mucosa, as well as delays in digestion and gastric emptying [89].

One of the most famous studies in this field was published by Wolf and Wolff 
and known as “Tom’s case.” In 1895, at the age of 9 years, Tom underwent gas-
tronomy after accidentally eating boiling food and was only able to consume food 
via gastric catheter for the next 65 years. Tom was studied by various authors during 
this time, and one of the main findings was that digestion was not optimal when the 
food was deposited directly in the stomach and the intake was wholly unsatisfactory, 
leading to his malnourishment. However, when he was allowed to taste and chew the 
food before intragastric administration, at his own request, he gained weight and 
developed a good appetite [90]. Other similar reports in the literature include the 
case of a 24-year-old woman presented during the Annual Meeting of the American 
College of Gastroenterology in 1950 [91] and of a patient with a 29-year history 
of complete esophageal obstruction and large permanent gastrostomy [92], who 
both acquired the habit of tasting and partially chewing food before intragastric 
administration. Although we have been unable to trace more recent studies of this 
type, other results obtained in humans have highlighted the importance of cephalic 
stimulation in nutrition. For instance, oral stimulation with monosodium glutamate 
(flavor enhancer that improves taste/palatability and augments salivary flow) 
increased the appetite and weight of elderly patients with problems of taste sensitiv-
ity, appetite loss, and weight loss, improving their overall health [93, 94]. Similar 
findings were reported in neonates with established enteral feeding, whose discom-
fort was reduced by oral stimulation with glucose [95], and in restrained eaters, 
whose food intake was increased by the sensory experience of tasting fat [96].

In summary, these data indicate that the signals produced by food in the oropha-
ryngeal cavity trigger a cascade of exocrine, endocrine, and motor reactions that 
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prepare the digestive system for the reception, digestion, absorption, and metabo-
lism of the food ingested, allowing feeding to be perceived as a satisfactory or 
rewarding event. When these signals are missing, a series of noxious consequences 
can hamper the adequate development of these processes, making the feeding 
experience negative or “stressful” [40, 41, 44, 62].

It is therefore possible that some of the noxious effects of enteral nutrition can 
be palliated by administering diets that imitate “cephalic” food in some way. This 
possibility is currently under investigation in our laboratory.

6.  Transmission pathways of rewarding visceral information to the 
central nervous system

In general, two distinct procedures can be used to establish flavor learning, desig-
nated by our group as concurrent and sequential flavor learning. Two nonnutritional 
flavored stimuli with their respective intragastric administrations are simultaneously 
offered during a short time period (usually 7 min) in concurrent learning, whereas 
the stimuli are presented in alternating sessions in sequential learning (Figure 2). A 
key difference between these procedures is that animals must detect and process vis-
ceral stimuli very quickly to establish an association in concurrent learning, whereas 
this can be established in a more delayed fashion in sequential learning [82, 93, 88].

Using these procedures, and with the aim of being able to palliate the negative 
effects of enteral nutrition in the future, our group has studied the rapid pathway 
for processing information related to nutritional stimuli present in the gastroin-
testinal tract (concurrent learning), especially in the case of suitable or rewarding 
(“cephalic”) foods [81, 87, 88].

Information from the gastrointestinal tract reaches the brain via complemen-
tary humoral and neural pathways [97]. However, given the aforementioned time 
constraints of concurrent taste, participation of the humoral pathway in this task 
appears unlikely, and the neural pathway would be responsible for the transmission 
of information under these learning conditions [87].

Figure 2. 
Experimental procedure followed in concurrent (A) and sequential (B) flavor learning. In the former, two 
flavored stimuli are presented at the same time; when the animal voluntarily consumes one of these stimuli, 
it is simultaneously and intragastrically administered with the associated visceral stimulus (e.g., predigested 
nutrients through an intragastric cannula); when the animal consumes the other stimulus, it is simultaneously 
and intragastrically administered with the other visceral product (e.g., physiological saline) through a second 
cannula. The same procedure is followed in sequential learning (B) except that each of the flavored stimuli and 
their respective intragastric administrations are presented in alternate sessions.
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Neuroanatomical and neurophysiological studies have demonstrated that the 
gastrointestinal tract receives both vagal and spinal nerve fibers [97], and either 
may have carried nutritional information to the brain in our studies. However, 
numerous physiological and behavioral investigations have indicated that spinal 
visceral afferents are less important in nutrition [98] and appear more related to 
nociceptive processes [99]. For this reason, we have focused on the vagal system 
in our experiments on the neural substrates involved in transmitting rewarding 
visceral information to the central nervous system.

Vagal afferents are distributed throughout the digestive system (Figure 3) and 
receive detailed information on the specific nature of the nutrients present in the 
gastrointestinal lumen via interoceptors (chemo-, osmo-, thermo-, and mechanore-
ceptors) [97, 100, 101]. This takes place directly, through the free diffusion of lumi-
nal chemicals across epithelial cells, and also indirectly via paracrine messengers 
released by enteroendocrine cells, which act as sensory transducers (“taste” cells) 

Figure 3. 
Anatomical pathways and nuclei involved in the rapid detection and processing of nutritional rewarding 
visceral information (SolG: gelatinous subnucleus of nucleus of solitary tract; LPBe: external lateral 
parabrachial subnucleus).
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that detect the physical and chemical nature of luminal contents [100, 102–104]. 
Vagal afferents with nutritional information ascend toward the brain in parallel 
with autonomic motor fibers, forming bundles on both sides of the esophagus and 
ending in the nodose ganglion, from which central vagal branches extend toward 
their first brain relay: the nucleus of the solitary tract (NST) [105–106].

In rats, the NTS is a small-sized bilateral structure that ends in a single midline 
nucleus caudal to the area postrema (AP), one of the main circumventricular organs 
of the brain (Y-shaped in horizontal plane). Three regions have been differentiated 
in the anteroposterior dimension of the NTS: a rostral region that extends from the 
rostral pole of the nucleus to the point where the medial division contacts the fourth 
ventricle border; an intermediate band that extends from this last point to the caudal 
end of the AP; and a caudal division wholly occupied by the commissural sub-
nucleus [105–107]. Most of the subnuclei of the NTS are found in its intermediate 
region, especially in the medial division (localized medially to the solitary tract, a 
bundle of fibers that crosses the entire anteroposterior extent of the nucleus) [107].

The NTS is the first relay for a wide range of special and general visceral afferent 
sensory fibers (oropharyngeal, gastrointestinal, cardiovascular, and respiratory), 
which are relatively segregated in subnuclei distributed throughout its rostrocaudal 
dimension. Those originating in the gastrointestinal system largely terminate in 
subnuclei in the medial division of the intermediate-caudal NTS [105–106].

Our group has investigated the participation of vagal afferents in the rapid trans-
mission of rewarding nutritional information to the brain using capsaicin (8-methyl 
N-vanillyl-6-nonenamide), the pungent component in red pepper of the genus 
Capsicum (family Solanaceae). When topically applied, capsaicin causes the initial 
excitation of thinly myelinated Aδ- and unmyelinated C afferent fibers (enhanc-
ing the release and inhibiting the reuptake of substance P and other neuroactive 
peptides from terminals), producing a transient hyperalgesia. This is followed by a 
refractory period with reduced sensitivity, explaining its clinical application to treat 
different types of pain. After prolonged or repeated exposure, capsaicin produces a 
permanent degeneration of these fibers and a persistent desensitization. Therefore, 
perineural application of this substance provides an important neuropharmacologi-
cal tool for determining the specific role of an afferent pathway [108].

We applied capsaicin around the esophagus, selectively lesioning unmyelinated 
afferents and weakly myelinated fibers [108], which are both largely present in the 
vagus nerve [109, 110]. We found that information transmission mediated by cap-
saicin-sensitive vagal afferents is essential in concurrent taste discrimination tasks 
[87]. Thus, neurochemical interruption of this pathway hampers the establishment 
of taste preferences induced by the intragastric administration of “cephalic” foods, 
which is achieved without difficulty by neurologically intact animals.

However, capsaicin-sensitive afferents are not indispensable for the induction of 
taste preferences using sequential tasks. In this case, both capsaicin-treated and neu-
rologically intact animals effectively learn the task and show clear preferences for taste 
stimuli associated with the intragastric administration of predigested nutrients. These 
results support the idea that information is unlikely to be transmitted to the brain via 
spinal or humoral mechanisms in concurrent tasks, because capsaicin-treated animals 
could be expected to learn the task if this was the case, and they did not [87]. Because 
each flavor is presented with its respective intragastric administration on alternate 
days in the sequential modality, long time periods are available for the detection and 
processing of the visceral stimuli. Hence, neurologically intact animals could use 
both neural pathways (likely while the food is present in the gastrointestinal tract) 
and humoral pathways (after the absorption of nutrients), whereas capsaicin-treated 
animals could only use the humoral (and/or spinal) pathway, although this would be 
sufficient to develop the corresponding taste preference behaviors.
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Anatomical, physiological, and immunohistochemical studies have demon-
strated that vagal afferents from the upper gastrointestinal tract project toward 
the intermediate-caudal region of the NST (Figure 3), a gateway for visceral signal 
processing [111]. Thus, various subnuclei of the intermediate-caudal region of the 
NST (NSTic) show c-fos activity after normal food intake [112], after intragastric or 
intraduodenal nutrient administration [113–115], and in situations of gastric [116] 
and intestinal [117] distension, among others. In many of these cases, NSTic activa-
tion is abolished by the chemical or surgical lesioning of vagal afferents [114, 118].

Given the time constraints implicit in the concurrent procedure, the digestive 
segments most likely to be involved in this learning modality (i.e., responsible 
for initial detection of the visceral stimulus) would be proximal ones (preferen-
tially the stomach and duodenum). Sensory visceral information is known to be 
organized topographically in the NSTic with relative anatomical segregation [105, 
106]. For instance, a high density of gastric vagal afferents is concentrated in the 
lateral portion of the dorsomedial NST in a cell cluster known as the gelatinous 
nucleus [105–107, 111, 119], whereas afferents from the duodenum and other seg-
ments of the small intestine are distributed in different areas of the dorsomedial 
nucleus, especially in more caudal and medial areas of the intermediate region 
[105, 106, 117].

Our group recently demonstrated that the gelatinous subnucleus (SolG) par-
ticipates in the learning of concurrent taste preferences induced by intragastrically 
administered “cephalic” foods [88]. It therefore appears that the gelatinous nucleus 
(SolG), alongside capsaicin-sensitive vagal afferents, may participate in the neural 
pathway that rapidly processes rewarding nutritional information from the upper 
gastrointestinal tract. This subnucleus almost exclusively concentrates gastric vagal 
afferents [106, 113, 117, 119] and is a receptor of fine vagal afferents [120], that is, 
the type of fibers lesioned by capsaicin [108]. In addition, capsaicin-induced dam-
age of small ganglion cells was found to produce axonal degeneration in the SolG, 
among other regions [121].

The NSTic in turn relays visceral information from the gut to the lateral division 
of the pontine parabrachial complex (Figure 3), especially to its lateral external 
subnucleus.

The parabrachial complex is a grouping of subnuclei that surround the superior 
cerebellar peduncle along its course through the dorsolateral pons. In rats, the 
subnuclei localized dorsally to the peduncle constitute its lateral division (LPB) and 
those localized ventrally the medial division [122]. The external subnucleus (LPBe), 
localized at the most lateral border and throughout the rostrocaudal dimension of 
the LPB, concentrates information from both the stomach and duodenum, receiv-
ing a large number of the afferents projected from the dorsomedial NTS, including 
the SolG[107, 122, 123].

These anatomical connections allow modification of LPBe activity by electrical 
stimulation of the vagus nerve and by the intragastric administration of various 
nutrients [114, 124, 125]. Moreover, the intragastric application of nutrients induces 
c-fos expression in intermediate-caudal and dorsomedial NST subnuclei and in the 
LPBe, among other regions [114, 115]. This dual activation has also been observed 
after the administration of substances that positively or negatively affect food 
intake, including pharmacological agents (such as methyl palmoxirate, 2,5-anhydro-
D-mannitol, or dexfenfluramine) and various hormones (e.g., cholecystokinin, 
bombesin, or secretin) [126–131]. These effects of neuronal activation and/or intake 
can also be abolished or attenuated by truncal vagotomy or perivagal capsaicin 
treatment [114, 126, 130–134].

Our laboratory has also addressed the possibility of the LPBe nucleus being 
part of the rapid processing pathway of rewarding information related to nutrients 
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present in the upper gastrointestinal tract in our laboratory. Unlike neurologically 
intact animals, LPBe-lesioned animals proved unable to develop taste preferences 
induced by the intragastric administration of “cephalic or predigested” foods in 
concurrent taste learning tasks, but both groups were able to learn taste preferences 
in sequential taste learning tasks [81].

We have also used other procedures to explore the involvement of the LPBe 
in rewarding processes, including the induction of taste and place preferences by 
electrical stimulation of this subnucleus [135]. In addition, large lesions of the LPB, 
including the external subnucleus, appear to reverse aversive effects of the intragas-
tric administration of natural, nonpredigested nutrients, avoiding rejection of the 
associated taste stimulus and appearing to induce a flavor preference (versus water) 
in late trials of the task [85].

Considered together, these data suggest that the rapid processing of visceral 
information on rewarding nutrition (in upper gastrointestinal segments) is 
mediated by a neural pathway that originates peripherally in the vagus nerve and 
includes NSTic regions (e.g., SolG) and the LPBe [81, 87, 88]. In fact, this visceral 
vagal-NSTic-LPBe information pathway also appears to participate in other physi-
ological processes requiring the rapid transmission of nutritional information. We 
recently showed that both the vagus nerve [136] and SolG [137] or LPBe [138] are 
essential in circumstances that require the immediate adjustment of food intake, 
extracting part of ingested food immediately after ending a meal and finding that 
approximately the same amount was reingested by neurologically intact animals but 
a much smaller amount by lesioned animals.

The vagus nerve-NSTic-LPBe pathway also proved essential for the rapid trans-
mission of nonnutritional visceral information. We found that the vagus nerve [83] 
and NSTic [139] or LPBe [140] are necessary for concurrent taste aversion learning 
but not for sequential TAL.

According to the studies presented in this chapter, organisms have at least two 
complementary neurobiological systems for the detection and processing of nutri-
tional rewarding visceral information: one that depends on the vagus nerve, NSTic, 
and LPBe, and another that is independent of this pathway. The former appears to 
participate when rapid information processing is needed and the latter when there 
are no time constraints.

7. Conclusions

Research into the biological mechanisms underlying nutritional behavior is 
exhilarating, both for the simple pleasure of unraveling these complex phenomena 
and for its potential importance in numerous clinical fields, including artificial 
nutrition. As shown in our review, enteral nutrition for any reason and of any 
type is frequently associated with adverse effects whose causes have yet to be fully 
elucidated. Studies by our group suggest that at least some of these negative effects 
may result from the absence of the cephalic phase of digestion. Further investiga-
tions of the physiology of this nutritional process are needed to support the design 
of enteral diets better adapted to digestive physiology and the development of 
pharmacological strategies that counteract its noxious effects.
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