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Chapter

Simple Approach to Special
Polynomials: Laguerre, Hermite,
Legendre, Tchebycheff, and
Gegenbauer
Vicente Aboites and Miguel Ramírez

Abstract

Special polynomials: Laguerre, Hermite, Legendre, Tchebycheff and
Gegenbauer are obtained through well-known linear algebra methods based on
Sturm-Liouville theory. A matrix corresponding to the differential operator is found
and its eigenvalues are obtained. The elements of the eigenvectors obtained corre-
spond to each mentioned polynomial. This method contrasts in simplicity with
standard methods based on solving the differential equation by means of power
series, obtaining them through a generating function, using the Rodrigues formula
for each polynomial, or by means of a contour integral.

Keywords: special polynomials, special functions, linear algebra, eigenvalues,
eigenvectors

1. Introduction

The polynomials covered in this chapter are solutions to an ordinary differential
equation (ODE), the hypergeometric equation. In general, the hypergeometric
equation may be written as:

s xð ÞF0 0
xð Þ þ t xð ÞF0 xð Þ þ λF xð Þ ¼ 0, (1)

where F xð Þ is a real function of a real variable F : U ! R, where U ⊂R is an open
subset of the real line, and λ∈R a corresponding eigenvalue, and the functions s xð Þ
and t xð Þ are real polynomials of at most second order and first order, respectively.

There are different cases obtained, depending on the kind of the s xð Þ function in
Eq. (1).When s xð Þ is a constant, Eq. (1) takes the form F

0 0
xð Þ � 2αxF0 xð Þ þ λF xð Þ ¼ 0,

and if α ¼ 1 one obtains the Hermite polynomials. When s xð Þ is a polynomial of the
first degree, Eq. (1) takes the form xF

0 0
xð Þ þ �αxþ β þ 1ð ÞF0 xð Þ þ λF xð Þ ¼ 0, and

when α ¼ 1 and β ¼ 0, one obtains the Laguerre polynomials. There are three differ-
ent cases when s xð Þ is a polynomial of the second degree. When the second degree
polynomial has two different real roots, Eq. (1) takes the form 1� x2ð ÞF0 0

xð Þþ
β � α� αþ β þ 2ð Þx½ �F0 xð Þ þ λF xð Þ ¼ 0; this is the Jacobi equation, and for different
values of α and β, one obtains particular cases of polynomials: Gegenbauer

1



polynomials if α ¼ β, Tchebycheff I and II if α ¼ β ¼ �1=2, and Legendre
polynomials if α ¼ β ¼ 0. When the second degree polynomial has one double
root, Eq. (1) takes the form x2F

0 0
xð Þ þ αþ 2ð Þxþ β½ �F0 xð Þ þ λF xð Þ ¼ 0, and

when α ¼ �1 and β ¼ 0, one obtains the Bessel polynomials. Finally, when
the second degree polynomial has two complex roots, Eq. (1) takes the form
1þ xð Þ2F0 0

xð Þ þ 2βxþ αð ÞF0 xð Þ þ λF xð Þ ¼ 0, which is the Romanovski equation [1].
These results are summarized inTable 1.

The Sturm-Liouville Theory is covered in most advanced physics and engineer-
ing courses. In this context, an eigenvalue equation sometimes takes the more
general self-adjoint form: Lu xð Þ þ λw xð Þu xð Þ ¼ 0, where L is a differential operator;

Lu xð Þ ¼ d
dx p xð Þ du xð Þ

dx

h i

þ q xð Þu xð Þ, λ an eigenvalue, and w xð Þ is known as a weight

or density function. The analysis of this equation and its solutions is called the
Sturm-Liouville theory. Specific forms of p xð Þ, q xð Þ, λ and w xð Þ are given for
Legendre, Laguerre, Hermite and other well-known equations in the given refer-
ences. There, the close analogy of this theory with linear algebra concepts is also
shown. For example, functions here take the role of vectors there, and linear
operators here take that of matrices there. Finally, the diagonalization of a real
symmetric matrix corresponds to the solution of an ordinary differential equation,
defined by a self-adjoint operator L, in terms of its eigenfunctions, which are the
“continuous” analog of the eigenvectors [2, 3].

s xð Þ Canonical form and weight function Example

Constant F
0 0
xð Þ � 2αxF0 xð Þ þ λF xð Þ ¼ 0 (2)

w xð Þ ¼ e�αx2 (3)

When α ¼ 1 one obtains the
Hermite equation, F xð Þ ¼ H xð Þ;
this produces the Hermite

polynomials, denoted as H αð Þ
n

� �

:

First degree xF
0 0
xð Þ þ �αxþ β þ 1ð ÞF0 xð Þ þ λF xð Þ ¼ 0 (4)

w xð Þ ¼ xβe�αx (5)

When α ¼ 1 and β ¼ 0, one
obtains the Laguerre equation,
F xð Þ ¼ L xð Þ; this produces the
Laguerre polynomials, denoted as

L α;βð Þ
n

� �

.

Second
degree: with
two different
real roots

1� x2ð ÞF0 0
xð Þ þ β � α� α þ β þ 2ð Þx½ �F0 xð Þ

þ  λF xð Þ ¼ 0 6ð Þ
w α;βð Þ xð Þ ¼ 1� xð Þα 1þ xð Þβ (7)

Eq. (6) is the Jacobi equation,
considering F xð Þ ¼ P xð Þ, and for
each pair α; βð Þ, one obtains the
Jacobi polynomials, denoted as

P α;βð Þ
n

� �

. Particular cases:
Gegenbauer polynomials if α ¼ β,
Tchebycheff I and II if
α ¼ β ¼ � 1

2, and Legendre
polynomials if α ¼ β ¼ 0:

Second
degree: with
one double
real root

x2F
0 0
xð Þ þ α þ 2ð Þxþ β½ �F0 xð Þ þ λF xð Þ ¼ 0 (8)

w α;βð Þ xð Þ ¼ xαe�
β

x (9)

When α ¼ �1 and β ¼ 0, one
obtains the Bessel equation,
F xð Þ ¼ B xð Þ; this produces the
Bessel polynomials, denoted as

B α;βð Þ
n

� �

.

Second
degree: with
two complex
roots

1þ xð Þ2F0 0
xð Þ þ 2βxþ αð ÞF0 xð Þ þ λF xð Þ ¼ 0 (10)

w α;βð Þ xð Þ ¼ 1þ x2ð Þβ�1
e�α cot �1x (11)

Eq. (10) is the Romanovski
equation; considering F xð Þ ¼ R xð Þ,
then one obtains the Romanovski

polynomials, denoted as R α;βð Þ
n

� �

.

Table 1.

Polynomials obtained depending on the s xð Þ function of Eq. (1).
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The next section shows some of the most important applications of Hermite,
Gegenbauer, Tchebycheff, Laguerre and Legendre polynomials in applied Mathe-
matics and Physics. These polynomials are of great importance in mathematical
physics, the theory of approximation, the theory of mechanical quadrature, engi-
neering, and so forth.

2. Physical applications

2.1 Laguerre

Laguerre polynomials were named after Edmond Laguerre (1834–1886).
Laguerre studied a special case in 1897, and in 1880, Nikolay Yakovlevich Sonin
worked on the general case known as Sonine polynomials, but they were anticipated
by Robert Murphy (1833).

The Laguerre differential equation and its solutions, that is, Laguerre polyno-
mials, are found in many important physical problems, such as in the description of
the transversal profile of Laguerre-Gaussian laser beams [4]. The practical impor-
tance of Laguerre polynomials was enhanced by Schrödinger’s wave mechanics,
where they occur in the radial wave functions of the hydrogen atom [5].

The most important single application of the Laguerre polynomials is in the
solution of the Schrödinger wave equation for the hydrogen atom. This equation is

� ℏ2

2m
∇
2ψ � Ze2

r
ψ ¼ Eψ , (12)

in which Z ¼ 1 for hydrogen, 2 for single ionized helium, and so on. Separating
variables, we find that the angular dependence of ψ is YM

L θ;φð Þ. The radial part,
R rð Þ, satisfies the equation

� ℏ2

2m
1
r2

d
dr

r2
dR
dr

� �

� Ze2

r
Rþ L Lþ 1ð Þ

r2
R ¼ ER: (13)

By use of the abbreviations

ρ ¼ αr,   with α2 ¼ � 8mE
ℏ2 ,  E,0,  λ ¼ 2mZe2

αℏ2 , (14)

Eq. (14) becomes

1
ρ2

d

dρ
ρ2

dχ ρð Þ
dρ

� �

þ λ

ρ
� 1
4
� L Lþ 1ð Þ

ρ2

� �

χ ρð Þ ¼ 0, (15)

where χ ρð Þ ¼ R ρ=αð Þ. Eq. (15) is satisfied by

ρχ ρð Þ ¼ e�
ρ

2ρLþ1L2Lþ1
λ�L�1 ρð Þ, (16)

in which k is replaced by 2Lþ 1 and n by λ� L� 1, in order to consider the
associated Laguerre polynomials Lk

n ρð Þ.
These polynomials are also used in problems involving the integration of

Helmholtz’s equation in parabolic coordinates, in the theory of propagation of
electromagnetic waves along transmission lines, in describing the static Wigner
functions of oscillator systems in quantum mechanics in phase space [6], etc.
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2.2 Hermite

Hermite polynomials were defined into the theory of probability by Pierre-
Simon Laplace in 1810, and Charles Hermite extended them to include several
variables and named them in 1864 [7].

Hermite polynomials are used to describe the transversal profile of Hermite-
Gaussian laser beams [4], but mainly to analyze the quantum mechanical simple
harmonic oscillator [8]. For a potential energy V ¼ 1

2Kz
2 ¼ 1

2mω2z2 (force
F ¼ ∇V ¼ �Kz), the Schrödinger wave equation is

� ℏ2

2m
∇2Ψ zð Þ þ 1

2
Kz2Ψ zð Þ ¼ EΨ zð Þ: (17)

The oscillating particle has mass m and total energy E. By use of the
abbreviations

x ¼ αz with α4 ¼ mK
ℏ2 ¼ m2ω2

ℏ2 , λ ¼ 2E
ℏ

m
K

� �1=2
¼ 2E

ℏω
, (18)

in which ω is the angular frequency of the corresponding classical oscillator,
Eq. (17) becomes

d2ψ xð Þ
dx2

þ λ� x2
� 	

ψ xð Þ ¼ 0, (19)

where ψ xð Þ ¼ Ψ zð Þ ¼ Ψ x=αð Þ. With λ ¼ 2nþ 1, Eq. (19) is satisfied by

ψn xð Þ ¼ 2�
n
2π�

1
4 n!ð Þ�1

2e�
x2
2 Hn xð Þ, (20)

where Hn xð Þ corresponds to Hermite polynomials.
Hermite polynomials also appear in probability as the Edgeworth series, in

combinatorics as an example of an Appell sequence, obeying the umbral calculus,
in numerical analysis as Gaussian quadrature, etc.

2.3 Legendre

Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre.
Spherical harmonics are an important class of special functions that are closely
related to these polynomials. They arise, for instance, when Laplace’s equation is
solved in spherical coordinates. Since continuous solutions of Laplace’s equation are
harmonic functions, these solutions are called spherical harmonics [9].

In the separation of variables of Laplace’s equation, Helmholtz’s or the space-
dependence of the classical wave equation, and the Schrödinger wave equation for
central force fields,

∇2ψ þ k2f rð Þψ ¼ 0, (21)

the angular dependence, coming entirely from the Laplacian operator, is

Φ ϕð Þ
sin θð Þ

d

dθ
sin θ

dΘ

dθ

� �

þ Θ θð Þ
sin 2θ

d2Φ ϕð Þ
dϕ2 þ n nþ 1ð ÞΘ θð ÞΦ ϕð Þ ¼ 0: (22)

The separated azimuthal equation is
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1
Φ ϕð Þ

d2Φ ϕð Þ
dϕ2 ¼ �m2, (23)

with an orthogonal and normalized solution,

Φm ¼ 1
ffiffiffiffiffi

2π
p eimϕ: (24)

Splitting off the azimuthal dependence, the polar angle dependence (θ) leads to
the associated Legendre equation, which is satisfied by the associated Legendre
functions; that is, Θ θð Þ ¼ Pm

n cosθð Þ. Normalizing the associated Legendre function,
one obtains the orthonormal function

℘m
n cosθð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
2

n�mð Þ!
nþmð Þ!

s

Pm
n cosθð Þ: (25)

Taking the product of Eqs. (24) and (25) to define,

Ym
n θ;ϕð Þ � �1ð Þm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nþ 1
4π

n�mð Þ!
nþmð Þ!

s

Pm
n cosθð Þeimϕ: (26)

These Ym
n θ;ϕð Þ are the spherical harmonics [10].

Legendre polynomials are frequently encountered in physics and other technical
fields. Some examples are the coefficients in the expansion of the Newtonian
potential that gives the gravitational potential associated to a point mass or the
Coulomb potential associated to a point charge, the gravitational and electrostatic
potential inside a spherical shell, steady-state heat conduction problems in spherical
problems inside a homogeneous solid sphere, and so forth [11].

2.4 Tchebycheff

Tchebycheff polynomials, named after Pafnuty Tchebycheff (also written as
Chebyshev, Tchebyshev or Tschebyschow), are important in approximation theory
because the roots of the Tchebycheff polynomials of the first kind, which are also
called Tchebycheff nodes, are used as nodes in polynomial interpolation. Approxi-
mation theory is concerned with how functions can best be approximated with
simpler functions, and through quantitatively characterizing the errors introduced
thereby.

One can obtain polynomials very close to the optimal one by expanding the given
function in terms of Tchebycheff polynomials, and then cutting off the expansion
at the desired degree. This is similar to the Fourier analysis of the function, using
the Tchebycheff polynomials instead of the usual trigonometric functions.

If one calculates the coefficients in the Tchebycheff expansion for a function,

f xð Þ � ∑
∞

i¼0
ciTi xð Þ, (27)

and then cuts off the series after the TN term, one gets an Nth-degree polyno-
mial approximating f(x).

Tchebycheff polynomials are also found in many important physics, mathe-
matics and engineering problems. A capacitor whose plates are two eccentric
spheres is an interesting example [12], another one can be found in aircraft aero-
dynamics [13], etc.
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2.5 Gegenbauer

Gegenbauer polynomials, named after Leopold Gegenbauer, and often called
ultraspherical polynomials, include Legendre and Tchebycheff polynomials as spe-
cial or limiting cases, and at the same time, Gegenbauer polynomials are a special
case of Jacobi polynomials (see Table 1).

Gegenbauer polynomials appear naturally as extensions of Legendre polyno-
mials in the context of potential theory and harmonic analysis. They also appear in
the theory of Positive-definite functions [14].

Since Gegenbauer polynomials are a general case of Legendre and Tchebycheff
polynomials, more applications are shown in Section 2.3 and 2.4.

The most common methods to obtain the special polynomials are described in
the next section.

3. Special polynomials

To obtain the polynomials described in the previous section, one can use differ-
ent methods, some tougher than others. These polynomials are typically obtained as
a result of the solution of each specific differential equation by means of the power
series method. Usually, it is also shown that they can be obtained through a gener-
ating function and also by using the Rodrigues formula for each special polynomial,
or finally, through a contour integral. Most Mathematical Methods courses also
include a study of the properties of these polynomials, such as orthogonality, com-
pleteness, recursion relations, special values, asymptotic expansions and their rela-
tion to other functions, such as polynomials and hypergeometric functions. There is
no doubt that this is a challenging and demanding subject that requires a great deal
of attention from most students.

3.1 Differential equation

The most common way to solve the special polynomials is solving the associated
differential equation through power series and the Frobenius method
y ¼ ∑∞

n¼0anx
n. The corresponding polynomials satisfy the following differential

equations:
the Laguerre differential equation,

xy″þ 1� xð Þy0 þ ny ¼ 0, (28)

the Hermite differential equation,

y0 � 2xy0 þ 2ny ¼ 0, (29)

the Legendre differential equation,

1� x2
� 	

y″� 2xy0 þ n nþ 1ð Þy ¼ 0 , (30)

the Tchebycheff differential equation,

1� x2
� 	

y″� xy0 þ n2y ¼ 0, (31)

and the Gegenbauer differential equation,

1� x2
� 	

y″� 2λþ 1ð Þxy0 þ n nþ 2λð Þy ¼ 0, (32)

6
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with n ¼ 0, 1, 2, 3,… in all the previous cases. Note that if λ ¼ 1
2, Eq. (32) reduces

to the Legendre differential equation (Eq. (30)), and if λ ¼ 0, Eq. (32) reduces to
the Tchebycheff differential equation (Eq. (31)).

3.2 Rodrigues formula

For polynomials ψn xð Þ, with interval I, weight function w xð Þ, and an eigenvalue
equation of the form

p xð Þψ 00
n xð Þ þ q xð Þψ 0

n xð Þ þ λnψn xð Þ ¼ 0, (33)

and with q xð Þ ¼ p xð Þw xð Þð Þ0
w xð Þ , the general formula

ψn xð Þ ¼ w xð Þ�1 dn

dxn
p xð Þnw xð Þ½ � (34)

is known as the Rodrigues formula, useful to obtain the nth-degree polynomial
of ψ [15].

3.3 Generating function and contour integral

Let Γ be a curve that encloses x∈ I but excludes the endpoints of I. Then,
considering the Cauchy integral formula [16] for derivatives of w xð Þp xð Þn to derive
an integral formula from Eq. (34), one obtains

ψn xð Þ
n!

¼ 1
2πi

ð

Γ

w zð Þ
w xð Þ

p zð Þn
z� xð Þn

dz

z� x
: (35)

The generating function for the orthogonal polynomials ψn xð Þ
n!

n o

is defined as

G x; sð Þ ¼ ∑
∞

n¼0

ψn xð Þ
n!

sn: (36)

In the following section, Laguerre [2], Hermite [17], Legendre, Tchebycheff [18]
and Gegenbauer [3] polynomials are obtained through a simple method, using basic
linear algebra concepts, such as the eigenvalue and the eigenvector of a matrix.

4. Simple approach to special polynomials

The general algebraic polynomial of degree n,

a0 þ a1xþ a2x
2 þ a3x

3 þ… anx
n, (37)

with ao, a1,…,an ∈ ℜ, is represented by vector

An ¼

a0

a1

a2

a3

⋮

an

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (38)
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Taking the first derivative of the above polynomial (x), one obtains the
polynomial

d

dx
a0 þ a1xþ a2x

2 þ a3x
3 þ… anx

n
� �

¼ a1 þ 2a2xþ 3a3x2 þ… nanx
n�1, (39)

which may be written as

dAn

dx
¼

a1

2a2
3a3
⋮

nan

0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (40)

Taking the second derivative of the polynomial (Eq. (37)) one obtains

d2

dx2
a0 þ a1xþ a2x

2 þ a3x
3 þ… anx

n
� �

¼ 2a2 þ 6a3xþ… n n� 1ð Þanxn�2, (41)

which may be written as

d2An

dx2
¼

2a2
6a3
⋮

n n� 1ð Þan
0

0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (42)

Using Eq. (40), Eq. (39) may be written as

0 1 0 0 ⋯ 0

0 0 2 0 ⋯ 0

0 0 0 3 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 ⋯ n

0 0 0 0 ⋯ 0

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

a0

a1

a2

a3

⋮

an

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

¼

a1

2a2

3a3

⋮

nan

0

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

; (43)

therefore, the first derivative operator An may be written as

d

dx
!

0 1 0 0 ⋯ 0

0 0 2 0 ⋯ 0

0 0 0 3 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 ⋯ n

0 0 0 0 ⋯ 0

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

: (44)

Doing the same for Eq. (41),
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0 0 2 0 ⋯ 0

0 0 0 6 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 ⋯ n n� 1ð Þ
0 0 0 0 ⋯ 0

0 0 0 0 ⋯ 0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

a0

a1

a2

⋮

an�1

an

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

a1

2a2
⋮

n n� 1ð Þan
0

0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

, (45)

the second derivative operator An may be written as

d2

dx2
!

0 0 2 0 ⋯ 0

0 0 0 6 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 ⋯ n n� 1ð Þ
0 0 0 0 ⋯ 0

0 0 0 0 ⋯ 0

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (46)

4.1 Laguerre

The Laguerre differential operator is given by.

x
d2

dx2
þ 1� xð Þ d

dx
; (47)

substituting Eqs. (41) and (44) into Eq. (47),

x 2a2 þ 6a3xþ… þ n n� 1ð Þanxn�2� �

þ 1� xð Þ a1 þ 2a2xþ 3a3x2 þ… þ nanx
n�1� �

¼ a1 þ 4a2 � a1ð Þxþ 9a3 � 2a2ð Þx2 þ 16a4 þ 3a3ð Þx3 þ⋯� nan,

(48)

which may be written as

0 1 0 0 0 ⋯ 0

0 �1 4 0 0 ⋯ 0

0 0 �2 9 0 ⋯ 0

0 0 0 �3 16 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ �n

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

a0

a1

a2

a3

⋮

an

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

a1

4a2 � a1

9a3 � 2a2
16a4 � 3a3

⋮

�nan

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (49)

For simplicity, the Laguerre differential operator, as a 4x4 matrix, is
represented by

x
d2

dx2
þ 1� xð Þ d

dx
!

0 1 0 0

0 �1 4 0

0 0 �2 9

0 0 0 �3

2

6

6

6

4

3

7

7

7

5

: (50)

The eigenvalues of a matrix M are the values that satisfy the equation
Det M� λIð Þ ¼ 0. However, since the matrix (Eq. (50)) is a triangular matrix, the
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eigenvalues λi of this matrix are the elements of the diagonal, namely: λ1 ¼ 0,
λ2 ¼ �1, λ3 ¼ �2, λ4 ¼ �3. The corresponding eigenvectors are the solutions of the
equation M� λiIð Þ � v ¼ 0, where the eigenvector v ¼ a0; a1; a2; a3½ �T :

0� λi 1 0 0

0 �1� λi 4 0

0 0 �2� λi 9

0 0 0 �3� λi

2

6

6

6

4

3

7

7

7

5

a0

a1

a2

a3

2

6

6

6

4

3

7

7

7

5

¼

0

0

0

0

2

6

6

6

4

3

7

7

7

5

: (51)

Substituting eigenvalue λ1 ¼ 0 in Eq. (51), we obtain eigenvector v1:

v1 ¼

1

0

0

0

2

6

6

6

4

3

7

7

7

5

; (52)

the elements of this eigenvector correspond to the first Laguerre polynomial,
L0 xð Þ ¼ 1:

Substituting eigenvalue λ2 ¼ �1 in Eq. (51), we obtain eigenvector v2:

v2 ¼

1

�1

0

0

2

6

6

6

4

3

7

7

7

5

; (53)

the elements of this eigenvector correspond to the second Laguerre polynomial,
L1 xð Þ ¼ 1� x:

Substituting eigenvalue λ3 ¼ �2 in Eq. (51), we obtain eigenvector v3:

v3 ¼

1

�2
1
2
0

2

6

6

6

6

4

3

7

7

7

7

5

; (54)

the elements of this eigenvector correspond to the third Laguerre polynomial,
L2 xð Þ ¼ 1� 2xþ 1

2 x
2:

Substituting eigenvalue λ4 ¼ �3 in Eq. (51), we obtain eigenvector v4:

v4 ¼

1

�3
3
2

� 1
6

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

; (55)

the elements of this eigenvector correspond to the fourth Laguerre polynomial,
L3 xð Þ ¼ 1� 3xþ 3

2 x
2 � 1

6 x
3:

4.2 Hermite

The Hermite differential operator is given by
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d2

dx2
� 2x

d

dx
; (56)

substituting Eqs. (41) and (44) into Eq. (56),

2a2 þ 6a3xþ… þ n n� 1ð Þanxn�2� �

� 2x a1 þ 2a2xþ 3a3x2 þ… þ nanx
n�1� �

¼ 2a2 þ 6a3 � 2a1ð Þxþ 12a4 � 4a2ð Þx2 þ 20a5 � 6a3ð Þx3 þ⋯� 2nan,

(57)

which may be written as

0 0 2 0 0 ⋯ 0

0 �2 0 6 0 ⋯ 0

0 0 �4 0 12 ⋯ 0

0 0 0 �6 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ �2n

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

a0

a1

a2

a3

⋮

an

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

2a2
6a3 � 2a1
12a4 � 4a2
20a5 � 6a3

⋮

�2nan

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (58)

For simplicity, the Hermite differential operator, as a 4x4 matrix, is
represented by

d2

dx2
� 2x

d

dx
!

0 0 2 0

0 �2 0 6

0 0 �4 0

0 0 0 �6

2

6

6

6

4

3

7

7

7

5

: (59)

The eigenvalues of a matrix M are the values that satisfy the equation
Det M� λIð Þ ¼ 0. However, since the matrix (Eq. (59)) is a triangular matrix, the
eigenvalues λi of this matrix are the elements of the diagonal, namely: λ1 ¼ 0,
λ2 ¼ �2, λ3 ¼ �4, λ4 ¼ �6. The corresponding eigenvectors are the solutions of
the equation M� λiIð Þ � v ¼ 0, where the eigenvector v ¼ a0; a1; a2; a3½ �T :

0� λi 0 2 0

0 �2� λi 0 6

0 0 �4� λi 0

0 0 0 �6� λi

2

6

6

6

4

3

7

7

7

5

a0

a1

a2

a3

2

6

6

6

4

3

7

7

7

5

¼

0

0

0

0

2

6

6

6

4

3

7

7

7

5

: (60)

Substituting eigenvalue λ1 ¼ 0 in Eq. (60), we obtain eigenvector v1:

v1 ¼

1

0

0

0

2

6

6

6

4

3

7

7

7

5

; (61)

the elements of this eigenvector correspond to the first Hermite polynomial,
H0 xð Þ ¼ 1:

Substituting eigenvalue λ2 ¼ �2 in Eq. (60), we obtain eigenvector v2:

v2 ¼

0

2

0

0

2

6

6

6

4

3

7

7

7

5

; (62)
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the elements of this eigenvector correspond to the second Hermite polynomial,
H1 xð Þ ¼ 2x:

Substituting eigenvalue λ3 ¼ �4 in Eq. (60), we obtain eigenvector v3:

v3 ¼

�2

0

4

0

2

6

6

6

4

3

7

7

7

5

; (63)

the elements of this eigenvector correspond to the third Hermite polynomial,
H2 xð Þ ¼ 4x2 � 2:

Substituting eigenvalue λ4 ¼ �6 in Eq. (60), we obtain eigenvector v4:

v4 ¼

0

�12

0

8

2

6

6

6

4

3

7

7

7

5

; (64)

the elements of this eigenvector correspond to the fourth Hermite polynomial,
H3 xð Þ ¼ 8x3 � 12x:

4.3 Legendre

The Legendre differential operator is given by

1� x2
� 	 d2

dx2
� 2x

d

dx
; (65)

substituting Eqs. (41) and (44) into Eq. (65),

1� x2
� 	

2a2 þ 6a3xþ… þ n n� 1ð Þanxn�2� �

� 2x a1 þ 2a2xþ 3a3x2 þ… þ nanx
n�1� �

¼ 2a2 þ 6a3 � 2a1ð Þxþ 12a4 � 6a2ð Þx2 þ 20a5 � 12a3ð Þx3 þ⋯� n2 þ n
� 	

an,

(66)

which may be written as

0 0 2 0 0 ⋯ 0

0 �2 0 6 0 ⋯ 0

0 0 �6 0 12 ⋯ 0

0 0 0 �12 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ � n2 þ nð Þ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

a0

a1

a2

a3

⋮

an

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

2a2
6a3 � 2a1
12a4 � 6a2
20a5 � 12a3

⋮

� n2 þ nð Þan

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (67)

For simplicity, the Legendre differential operator, as a 4x4 matrix, is
represented by

1� x2
� 	 d2

dx2
� 2x

d

dx
!

0 0 2 0

0 �2 0 6

0 0 �6 0

0 0 0 �12

2

6

6

6

4

3

7

7

7

5

: (68)
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The eigenvalues of a matrix M are the values that satisfy the equation
Det M� λIð Þ ¼ 0. However, since the matrix (Eq. (68)) is a triangular matrix, the
eigenvalues λi of this matrix are the elements of the diagonal, namely: λ1 ¼ 0,
λ2 ¼ �2, λ3 ¼ �6, λ4 ¼ �12. The corresponding eigenvectors are the solutions of the
equation M� λiIð Þ � v ¼ 0, where the eigenvector v ¼ a0; a1; a2; a3½ �T :

0� λi 0 2 0

0 �2� λi 0 6

0 0 �6� λi 0

0 0 0 �12� λi

2

6

6

6

4

3

7

7

7

5

a0

a1

a2

a3

2

6

6

6

4

3

7

7

7

5

¼

0

0

0

0

2

6

6

6

4

3

7

7

7

5

: (69)

Substituting eigenvalue λ1 ¼ 0 in Eq. (69), we obtain eigenvector v1:

v1 ¼

1

0

0

0

2

6

6

6

4

3

7

7

7

5

; (70)

the elements of this eigenvector correspond to the first Legendre polynomial,
P0 xð Þ ¼ 1:

Substituting eigenvalue λ2 ¼ �2 in Eq. (69), we obtain eigenvector v2:

v2 ¼

0

1

0

0

2

6

6

6

4

3

7

7

7

5

; (71)

the elements of this eigenvector correspond to the second Legendre polynomial,
P1 xð Þ ¼ x:

Substituting eigenvalue λ3 ¼ �6 in Eq. (69), we obtain eigenvector v3:

v3 ¼

1

0

�3

0

2

6

6

6

4

3

7

7

7

5

; (72)

the elements of this eigenvector correspond to the third Legendre polynomial,
P2 xð Þ ¼ 3

2 x
2 � 1

2 :

Substituting eigenvalue λ4 ¼ �12 in Eq. (69), we obtain eigenvector v4:

v4 ¼

0

3

0

�5

2

6

6

6

4

3

7

7

7

5

; (73)

the elements of this eigenvector correspond to the fourth Legendre polynomial,
P3 xð Þ ¼ 5

2 x
3 � 3

2 x:

4.4 Tchebycheff

The Tchebycheff differential operator is given by
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1� x2
� 	 d2

dx2
� x

d

dx
; (74)

substituting Eqs. (41) and (44) into Eq. (74),

1� x2
� 	

2a2 þ 6a3xþ… þ n n� 1ð Þanxn�2� �

� x a1 þ 2a2xþ 3a3x2
�

þ… þ nanx
n�1� ¼ 2a2 þ 6a3 � a1ð Þxþ 12a4 � 4a2ð Þx2

þ 20a5 � 9a3ð Þx3 þ⋯� n2an,

(75)

which may be written as

0 0 2 0 0 ⋯ 0

0 �1 0 6 0 ⋯ 0

0 0 �4 0 12 ⋯ 0

0 0 0 �9 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ �n2

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

a0

a1

a2

a3

⋮

an

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

¼

2a2

6a3 � a1

12a4 � 4a2

20a5 � 9a3

⋮

�n2an

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

: (76)

For simplicity, the Tchebycheff differential operator, as a 4x4 matrix, is
represented by

1� x2
� 	 d2

dx2
� x

d

dx
!

0 0 2 0

0 �1 0 6

0 0 �4 0

0 0 0 �9

2

6

6

6

6

6

4

3

7

7

7

7

7

5

: (77)

The eigenvalues of a matrix M are the values that satisfy the equation
Det M� λIð Þ ¼ 0. However, since the matrix (Eq. (77)) is a triangular matrix, the
eigenvalues λi of this matrix are the elements of the diagonal, namely: λ1 ¼ 0,
λ2 ¼ �1, λ3 ¼ �4, λ4 ¼ �9. The corresponding eigenvectors are the solutions of the
equation M� λiIð Þ � v ¼ 0, where the eigenvector v ¼ a0; a1; a2; a3½ �T;

0� λi 0 2 0

0 �1� λi 0 6

0 0 �4� λi 0

0 0 0 �9� λi

2

6

6

6

6

4

3

7

7

7

7

5

a0

a1

a2

a3

2

6

6

6

6

4

3

7

7

7

7

5

¼

0

0

0

0

2

6

6

6

6

4

3

7

7

7

7

5

: (78)

Substituting eigenvalue λ1 ¼ 0 in Eq. (78), we obtain eigenvector v1:

v1 ¼

1

0

0

0

2

6

6

6

4

3

7

7

7

5

; (79)

the elements of this eigenvector correspond to the first Tchebycheff polynomial,
T0 xð Þ ¼ 1:

Substituting eigenvalue λ2 ¼ �1 in Eq. (78), we obtain eigenvector v2:
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v2 ¼

0

1

0

0

2

6

6

6

4

3

7

7

7

5

; (80)

the elements of this eigenvector correspond to the second Tchebycheff polyno-
mial, T1 xð Þ ¼ x:

Substituting eigenvalue λ3 ¼ �4 in Eq. (78), we obtain eigenvector v3:

v3 ¼

�1

0

2

0

2

6

6

6

4

3

7

7

7

5

; (81)

the elements of this eigenvector correspond to the third Tchebycheff polyno-
mial, T2 xð Þ ¼ 2x2 � 1:

Substituting eigenvalue λ4 ¼ �9 in Eq. (78), we obtain eigenvector v4:

v4 ¼

0

�3

0

4

2

6

6

6

4

3

7

7

7

5

: (82)

the elements of this eigenvector correspond to the fourth Tchebycheff polyno-
mial, T3 xð Þ ¼ 4x3 � 3x:

4.5 Gegenbauer

The Gegenbauer differential operator is given by

1� x2
� 	 d2

dx2
� 2λþ 1ð Þx d

dx
; (83)

substituting (41) and (44) into (83),

1� x2
� 	

2a2 þ 6a3xþ… þ n n� 1ð Þanxn�2� �

� 2λþ 1ð Þx a1½
þ 2a2xþ 3a3x2 þ… þ nanx

n�1� ¼ 2a2 þ 6a3 � 2λþ 1ð Þa1½ �x
þ 12a4 � 4 λþ 1ð Þa2½ �x2 þ 20a5 � 3 2λþ 3ð Þa3½ �x3

þ⋯� n2 þ 2λn
� �

an,

(84)

which may be written as

0 0 2 0 0 ⋯ 0

0 � 2λþ 1ð Þ 0 6 0 ⋯ 0

0 0 �4 λþ 1ð Þ 0 12 ⋯ 0

0 0 0 �3 2λþ 3ð Þ 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ �n2 � 2λn

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

a0

a1

a2

a3

⋮

an

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

2a2
6a3 � 2λþ 1ð Þa1
12a4 � 4 λþ 1ð Þa2
20a5 � 3 2λþ 3ð Þa3

⋮

� n2 þ 2λnð Þan

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:

(85)
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For simplicity, the Gegenbauer differential operator, as a 4x4 matrix, is
represented by

1� x2
� 	 d2

dx2
� 2λþ 1ð Þx d

dx
!

0 0 2 0

0 � 2λþ 1ð Þ 0 6

0 0 �4 λþ 1ð Þ 0

0 0 0 �3 2λþ 3ð Þ

2

6

6

6

4

3

7

7

7

5

: (86)

The eigenvalues of a matrix M are the values that satisfy the equation
Det M� λ0Ið Þ ¼ 0. However, since the matrix (Eq. (86)) is a triangular matrix, the
eigenvalues λi of this matrix are the elements of the diagonal, namely: λ01 ¼ 0,
λ02 ¼ � 2λþ 1ð Þ, λ03 ¼ �4 λþ 1ð Þ, λ04 ¼ �3 2λþ 3ð Þ. The corresponding eigenvectors
are the solutions of the equation M� λ0iI

� 	

� v ¼ 0, where the eigenvector

v ¼ a0; a1; a2; a3½ �T;

0� λ0i 0 2 0

0 � 2λþ 1ð Þ � λ0i 0 6

0 0 �4 λþ 1ð Þ � λ0i 0

0 0 0 �3 2λþ 3ð Þ � λ0i

2

6

6

6

4

3

7

7

7

5

:

a0

a1

a2

a3

2

6

6

6

4

3

7

7

7

5

¼

0

0

0

0

2

6

6

6

4

3

7

7

7

5

:

(87)

Substituting eigenvalue λ01 ¼ 0 in Eq. (87), we obtain eigenvector v1:

v1 ¼

1

0

0

0

2

6

6

6

4

3

7

7

7

5

; (88)

the elements of this eigenvector correspond to the first Gegenbauer polynomial,
Cλ
0 xð Þ ¼ 1:
Substituting eigenvalue λ02 ¼ � 2λþ 1ð Þ in Eq. (87), we obtain eigenvector v2:

v2 ¼

0

2λ

0

0

2

6

6

6

4

3

7

7

7

5

; (89)

the elements of this eigenvector correspond to the second Gegenbauer polyno-
mial, Cλ

1 xð Þ ¼ 2λx.
Substituting eigenvalue λ03 ¼ �4 λþ 1ð Þ in Eq. (87), we obtain eigenvector v3:

v3 ¼

�λ

0

2λ 1þ λð Þ
0

2

6

6

6

4

3

7

7

7

5

; (90)

the elements of this eigenvector correspond to the third Gegenbauer polynomial,
Cλ
2 xð Þ ¼ �λþ 2λ 1þ λð Þx2.
Substituting eigenvalue λ04 ¼ �3 2λþ 3ð Þ in Eq. (87), we obtain eigenvector v4:
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v4 ¼

0

�2λ 1þ λð Þ
0

4
3
λ 1þ λð Þ 2þ λð Þ

2

6

6

6

6

4

3

7

7

7

7

5

; (91)

the elements of this eigenvector correspond to the fourth Gegenbauer polyno-
mial, Cλ

3 xð Þ ¼ 2λ 1þ λð Þxþ 4
3 λ 1þ λð Þ 2þ λð Þx3.

5. Conclusions

Laguerre, Hermite, Legendre, Tchebycheff and Gegenbauer polynomials are
obtained in a simple and straightforward way using basic linear algebra concepts,
such as the eigenvalue and the eigenvector of a matrix. Once the matrix of the
corresponding differential operator is obtained, the eigenvalues of this matrix are
found, and the elements of its eigenvectors correspond to the coefficients of each
kind of polynomials. Using a larger matrix, higher order polynomials may be found;
however, the general case for an nxn matrix was not obtained since it seems that in
this general case, standard methods would be easier to use. The main advantage of
this method lies in its easiness, since it relies on simple linear algebra concepts. This
method contrasts in simplicity with standard methods based on solving the differ-
ential equation using power series, using the generating function, using the Rodri-
gues formula, or using a contour integral.
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