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Chapter

The Role of Vitamin A-Storing 
Cells (Stellate Cells) in 
Inflammation and Tumorigenesis
Isao Okayasu, Mutsunori Fujiwara and Tsutomu Yoshida

Abstract

Characteristic localization and distribution of vitamin A-storing cells (stel-
late cells) were demonstrated as hepatic stellate cells in the hepatic lobule and as 
subepithelial myofibroblasts in the colonic crypt. The stem cell-stem cell niche 
is maintained by stellate cells in the periportal area and crypt base. Periportal 
vitamin A-rich stellate cells decrease in patients with chronic hepatitis C who are 
habitual smokers. Mice fed a vitamin A-supplemented diet show reduced severity 
of dextran sulfate sodium (DSS)-induced colitis and development of subsequent 
colonic neoplasia in a model of the ulcerative colitis-dysplasia-carcinoma sequence, 
compared with mice fed a vitamin A-deficient diet. Decreased colonic subepithelial 
myofibroblasts and IgA/IgG-positive cells, and increased CD11c-positive dendritic 
cells in the colonic mucosa, in the vitamin A-deficient state suggest dysfunction of 
the stem cell niche at the colonic crypt base and colonic immunity. Accordingly, 
vitamin A deficiency may worsen inflammation and subsequent tumor develop-
ment, indicating the possibility that vitamin A supplementation might be effective 
against chronic inflammation and cancer development.

Keywords: vitamin A-storing cells, stellate cells, subepithelial myofibroblasts, stem 
cell niche, chronic hepatitis, DSS colitis, ulcerative colitis, colonic tumorigenesis

1. Introduction

In mammals, vitamin A is mostly stored in the liver, particularly in perisinu-
soidal stellate cells. It is also detectable in the lung, kidney, and intestine. Storage 
of total retinol is increased considerably in the lungs, kidneys, and intestines of 
rats fed a vitamin A-rich diet [1]. Vitamin A-rich lipids can be identified in the cells 
using electron microscopy [2]. Vitamin A-storing cells (stellate cells) correspond to 
subepithelial myofibroblasts in the lung and intestine [3]. Stellate cells are necessary 
for the differentiation of epithelial cells, known as the stem cell niche [4–7].

It is thought that deficiency of vitamin A worsens inflammation and accelerates 
tumorigenesis, possibly due to local immunity and stem cell niche dysfunction 
[3, 8–11]. Data presented and discussed in this chapter show (1) the distribution, 
localization, and function of stellate cells in the liver and intestine, and (2) the role 
of stellate cells in inflammation and tumorigenesis.
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2. Characteristic distribution, localization, and function of stellate cells

2.1 Hepatic stellate cells

Vitamin A is mostly (≈80%) stored in hepatic stellate cells, which are located in 
the perisinusoidal (Disse) space [1, 2]. Lipid droplets containing vitamin A can be 
assessed by electron microscopy. Vitamin A-rich (containing ≥10 vitamin A lipid 
droplets) (Figure 1A) and vitamin A-poor stellate cells (<10 vitamin A lipid drop-
lets) can be identified by counting the numbers of lipid droplets in the cytoplasm. 
In humans and experimental animals, vitamin A-rich stellate cells change to vitamin 
A-poor stellate cells or myofibroblasts, which induce fibrosis by collagen formation 
in chronic hepatitis or cirrhosis (Figure 1B).

Portal fibrosis is induced by collagen produced mainly by stellate cells but not 
by hepatocytes. Collagen-producing stellate cells change into myofibroblast-like 
cells, which show a decrease in the number of vitamin A granules in the cytoplasm, 
and produce collagen around the cytoplasm. Lastly, vitamin A granules disappear 
completely from the cytoplasm, and stellate cells change their phenotype to that 
of myofibroblasts and fibrocytes, which are immunohistochemically positive for 
anti-αSM-actin antibody [12–14].

The periportal area is a microenvironment with a high concentration of vitamin A 
due to an abundance of vitamin A-rich stellate cells, and the complex of retinol-
retinol binding protein is paracrine-transferred from hepatic parenchymal cells to 
stellate cells, leading to direct secretion of the complex from stellate cells into the 
plasma [15–17]. Since hepatic stem cells are localized around the periportal area, 
namely the canal of Hering, the differentiation and maturation of these cells may be 
impaired due to vitamin A depletion in this area [18–20]. Hepatic stellate cells require 
vitamin A-rich lipids to maintain their niche function. Accordingly, the hepatic stem 
cell-stem cell niche relation is maintained in the periportal area [21, 22] (Figure 2A).

Figure 1. 
(A) A periportal vitamin A-rich stellate cell containing many lipid droplets and exerting pressure on the 
nucleus (human liver). (B) A periportal vitamin A-poor stellate cell containing a few lipid droplets (arrow) 
and well-developed endoplasmic reticulum (human liver).
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2.2 Subepithelial myofibroblasts as colonic stellate cells

In the colonic mucosa, subepithelial myofibroblasts correspond to hepatic stellate 
cells, although they are usually vitamin A-poor in the cytoplasm, suggesting a differ-
ent endotype from hepatic stellate cells (Figure 3). Subepithelial myofibroblasts are 
localized more at the crypt base than at other regions (Figure 2B) [3]. Subepithelial 
myofibroblasts express αSM-actin, NCAM, cytoglobin, and HSP47, indicating multi-
potential roles [3, 11, 23] (Figure 4). Because stem cells are localized at the crypt 
base, subepithelial myofibroblasts around the crypt base are considered a stem cell 
niche, which has been shown by experimental and histopathological studies [3, 5, 
23–25]. Accordingly, mucosal stem cells require subepithelial myofibroblasts for their 
differentiation. Critical gene expression patterns were shown from the colon basal 
crypts to the colon tops, including bone morphologic protein (BMP) antagonists, 
gremlin 1 (GREM1), GREM2, CHRDL1, and active Wnt signaling using human colon 
microarray analysis [5]. Along the colon crypt axis, Wnt signaling and Notch signal-
ing expression were activated at the crypt base, while BMP signaling was activated 
at the top. Wnt signaling and Notch signaling by subepithelial myofibroblasts of the 
crypt base and smooth muscle cells of the muscularis mucosa regulate epithelial cell 
positioning and proliferation, and BMP induces epithelial differentiation. Further, 
isolated human colonic crypt epithelial cells expressing musashi-1, β1-integrin, 
BerEP4, and CD133 have been shown to adhere to colonic myofibroblasts in cell 
incubation experiments, indicating an intimate interaction with each [26, 27].

Figure 2. 
(A) Characteristic distribution of periportal vitamin A-rich stellate cells in the liver. Hepatic stem cells 
located in zone 2, where vitamin A-rich stellate cells are collected, form a stem cell niche. Periportal hepatic 
cells differentiate and maturate toward zone 5, close to the centrilobular vein [22]. (B) Localization and 
distribution of subepithelial myofibroblasts in the colonic mucosa. Many subepithelial myofibroblasts can 
be seen around the crypt base forming a stem cell niche, where colonic stem cells are located. Epithelial cells 
at the crypt base differentiate and maturate toward the crypt top [3, 11]. The characteristic localization and 
maintenance of stem cell-stem cell niche are similar to those of the hepatic lobule. MM: Muscularis mucosa.
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Thus, the localization and relation of the stem cell-stem cell niche is the same in 
the liver and intestine.

3. Vitamin A and stellate cells in inflammation and tumorigenesis

3.1 Decrease of vitamin A-rich stellate cells in chronic hepatitis C

With respect to liver disease, the number of periportal vitamin A-rich stellate 
cells is decreased in chronic hepatitis C patients, which is associated with aggrava-
tion of hepatitis, as indicated by elevated serum alanine aminotransferase (ALT) 
levels [28] (Figure 5A). This tendency was demonstrated in both vitamin A-rich and 
vitamin A-poor stellate cells. Additionally, the number of periportal vitamin A-rich 
stellate cells or of both vitamin A-rich and vitamin A-poor stellate cells combined is 

Figure 3. 
(A) Localization of subepithelial myofibroblasts in human colonic mucosa. Many subepithelial myofibroblasts, 
vitamin A-absent (a) or vitamin A-poor (b), are located around the crypt base. An interstitial myofibroblast is 
also seen (c). (B) A vitamin A-poor (arrow) subepithelial myofibroblast adjacent to the crypt.

Figure 4. 
Expression of αSM-actin and NCAM by subepithelial myofibroblasts in human colonic mucosa. Double 
immunofluorescence staining shows expression of both αSM-actin (red arrows) and NCAM (green arrows).
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significantly decreased during the progression of chronic hepatitis C (from chronic 
persistent hepatitis, CPH or chronic active hepatitis, CAH2A to CAH2B) [29] 
(Figure 5B). Since vitamin A-absent stellate cells, that is, fibrotic myofibroblasts, 
were not counted in these studies, the change of vitamin A-storing stellate cells to 
myofibroblasts in chronic hepatitis was not assessed. Hepatic stellate cells in the 
normal human liver express both cellular retinol-binding protein-1 (CRBP-1) and 
αSM-actin, while myofibroblasts express only αSM-actin in fibrotic or cirrhotic 
liver, suggesting a change of stellate cells to myofibroblasts due to chronic inflam-
mation [30]. This fact indicates that the decrease of vitamin A-rich and vitamin 
A-poor stellate cells correlates with the severity and progression of chronic hepatitis 
C is in line with the chronic hepatitis-liver cirrhosis-hepatocellular carcinoma 
(HCC) sequence proposed epidemiologically and clinically [31–33].

Furthermore, chronic hepatitis C patients who are habitual smokers show 
decreased numbers of vitamin A-rich stellate cells or vitamin A-rich and vitamin 
A-poor stellate cells combined, compared with those who are non-smokers [29] 
(Figure 5C). The smoking prevalence in the CAH2B group was 54.1%, which was 

Figure 5. 
Relationship between the number of periportal vitamin A-rich stellate cells (SCs) and chronic hepatitis C. (A) 
Chronic hepatitis C monitored by serum ALT level. Both vitamin A-rich (≥10 lipid droplets in a cytoplasm) 
and vitamin A-poor (<10 lipid droplets) or vitamin A-rich stellate cells in the periportal area are significantly 
decreased in Group D (ALT >80 IU/L), compared with the groups with lower ALT level [28]. (B) Chronic 
hepatitis C. Both vitamin A-rich and vitamin A-poor stellate cells or vitamin A-rich stellate cells in the 
periportal area are significantly decreased in the CAH2B group compared with the CPH and CAH2A groups 
[29]. (C) Habitual smoking and the number of periportal vitamin A-rich stellate cells in patients with chronic 
hepatitis C. Smokers with chronic hepatitis C show low numbers of both vitamin A-rich and vitamin A-poor 
cells or vitamin A-rich stellate cells in the periportal area compared with non-smoking patients with chronic 
hepatitis C [29].
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approximately 1.8 times that of the CPH and CAH2A groups in this study. Habitual 
smoking is encountered in 59.4% of patients with HCC, according to a report by 
the Liver Cancer Study Group of Japan [34]. This fact suggests that habitual smok-
ing in CPH and CAH2A may cause the clinicopathological progression of chronic 
hepatitis C, in line with the results of other studies reporting that smoking is a risk 
factor for HCC development [35, 36]. It is possible that the decrease in the number 
of periportal vitamin A-rich stellate cells causes a decrease in local vitamin A 
content and a reduction in the anti-inflammatory effect of vitamin A. It has not yet 
been established whether the decrease of vitamin A-rich stellate cells results from 
harmful chemicals such as specific nitrosamines or benzopyrenes associated with 
smoking [37, 38]. The effects of the chemicals remain to be examined in stellate cell 
cultures to determine whether or not they result in hypoplasia of vitamin A-rich 
stellate cells.

In summary, habitual smoking can be a risk factor for acceleration of chronic 
hepatitis C, possibly due to a decrease or hypoplasia of vitamin A-rich stellate cells, 
resulting in the development of HCC.

3.2 Inhibition of dextran sulfate sodium (DSS) colitis by vitamin A 
supplementation

As a model of ulcerative colitis, DSS colitis was induced in mice fed a vitamin A 
deficient-diet or a vitamin A-supplemented diet [39, 40]. Subepithelial myofibro-
blasts in the colonic mucosa showed significant presence of cytoplasmic vitamin A 
lipid in the vitamin A-supplemented mice, in addition to the presence of vitamin 
A-rich hepatic stellate cells (Figure 6). Further, α smooth muscle (SM)-actin-
positive subepithelial myofibroblasts increased in vitamin A-supplemented mice 
compared with vitamin A-deficient mice (Figures 7, 8A). In addition, CD11c-
positive macrophages in the colonic mucosa decreased in vitamin A-supplemented 
mice compared with vitamin A-deficient mice (Figure 8B). IgA-positive cells and 
the ratio of IgA-positive/IgG-positive cells increased in vitamin A-supplemented 
mice compared with vitamin A-deficient mice (Figure 8C). Experimental DSS 
colitis, as a murine model of ulcerative colitis, showed significantly higher severity 
of colitis and colonic ulcer, and shorter colon length in vitamin A-deficient mice 
compared with vitamin A-supplemented mice (Figure 9). In addition, recovery 
after DSS colitis was delayed in vitamin A-deficient mice compared with vitamin 
A-supplemented mice. The severity was greater in vitamin A-deficient mice than in 
vitamin A-supplemented mice with repeated bouts of DSS colitis.

Dietary vitamin A is required as a precursor of retinol in tissues. Tissue retinol 
plays an important role in immunity and cell differentiation. In immunity, excess 
Th1 and insufficient Th2 function occur in vitamin A deficiency, resulting in helper 
T cell imbalance. Further, α4β7-positive memory/activated T cell generation is 
reduced in vitamin A-deficiency [41]. Supported by retinoic acid, a vitamin A 
metabolite, γδ T cells produce IL-22, leading to improvement of DSS-induced colitis 
[42]. CD11c-positive dendritic cells in the colonic mucosa of vitamin A-deficient 
mice are increased, in line with results shown in a study of vitamin A-deficient rats 
[9]. The increase of CD11c-positive dendritic cells may represent a compensatory 
response to vitamin A deficiency, which induces maturation of dendritic cells [43, 
44], since vitamin A deficiency causes dendritic cell dysfunction in the activation of 
T lymphocytes. Gut-homing IgA-secreting B cells are generated by intestinal den-
dritic cells in the sufficient vitamin A state [41]. Accordingly, a decrease in IgA+ cells 
or the ratio of IgA+ cells/IgG+ in the colonic mucosa is thought to be indicative of 
disorganized mucosal immunity in vitamin A deficiency [41, 45, 46]. Additionally, 
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intestinal epithelial expression of retinaldehyde dehydrogenase 1 (RALDH1) differs 
among mouse strains. BALB/c mice, which have high RALDH1, show an increased 
activity for induction of IgA class switching from B cells [42]. The severity of DSS 
colitis might depend on RALDH1 expression, suggesting the possibility of differ-
ences in susceptibility to ulcerative colitis in humans. Further studies should be 
conducted to clarify this possibility.

Thus, possible dysfunction of mucosal immunity and poor epithelial cell 
differentiation by malfunction of colonic subepithelial myofibroblasts in vitamin 
A-deficient mice are presumed to accelerate DSS colitis.

Figure 6. 
Subepithelial myofibroblasts of colonic mucosa in mice fed a vitamin A-deficient or vitamin A-supplemented 
diet. (A) A subepithelial myofibroblast from a vitamin A-supplemented mouse contains a few lipid droplets 
(arrow, upper panel). Conversely, a fibroblast-like subepithelial myofibroblast from a vitamin A-deficient 
mouse has no lipid droplets (lower panel). (B) Lipid droplets at the crypt base of vitamin A-supplemented 
mice were significantly more than in vitamin A-deficient mice [40].

Figure 7. 
Localization and distribution of CD11c-positive dendritic cells (green) and αSM-actin (red) in the colonic 
mucosa of vitamin A-deficient (B, vitamin A (−)) and vitamin A-supplemented mice (A, vitamin A (+)) 
[40].
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3.3 Inhibition of development of colonic tumors by vitamin A supplementation 
in a DSS colitis model of the ulcerative colitis-carcinoma sequence

A combination of azoxymethane (AZM) preinjection followed by induction of 
DSS colitis is a well-known experimental murine model of the ulcerative colitis-
dysplasia-adenocarcinoma sequence [47]. Vitamin A-deficient mice developed 
more dysplasia and adenocarcinoma than vitamin A-supplemented mice, as well as 
more severe colitis (Figures 10, 11) [40]. These results demonstrate that a vitamin 
A-supplemented diet inhibited DSS colitis and the subsequent development of 
dysplasia-carcinoma seen with a vitamin A-deficient diet.

Cytoplasmic vitamin A lipids decreased in subepithelial myofibroblasts 
at the colonic crypt base of vitamin A-deficient mice compared with vitamin 
A-supplemented mice. Furthermore, a decrease in αSM-actin-positive subepithelial 
myofibroblasts was also found, suggesting dysfunction of niche regulation for the 
protection and differentiation of mucosal stem cells or progenitor cells [3, 23, 25]. 

Figure 8. 
(A, B) Decreased αSM-actin-positive subepithelial myofibroblasts (a) and increased CD11c-positive dendritic 
cells (B) are shown in vitamin A-deficient mice (vitamin A (−)) compared with vitamin A-supplemented 
mice (vitamin A (+)), both in the non-treated and DSS colitis-induced groups [40]. (C) Comparison of IgA/
IgG-positive cells in the right side colonic mucosa between vitamin A-deficient and vitamin A-supplemented 
mice. IgA/IgG-positive cells increased in vitamin A-supplemented mice (vitamin A (+)), compared with 
vitamin A-deficient mice (vitamin A (−)) [40].
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These findings might indicate that dysfunction of stem cell niche regulation in 
subepithelial myofibroblasts causes accelerated DSS colitis, resulting in the develop-
ment of colorectal neoplasia.

Vitamin A and its metabolites, retinoids, play an important role in cell differen-
tiation [25, 48]. It is well known and clinically accepted that retinoids have chemo-
preventive effects against cancers, particularly with differentiation therapy for acute 
promyelocytic leukemia [49]. In addition, there are many clinical and experimental 
reports that vitamin A deficiency promotes cancer development and progression 
[50–55]. The CYP26A1 gene, which encodes for the cytochrome P450 enzyme 
involved in metabolic inactivation of retinoic acid, was highly expressed in cancers 
of various organs and is related to cancer progression. This may suggest a link 
between intracellular retinoic acid status and tumorigenesis [56–58]. Furthermore, 
prolonged recovery from severe DSS colitis and the subsequent development of 

Figure 9. 
Comparison of DSS colitis between vitamin A-deficient and vitamin A-supplemented mice. Vitamin 
A-supplemented mice showed improvement of colon length (A, B) and colitis score (C) assessed by erosion, loss 
of crypts, and inflammatory cell infiltration [40].

Figure 10. 
Colon cancer in vitamin A-deficient mouse induced by a combination of azoxymethane (AZM) injection and 
DSS colitis [40].
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colonic tumors in vitamin A-deficient mice were significantly improved by vitamin 
A supplementation, suggesting a cause-effect relationship between local vitamin A 
status and the development and progression of cancer.

It has been shown that gut microbiota have a possible influence on colitis and the 
development of colorectal neoplasia. Particularly, correction of microbiota-induced 
retinoic acid deficiency stimulates protective CD8+ T cell-mediated immunity, 
resulting in inhibition of colitis and its associated colorectal tumorigenesis in mice 
[59]. Since malnutrition including vitamin A insufficiency accelerates inflammatory 
bowel disease in children [60, 61], it is thought that the difference in microbiota in 
response to a vitamin A-deficient versus a vitamin A-supplemented diet may have 
a substantial effect on colitis and the development of colonic neoplasia [62–64]. 
Further study is needed to address this possibility.

There are no definite clinical indications for vitamin A administration to protect 
against inflammation and tumor development, although it has been proposed that 
dietary vitamin A is closely related to exacerbation and continuity of inflammation, 
particularly in chronic hepatitis C [65, 66] and inflammatory bowel disease [67, 68].  
The results described herein raise the possibility that vitamin A administration 
inhibits chronic hepatitis and colitis, and the subsequent development of cancer. 
Further studies are needed to identify the possible mechanisms for inhibi-
tion of chronic inflammation and subsequent neoplasia induced by vitamin A 
supplementation.

4. Conclusions

Vitamin A is stored in stellate cells, mainly in the liver and to a lesser extent 
in the lung and intestine, and plays important roles in immunity, cell differentia-
tion, and the stem cell niche. In the liver, decreased vitamin A-rich stellate cells, 
or decreased vitamin A-rich and vitamin A-poor stellate cells combined, relates to 
the severity of chronic hepatitis C and habitual smoking. In the colon, a vitamin 
A-supplemented diet inhibits DSS colitis and subsequent colonic tumor develop-
ment in vitamin A-deficient diet mice, an experimental mouse model of ulcerative 
colitis. Vitamin A administration could be effective to treat and/or prevent liver 

Figure 11. 
Comparison of induced colon neoplasia and DSS colitis between vitamin A-deficient and vitamin 
A-supplemented mice. Vitamin A-supplemented mice showed significant inhibition of neoplasia development 
(A) and reduction of colon shortness (B) and colitis (C) compared with vitamin A-deficient mice [40].
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