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Chapter

E3 Ubiquitin Ligases in Cancer and
Their Pharmacological Targeting

Joseph Y. Ong and Jorge Z. Torres

Abstract

Ubiquitination plays many critical roles in protein function and regulation.
Consequently, mutation and aberrant expression of E3 ubiquitin ligases can drive
cancer progression. Identifying key ligase-substrate relationships is crucial to
understanding the molecular basis and pathways behind cancer and toward identi-
tying novel targets for cancer therapeutics. Here, we review the importance of E3
ligases in the regulating the hallmarks of cancer, discuss some of the key and novel
E3 ubiquitin ligases that drive tumor formation and angiogenesis, and review the
clinical development of inhibitors that antagonize their function. We conclude with
perspectives on the field and future directions toward understanding ubiquitination
and cancer progression.

Keywords: E3 ubiquitin ligase, cancer, pharmacological targeting

1. Introduction

The regulation and turnover of proteins is an essential aspect of cell homeostasis
and one that is commonly disrupted in cancer cells [1]. Regulation of a protein’s
levels, activity, or localization is affected by ubiquitination, a posttranslational
modification that involves the covalent attachment of a 76 amino acid ubiquitin
molecule onto a substrate protein [2, 3]. Depending on the cellular context,
ubiquitinated proteins can affect a myriad of cellular processes, including signaling
[4], epigenetics [5], endosome trafficking [6], DNA repair [7] and protein stability
via the 26S-proteasome [8].

The outcome of protein ubiquitination is affected primarily by two properties:
what kind of ubiquitin linkage and how many ubiquitin molecules are present [2].
Ubiquitin is usually covalently attached to its substrate via a nucleophilic lysine
residue on the substrate and the ubiquitin carboxy terminus. Ubiquitin itself can
serve as a nucleophile via one of seven lysine residues (K6, K11, K27, K29, K33, K48,
and K63) [9, 10] though K48- and K63-linkages seem to be the most abundant and
are the most well-studied. In some cases, the N-terminal amide of the initiator
methionine (M1) of the substrate can serve as the nucleophile [11, 12]. If one of the
lysine residues or the initiator methionine of ubiquitin serves as the nucleophile for
another ubiquitin molecule, a polyubiquitin chain is formed. A K48-linked
polyubiquitin chain of four or more ubiquitin molecules is typically enough to target
the substrate for 26S-proteasome mediated degradation [13]. Meanwhile, poly-K63
linkages are involved in many processes, including endocytic trafficking, inflam-
mation, and DNA repair [5, 6, 14]. Other ubiquitin linkages [11], combinations of
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linkages (mixed or branched chains) [15-17], monoubiquitination [5, 18], and
multi-monoubiquitination [19, 20] events have other diverse functions within
the cell.

Ubiquitination occurs in three main steps [21, 22]. First, the E1 ubiquitin-
activating enzyme (two in the human genome) covalently attaches to a ubiquitin
molecule via a thioester bond in an ATP-dependent process. Next, the E1 enzyme
transfers ubiquitin onto an E2 ubiquitin-conjugating enzyme (about 40 in the
human genome). Finally, the E2 enzyme binds a substrate-bound E3 ligase (about
600 in the human genome) to transfer ubiquitin onto a lysine residue of the sub-
strate. Repeating the cycle creates a polyubiquitin chain.

E3 ligases can function either as single peptides (like Parkin), simple complexes
(e.g.: hetero/homodimers, like MDM2/MDMX or XIAP), or as large complexes (like
Cullin-RING-ligase complexes or the anaphase promoting complex/cyclosome).
There are two main classes of E3 ligases [23]: HECT (about 30 in the human
genome) and RING ligases (including RING and RING-like ligases and their acces-
sory proteins, about 600 in the human genome).

HECT ligases contain a C-terminus HECT domain that accepts the ubiquitin
molecule from an E2 conjugating enzyme via a thioester bond before transferring
the ubiquitin to the substrate [24]. RING ligases contain a zinc finger domain, and
these proteins allow the E2 to transfer ubiquitin directly onto the substrate [25]. A
subclass of RING ligases known as RING-between-RING (RBR) ligases contain two
RING domains that have elements of both HECT and RING ligases: one RING
domain binds the charged E2, while the other RING domain accepts the ubiquitin
molecule before transferring it onto the substrate [26].

As E3 ligases ultimately determine the target of the ubiquitination machinery,
they play a critical role in cell regulation. They regulate key players in processes like
apoptosis (caspases), cell senescence and growth (p53, p21, p27; Hippo and
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Figure 1.
E3 ubiquitin ligases (outer circle) regulate hallmarks of cancer (inner circle) to drive cancer progression.
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Hedgehog signaling), proliferation and genomic stability (c-Myc, cyclins), immune
system evasion (PD-L1), inflammation (NFxB), and metastasis and angiogenesis
(Wnt signaling) (Figure 1). Misregulation or mutation of E3 ligases can lead to
overexpression of oncogenes or downregulation of tumor suppressor genes, leading
to cancer progression. Consequently, understanding the molecular targets and
functions of E3 ligases serves as the basis for designing new cancer therapies.

Here, we describe some central and novel E3 ligases related to cancer develop-
ment, pharmacological targeting of those ligases, and perspectives on understand-
ing the role of E3 ligases in cancer progression.

2. E3 ligases and cancer progression
2.1 TP53

The tumor protein p53 (TP53) is a transcription factor that serves as one of the
principal regulators of cell function and survival (reviewed in [27]), mediating
cellular responses to proliferation, cell cycle control, DNA damage response path-
ways, and apoptosis. Consequently, it is mutated in approximately 50% of all cancer
types. Thus, regulators of p53 serve as ideal candidates to understand and address
cancer cell progression (Table 1).

E6AP (Ube3a) is a 100 kDa HECT domain ligase discovered for mediating the
interaction between human papillomavirus protein E6 and p53 [28]. Neither EGAP
nor E6 alone have a strong affinity for p53, but together, the E6/E6AP complex
binds to p53 and changes the substrate specificity of E6AP [28], allowing E6AP to
ubiquitinate p53 at the N-terminal DNA binding domain and target it for

E3 ligase Notable substrates and Expression in cancer Cancer types
binding partners
TP53  E6AP p53 Gain of function via HPV  Cervical, breast [38, 166]
E6
MDM2/X p53 Overexpressed Many; liposarcomas
[48, 167]
SCF Skp2 p21, p27 Overexpressed Many [95, 168]

Fbxw7 Cyclin E, mTOR Downregulated or Many; endometrial,
dominant-negative cervical, blood [64, 67, 169]
mutant

B-TrCP IkB, p-catenin, Weel, Overexpressed (in some  Many [60, 168]

Cdc25a/b tissues)
APC/C Cdc20 Cyclin A/B, securin Overexpressed Pancreatic, lung, gastric
[95, 168, 170]
Cdh1 Cdc20, Plk1, Aurora Underexpressed Many [171]
kinase A/B
Other XIAP Caspases 3,7, 9 Overexpressed Many [98, 99]
Park2 Cyclin D/E, Cdc20/ Underexpressed Breast, pancreatic,
Cdh1, tubulin colorectal, ovarian [172]
SPOP PD-L1, androgen and Downregulated or Prostate, endometrial,
estrogen receptor dominant-negative kidney [139, 141, 150]
mutant
Table 1.

E3 ligases and cancer progression.
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degradation [29]. Consequently, E6AP may play a role in HPV-mediated cervical
cancers [30], particularly for those mediated by high-risk HPV16 strain, as E6 pro-
teins from lower-risk strains of HPV lack the ability to degrade p53 [31].

The E6/E6AP complex plays other roles in cancer cell progression. Neither E6
nor E6AP alone can activate the hTERT promoter, but together, the E6/E6AP
complex can activate the hTERT promoter, perhaps via interactions with c-Myc and
NFX-1 to respectively activate and repress promoter activity [32]. The E6/E6AP
complex has also been implicated in the ubiquitination of apoptosis-inducing pro-
teins Bak [33], Fas [34], and TNFR1 [35]. Independent of E6 binding, endogenous
E6AP targets include the tumor suppressor PML [36]; cell cycle regulators p27 [36],
Cdk1, Cdk4; cell proliferation regulator MAPK1 [37];, and guanine nucleotide
exchange factor ECT2 [38]. A published list of 130 likely substrates of EGAP
includes p-catenin and PRMTS5, proteins involved in cancer progression [37].

MDM2 is best known as a regulator of p53. MDM2 is a RING ligase [39] that
forms stable heterodimers with a homolog, MDMX (MDM4), via their RING
domains [40]. MDM2 localizes primarily in the nucleus bound to p300/CBP [41].
When complexed to p53, MDM2 inhibits p53 activity in two ways: first, MDM?2
binds the N-terminal transactivation domain [42], inhibiting p53-mediated tran-
scription [43]; secondly, MDM2 modulates p53 protein levels via ubiquitination
near the C-terminus [44]. After MDM2 monoubiquitinates p53, p300 and CBP
catalyze the polyubiquitination of p53, leading to p53 degradation [8, 41, 45].
Overexpression of MDM2 [46, 47], seen in many cancers where p53 is not mutated
[48], leads to a loss of p53 activity.

During p53 activation, p53 is phosphorylated by multiple serine/threonine
kinases at residues near the N-terminus, disrupting p53/MDM2 binding and stabi-
lizing p53. For example, ATM kinase phosphorylates p53 at S15 [49] to promote
p53-mediated transcription. Additionally, ATM phosphorylation of MDM?2 on S395
disrupts the MDM2/p53 complex, allowing p53 to accumulate [50].

2.2 SCF complexes

The SCF complex is a multimeric ubiquitination complex with multiple roles in
cell regulation (Table 1). The main scaffold of the SCF complex, Cullin 1 (Cull),
recruits the substrate to be ubiquitinated at the N-terminus and the charged
ubiquitin at the C-terminus. Rather than bind the substrate directly, Cull uses two
adaptor proteins: Cull binds directly to Skp1, which then binds to one of about 70 F-
box proteins [51] that directly bind their substrates. At the C-terminus, Cull binds
an adaptor protein, either Rbx1 or Rbx2 (also known as Rocl or Roc2), that will
bind a charged E2 ubiquitin conjugating enzyme [52, 53] .

Skp2 (Fbxl1) is a F-box protein that is most active during S-phase [54]. During S
phase, Skp2 binds and ubiquitinates phosphorylated p27 [55] by binding the Cdk2-
cyclin E complex [56]. Degradation of p27 frees inhibition of Cdk2-cyclinA/E com-
plexes, allowing for progression into S-phase and entry into mitosis [57]. Other
targets of Skp2 include p21 [58] and E-cadherin [59]. In some cases, Skp2 requires
an accessory protein Cksl to enhance binding to the substrate [60]. Skp2 both
enhances c-Myc transcriptional activity and promotes c-Myc degradation [61].
Interestingly, p300-mediated acetylation of Skp2 changes the localization of Skp2
from nuclear to cytoplasmic, increasing cellular proliferation, motility, and tumor-
igenesis [59]. Skp2 is commonly overexpressed in a variety of cancers [62], includ-
ing blood, colorectal, stomach, ovarian, and cervical cancers [60].

Fbxw?7 (in yeast, Cdc4) contains a homodimerization domain, an F-box domain
that binds Skp1, and eight WD40 repeats that form a beta-propeller structure to
bind substrates [63]. Substrate binding is dependent on interaction between the
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arginine residues of the Fbxw7 WD40 domains and phosphorylated residues of the
substrate in a recognition motif termed the Cdc4 phosphodegron (CPD) [63].
Mutations that disrupt substrate binding, especially point mutations of the arginine
residues of the WD40 region, are commonly found in tumor samples [64]. Because
Fbxw7 homodimerizes, these mutations may have a dominant-negative effect [65],
as wild-type Fbxw7-mutant Fbxw?7 dimers are able to effectively bind but not
ubiquitinate their substrates [66]. Fbxw7 is deleted [67] or mutated in many can-
cers, with mutations being especially common in cancers of the bile duct and
blood [68].

One well-characterized substrate of Fbxw7 is cyclin E [69]. The ubiquitination
and degradation of cyclin E is dependent on phosphorylation of by Cdk2 and
glycogen synthase kinase 3 (GSK3) [70]. Dimerization of Fbxw?7 can also change its
affinity for cyclin E as well as other substrates [71]. Other substrates of Fbxw7
include transcription factors c-Myc [72]; c-JUN, Notch 1; DNA-binding protein
DEK [73]; and nutrient sensing protein mTOR [74]. Interestingly, the SV40 large T
antigen contains a decoy CPD that can mislocalize Fbxw7 and inhibit Fbxw7-medi-
ated degradation of cyclin E [75].

p-TrCP (BTRC), Fbxwla (p-TrCP1) and Fbxw11 (p-TrCP2) are protein homo-
logs that appear to have redundant roles [76]. These F-box proteins can form homo-
and hetereodimers with each other [76] and use WD40 domains to bind a DSG
phosphodegron motif (such as DpSGXXpS) [60]. Overexpression of f-TrCP is seen
in various types of cancers, including colorectal, pancreatic, breast, ovarian and
melanomas [77].

p-TrCP plays an important role as a regulator of Cdkl. One substrate of §-TrCP
is Weel, a kinase that inhibits Cdk1 activity [78]. Phosphorylation of Weel at S53
and S123 by Plk1 and Cdk1 respectively allow B-TrCP to bind to and ubiquitinate
Weel, activating Cdk1 during G2 to promote rapid entry into mitosis. Similarly, in
prophase, p-TrCP also ubiquitinates Emil, an inhibitor of the APC/C [79]. Conse-
quently, f-TrCP accelerates mitotic progression both by increasing Cdk1 activity
and activating the APC/C. In the case of DNA damage, checkpoint proteins
hyperphosphorylate Cdc25a [80], a phosphatase that activates Cdk1 by removing
repressive phosphorylation events. p-TrCP binds to and ubiquitinates hyperpho-
sphorylated Cdc25a, deactivating Cdk1 and delaying the cell cycle. B-TrCP also
ubiquitinates Cdc25b [81], a phosphatase that activates Cdk2/cyclin A and Cdk1/
cyclin B to progress through the G2/M transition [82]. Other B-TrCP substrates that
are linked to cancer progression include the IkB family [83], B-catenin [76] and
MDM? [84].

2.3 APC/C

Proper cell cycling and successful mitotic events rely on the coordinated accu-
mulation and destruction of cyclins [85]. Disruption of this coordination can lead to
aberrant mitotic events, aneuploidy, and cancer [86] (Table 1). While entry into
mitosis is mediated by activation of Cdk1/2, progression through and exit from
mitosis is mediated principally by the anaphase promoting complex or cyclosome
(APC/C).

The APC/C is a 1.2 megadalton complex whose activity is necessary for entry to
and exit from mitosis [87]. The structure of the human APC/C was solved via
cryoEM to 7.4 angstrom resolution, allowing for the identification of 20 subunits of
the APC/C and a mechanistic understanding of its function [88]. APC/C ubiquitin
ligase activity depends on two activating subunits, Cdc20 or Cdh1 (coded by gene
FRZ1; not to be confused with the gene CDH1, which codes for E-cadherin), which
are necessary for APC/C binding to substrate and subsequent degradation [89] via
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K11 ubiquitin linkages [90]. In early mitosis, APC/C-Cdc20 degrades proteins such
as cyclins A and B and Securin, the inhibitor of separase [91]. In later stages of
mitosis and early G1, APC/C-Cdh1 degrades Cdc20, mitotic kinases like Plk1 and
Aurora kinases A/B, and the contractile ring protein Anillin to ensure exit from
mitosis and proper transition into G1 [92]. Binding of the substrate to APC/C is
mediated by two main modalities [93]: for some substrates, Cdc20/Cdh1 binds the
substrate through a KEN box motif; for others, both the APC/C subunit Apc10 and
Cdc20/Cdh1 “sandwich” the substrate at the substrate’s D box. Some substrates
have both and/or additional motifs to bind the APC/C and Cdc20/Cdh1 [92].

Cdc20 is found overexpressed in many cancers, including lung, oral, liver, and
colon cancers [94, 95]. Cdh1 is generally a tumor suppressor, as downregulation of
Cdh1 is found in some aggressive cancer cell types [95], and loss of Cdh1 sensitizes
cells to DNA damage [96].

2.4 Other

X-linked inhibitor of apoptosis protein (XIAP) is a IAP family E3 ligase charac-
terized by three N-terminal baculovirus IAP repeat domains and a C-terminal RING
domain [97]. Like other IAPs, XIAP plays a central role in mediating the cell’s
response to apoptosis. XIAP is overexpressed in many cancer cell lines, particularly
in kidney and skin cancers [98, 99].

The linker region of XIAP between BIR1 and BIR2 binds to the active site and
inhibits caspase 3 and caspase 7 [100]. The BIR3 domain of XIAP also binds to
caspase 9, inhibiting caspase 9 dimerization and activity [101]. Moreover, XIAP
ubiquitinates caspase 3 [102], caspase 9 [103], and caspase 7 [104] and targets them
for degradation. As a final level of regulation, in addition to its ubiquitin E3 ligase
role, XIAP can also function as a neddylation E3 ligase, neddylating and inhibiting
the activity of caspases [105].

XIAP also plays important roles in cell motility. On one hand, XIAP degrades
COMMDI1 [106], a regulator of NF«B [107] and copper homeostasis. XIAP also
binds to MAP3K7IP1, an event that activates kinase MAP3K7 to phosphorylate sub-
strates leading to removal of NF«B inhibition [108]. XIAP also binds to survivin
[109], activating NFkB signaling and encouraging cell metastasis by activating cell
motility kinases Fadkl and Src [110]. Conversely, XIAP has also been show to
inhibit cell migration by binding to and ubiquitinating c-RAF to direct another
ubiquitin ligase (CHIP) to degrade c-RAF [111]. Under non-stressed conditions,
XIAP ubiquitinates and degrades MDM2, stabilizing p53 and inhibiting autophagy
[112]. XIAP also binds to and monoubiquitinates TLE3, allowing p-catenin to acti-
vate Wnt-mediated transcription [113]. Finally, in addition to inflammation
involving the NF«kB pathway, XIAP suppresses TLR-based inflammation [114].

Park2 (PARKIN) is an RBR-E3 ligase with both RING and HECT ligase charac-
teristics [115]. The Park2 locus is commonly deleted in cancers [116]. In mouse
models, loss of Park2 causes spontaneous liver cancer [117] and contributes to
colorectal cancer in mouse models [118]. Additionally, Park2 plays a central role in
mitophagy [119], which may affect cell redox state [120], proliferation, and metas-
tasis [121].

Park2 plays a prominent role in regulating cyclin levels. Park2 degrades cyclins D
[122] and E [123] in a Cull-dependent manner [124]. Park2 mutations found in
cancer lead to stabilization of these G1/S-phase cyclins, an increase in the number of
cells in S and G2/M phase [123, 124], and increased rates of cellular proliferation
[122]. Moreover, Park2 associates with Cdc20 and Cdh1 during mitosis in an
APC/C-independent manner and regulates the levels of many APC/C substrates
including mitotic kinases and mitotic cyclins [125]. Park2 regulates microtubules
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and the mitotic spindle, cytokinetic bridge [126], cell motility [127], and invasion
[128]. Park2 ubiquitinates and degrades HIF-1a to contribute to cell migration, and
loss of Park2 leads to tumor metastasis in mouse models [129].

In Park2 knock-out mouse models, the resulting oxidative stress and the War-
burg effect [130] caused an increase in the mRNA of Aim?2, a protein involved in
cytokine production [131]. In these mouse models, activation of Aim?2 ultimately led
to upregulation of PD-L1 in pancreatic tumors and lower rates of survival, an effect
seen in human pancreatic tumors and patients [131]. Thus, Park2’s roles in metabo-
lism may affect the ability of the immune system to regulate cancer progression.

SPOP is a Cul3 substrate adaptor mutated in about 10% of prostate cancers and
some kidney cancers [132]. SPOP has three basic domains: an N-terminal MATH
domain for substrate recognition [133], a BTB domain for dimerization and inter-
action with Cul3 [134], and a BACK domain which assembles SPOP dimers into
oligomers [134], a mechanism which increases SPOP binding to and ubiquitination
of the substrate [135]. As SPOP regulates many proteins responsible for maintaining
cell integrity, mutations in the MATH domain that disrupt binding to substrate
encourage cancer progression [136].

SPOP plays a role in immunotherapy by ubiquitinating and degrading PD-L1
[137]. SPOP binding mutants cannot ubiquitinate PD-L1, resulting in larger tumor
growth and fewer tumor-infiltrating lymphocytes compared to tumors harboring
wild-type SPOP in mouse models [137]. Similarly, pancreatic cancer samples with
mutant SPOP had higher levels of PD-L1, demonstrating a role for SPOP in immune
system invasion [137].

Other notable SPOP substrates include the apoptotic protein Daxx [138, 139],
deSUMOlyase SENP7 [140], c-Myc [141], HDAC6 [142], Cdc20 [143], proto-
oncogene DEK [144], phosphatases PTEN and Dusp7 [139], hedgehog pathway
proteins Gli2 and Gli3 [145, 146], and BET transcriptional coactivators BRD2-4
[147-149]. SPOP is also closely tied to hormone-activated pathways, as steroid
receptor coactivator SRC-3 [150], androgen receptor (AR) [151], enhancer of AR-
mediated transcriptional activity TRIM24 [144], and estrogen receptor a (ERx)
[136] are all substrates of SPOP. Finally, wild-type, but not mutant SPOP degrades
ERG [152]. Interestingly, in some prostate cancer samples, some tumors expressed a
fused ERG protein due to genome rearrangements, a phenotype driven by SPOP
mutation [153]. Unlike wild-type ERG, these ERG-fusions lack an SPOP binding
site, contributing to cancer progression [154].

3. E3 ligases and their inhibitors

One ubiquitin-proteasome inhibitor has already found use in the treatment of
cancer: Bortezomib is a 26S-proteasome inhibitor approved for treating certain
types of myeloma and lymphoma that binds to and inhibits the proteasome from
degrading other proteins [155]. Another compound still in clinical development is
MLN4924 (Pevonedistat), an inhibitor of the Nedd8-activating enzyme and thus of
Cullin RING ligase complexes [155]. As ubiquitination plays many important roles
in cell regulation, these broad inhibitors can affect many cellular pathways, not just
those that are therapeutically useful. As E3 ligases are specific for their substrates,
E3 ligases serve as precise targets for therapeutic intervention (Table 2). Inhibition
of E3 ligases will hopefully minimize off-target effects. Moreover, as some E3
ligases have many oncogenes as their substrates, targeting E3 ligases may serve to be
more efficient than targeting individual substrates.

While most inhibitors have been identified via high throughput screens, the
most clinically relevant inhibitors have been derived from structure—function
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analyses of E3 ligases complexed to their substrates. For example, the crystal struc-
ture of MDM2 bound to p53 allowed for the identification of the MDM2-p53 bind-
ing pocket and the design of small molecules [156] (like Nutlins and their
derivatives) and stapled peptides [157] that bind to MDM?2 and inhibit p53 binding.
Similarly, the structure of the IAP family of E3 ligases and their endogenous inhib-
itors, the SMAC peptides, allowed for the development of higher affinity peptides
[158] and peptidomimetics and the discovery of one small molecule inhibitor,
Embelin [159]. Of the inhibitors mentioned here, MDM2 and XIAP inhibitors have
advanced the farthest in clinical trials. A crystal structure of the SPOP substrate
binding domain was also used to develop an SPOP inhibitor, suggesting that struc-
tural studies may greatly enhance development of small molecule inhibitors [160].
Most inhibitors disrupt E3 ligase-substrate binding by blocking the binding
pocket of the E3 ligase. However, because HECT domains first transfer the
ubiquitin molecule to themselves via a thioester bond [24], HECT ligases have an

E3 ligase Therapeutic Mechanism Model In
clinical
In vitro Cell Mouse .
rials

assay culture model

TP53  E6AP CM-11 peptides [161] Binds HECT X X
domain
Compound 9 [173] Binds HPV E6 X X
MDM2/X Nutlins [156], Binds p53 binding X X X
RG7112 [174] site
Idasanutlin X X X X
(RG7388) [175]
MI-888 [176], Binds p53 binding X X X X
SAR405838 [151] site
AMG-232 [177] Binds p53 binding X X X X
site
NVP-CGMO097 [178], Binds p53 binding X X X X
HDM201 [179] site
JNJ-26854165 Assumed to bind to X X X
(Serdemetan) RING domain of
MDM2 [180]
ALRN-6924 [157] Stapled peptide X X X X
binds MDM2 and
MDMX at p53
binding site
SCF Skp2 Compound #25 [181] Binds Skp1 binding X X X
site
C1, C2, C16, C20 Presumed: Binds X X
[163, 182] Skp2, Cksl at p27
binding site
CpdA [165] Inhibits Skp2-Skpl X X
binding
NSC689857, Inhibits Skp2-Cksl X
NSC681152 [164] binding
Fbxw7 Oridonin [183] Stabilizes Fbxw7, X X

increases the
activity of kinase
Gsk-3
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E3 ligase Therapeutic Mechanism Model In
. clinical
In vitro Cell Mouse . ;¢

assay culture model

B-TrCP  Erioflorin [184] Inhibits p-TrCP1 X X
binding to
substrate

GS143 [185] Presumed: Inhibits X X
binding of
B-TrCP1 and
p-IkBa

APC/C Cdc20 Apcin [186] Binds to D-box X X
binding site of
Cdc20

Cdc20/  ProTAME [187] Inhibits formation X X X
Cdh1 of APC/C-Cdc20, -
Cdh1

Other XIAP LCL161 [158] Binds to BIR3 X X X X
domain of
XIAP [188]

AEG 35156 [189] XIAP antisense X X
oligonucleotide

SPOP Palbociclib [137] Cdk4 X X X
phosphorylates
SPOP, destabilizes
PD-L1

Compound 6b [160]  Binds to substrate X X X
pocket

*Palbociclib is clinically approved for treatment of breast cancer.

Table 2.
E3 ligases and their inhibitors.

additional mode of pharmacological inhibition. The CM-11 peptides (E6AP inhibi-
tors) are one such therapy that takes advantage of this step to inhibit or disrupt the
HECT-Ubiquitin transthiolation reaction [161]. Future work may focus on design-
ing small molecules that disrupt this function of the HECT domain.

To degrade its most clinically relevant targets p21 and p27, Skp2 functions with
an adaptor protein, Cks1 [162]. At least two classes of inhibitors (NSC689857/
NSC681152 [163] and the C1/2/16/20 compounds [164]) have been developed that
disrupt the Skp2-Cks1 interaction. Similarly, the SCF ligase complex is only active
upon the binding of an F-box protein to Skpl. CpdA inhibits Skp2-Skp1 binding
[165]. These results suggest that another method of inhibitor design may focus on
disrupting crucial activators and binding partners of E3 ligases instead of merely
disrupting E3 ligase-substrate binding.

Upon phosphorylation by Cdk4, SPOP protein levels are stabilized, and PD-L1
expression levels decrease [137]. To improve the efficiency of anti-PD-L1 immuno-
therapies, mice treated with both Cdk4/6 inhibitors (to destabilize SPOP and thus
stabilize PD-L1) and anti-PD-L1 immunotherapy showed improved survival when
compared to untreated mice or mice with each individual treatment [137]. In this
case, stabilization of an oncogenic protein led to improved efficacy of a compli-
mentary therapy. Whether a similar combination of therapies can be used to
improve the overall survival rate in other pathways remains to be seen.
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4. Conclusions and perspectives

Recent research has highlighted the role of ubiquitination in cell regulation,
division, and cancer cell progression. While much work has advanced the identifi-
cation of E3 ubiquitin ligases and their substrates, untangling how these ligases act
upon interconnected pathways remains a challenge in cancer cell biology. For
example, understanding in which contexts certain E3 ligases are tumor-supportive
or tumor-suppressive (like f-TrCP) is still not clear. Genome-wide analyses and
advancements in systems biology have aided in and will continue to contribute to
addressing these issues.

The tumor microenvironment has established itself as a central component in
understanding and treating cancer progression. The macro-level questions of
tumors—how cancers induce angiogenesis, interact with the immune system and
cytokines, interact with the microbiome, and metastasize—are some questions that
are best addressed with research in animal models, not human cell culture models.
For example, the recent discoveries that both SPOP and Park2 play a role in medi-
ating PD-L1 stability demonstrate the need to study the roles of E3 ligases in animal
models. Given the recent success of immuno-oncology and CAR-T cell therapy, a
further understanding how E3 ligases affect macro-level phenotypes like tumor
sensitivity to immunotherapies may influence the design of clinical therapies.

While many E3 ligase inhibitors are being identified via high-throughput small
molecule screens that assess inhibition of E3 ligase-substrate binding or
ubiquitination activity, the most clinically advanced inhibitors have been refined
from structural analysis of the E3 ligase binding pocket. The structures of many E3
ligases have already been determined (for example, all 11 ligases discussed here
have at least a partial structure), so further pharmacological development may
involve identifying binding pockets and designing inhibitors to perturb ligase func-
tion, and optimizing already identified inhibitors. On the other hand, E3 ligases are
often redundant, so inhibition of one ligase may not completely stabilize a beneficial
substrate. Nonetheless, the early clinical success of some E3 ligase inhibitors sug-
gests that ubiquitin ligase inhibition is a promising venue for therapeutic interven-
tion in cancer patients.
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