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1. Introduction

Dye chemistry has witnessed a renewed interest in the last years. The reason of such impres-

sive growth relies on the modern avenues in organic chemistry, which allow to develop new 

molecular structures, or decorate the backbone of an available chromophore with the desired 

substitution pattern, fulfilling the specific requirements of a given application field [1]. In this 

regard, those organic molecules able to emit fluorescence are receiving a great deal of atten-

tion owing to the recent technological advances in high-resolution spectroscopic techniques 
based on fluorescence. In fact, the Nobel Prize in 2014 was awarded to the development of 
super-resolution fluorescence microscopy (nanoscopy) [2–4]. Moreover, nowadays, bioimag-

ing has become likely the most successful and widely used technique to monitor biochemical 
events at real time following the fluorescence emission of probes, sensors, and markers [5].

Actually, there is a wide chart of commercially available fluorophores spanning the whole 
ultraviolet-visible region of the electromagnetic spectrum and even reaching the near infra-

red (NIR). Nevertheless, the search for new organic fluorophores is an active task to find 
molecular structures with improved photophysical properties and photostability. These are 

key properties for any practical application (such as the aforementioned bioimaging) since 
they rule the sensitivity and efficiency, and the operative lifetime, respectively, of the detec-

tion process. Among them, definitely those chromophores known as borondipyrromethene 
(BODIPY) are in the forefront. A quick bibliographic search reveals that since their discovery (early 
1990s) they have been intensively exploited (almost 1000 publications per year, Figure 1). 
The reason of their success is based on the chemical, photochemical and thermal stability of 

their boron-dipyrrin core, which provides strong absorption and fluorescence spectral bands 
[6–8]. Nevertheless, likely the main outstanding characteristic of BODIPYs is their chemi-
cal versatility, since their chromophoric core is amenable to a myriad of chemical reactions 
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Figure 2. Molecular structure and main organic reactions applied to BODIPYs. The basic absorption and fluorescence 
bands of BODIPYs and some key structural modifications to achieve pronounced spectral shifts toward both edges of 
the visible are also included.

Figure 1. Evolution of the publications dealing with BODIPYs since their first reports (source: SciFinder, September 2018).
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(all the chromophoric positions can be functionalized selectively, Figure 2) which allows an 
exhaustive and rich substitution pattern [9]. As a matter of fact, in the bibliography BODIPYs 
have been claimed as “El Dorado” for organic chemistry or “chameleons” to highlight their 

versatility [10]. Such functionalization enables the modulation of the photophysical proper-

ties or alternatively the induction of new photophysical phenomena. As a consequence, and 
upon a rational design, BODIPY dyes with absorption and emission along the whole visible 
region can be attained with improved photonic performance than the benchmark dyes in each 
spectral region 5 (Figure 2), or they can be tailor-made derived to match the requirements of 
plenty of application fields. All these facts explain and support the unstoppable growth and 
popularity of these dyes in these last decades (Figure 1).

2. Main application fields of BODIPYs

BODIPY dyes are applied in a multitude of diverse (bio)technological fields as photoactive 
media. Among them likely the most exploited are in organic lasers, biomedicine (probes and 
sensors for diagnosis by means of bioimaging and photosentitizers in photodynamic therapy 
of cancer), light harvesters (artificial antennae) and photovoltaic devices (photosensitizers 
of semiconductors) (Figure 3). Hereafter, the fundamentals of each application field with 
BODIPYs are briefly explained

2.1. Lasers

The high photostability and fluorescence response of BODIPYs make them suitable photoac-

tive media for dye lasers (Figure 3A) [11, 12]. After amplification of the stimulated emission, 
a strong laser emission band can be achieved along the whole visible spectral region just 

Figure 3. Scheme of the main application fields of BODIPYs.
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changing the molecular structure thanks to the claimed chemical versatility of the chromo-

phoric core. The achieved laser signal is highly efficient (even above 50%) and stable, since in 
some cases no sign of degradation is are detected even after prolonged and intense pumping 

(up to 100,000 pulses). Moreover, the tunable dye lasers based on BODIPYs, even in solid 
state, display better laser performance than the commercially available organic lasers consid-

ered hitherto as benchmarks in each spectral region.

2.2. Fluorescent probes and sensors

The vast number of synthetic protocols that can be applied in the chromophore of BODIPYs 
enables labeling of biomolecules with these fluorophores (Figure 3B). Thus, bright and stable 
fluorescent probes can be designed for bioimaging [13]. A high fluorescence response allows 

an easy and sensible detection of the biomarkers just monitoring the emission under a fluo-

rescence microscope, being the signal also long-lasting owing to the high photostability of the 

BODIPY-tagged biomolecule.

As aforementioned, the substitution pattern of the chromophore can induce new photophysical 
processes (such as intramolecular charge transfer, ICT, or photoinduced electron transfer, PET) 
which are highly sensitive to specific environmental conditions (polarity, acidity) or the pres-

ence of certain analytes (ions, molecules) in the surrounding environments, respectively, and 
hence ideal to develop fluorescent sensors [14, 15]. There are plenty of designs of sensors based 

on BODIPYs to monitor different environmental properties and detect and quantify molecular 
species, but likely those called on/off switches show the best performance since the detection 
process is highly sensitive and can be clearly visualized by the naked eye (Figure 3B). Overall, 
they are based on the induction of a fluorescence-quenching PET process in the BODIPY upon 
binding a specific receptor (off state). After selective recognition of the target analyte, the PET is 
suppressed and the bright fluorescence from the chromophore is recovered (on state).

2.3. Photosensitizers in photodynamic therapy

The fluorescent probes are widely applied in biomedicine for diagnosis purposes. However, 
BODIPYs can be applied for treatment of diseases like cancer [16]. In photodynamic therapy 

(PDT), organic dyes are used as photosensitizers to generate singlet oxygen, a cytotoxic specie 
able to destroy tumoral cells. Comparing other alternative treatments of cancer, PDT shows 
advantages since it is noninvasive, with low side effects, the treatment is light-driven and in 
situ, and, upon absence of light, the photosensitizer is inert. Due to the said chemical versatil-
ity of the dipyrrin core, BODIPY dyes are able to generate singlet oxygen via the promotion of 
the population of their triplet state, and ulterior energy transfer to the ambient triplet oxygen 
can be designed (Figure 3C). Different approaches have been tested to enhance the inter-

system crossing probability of BODIPYs in the bibliography, such as grafting heavy atoms 
(halogens, metals) and promoting ICT processes (orthogonal dimers). Moreover, a suitable 
balance between singlet oxygen generation and fluorescence response by molecular structural 
factors allows designing photosensitizers with dual functionality, thus suitable for theragno-

sis, which means that they are able to generate singlet oxygen and treat, but retaining high 
enough fluorescence signal for detection by bioimaging [17].
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2.4. Artificial antennae

Artificial antennae are bioinspired in the photosynthesis, trying to mimic the efficient light har-

vesting of solar energy in natural organisms during its conversion into chemical energy [18]. The 

key process is the excitation energy transfer (EET) which is mediated usually through a Förster 
long-range mechanism (Förster Resonance Energy Transfer, FRET) [19]. At the molecular level, 

this can be attempted by the combination of chromophores working at different but complemen-

tary spectral regions and able to undergo FRET (spectral overlap to enable the through space 
dipole–dipole coupling). Moreover, their mutual covalent linkage imposes short distance between 
energy donor and acceptor boosting the FRET efficiency and eventually promoting other EET 
mechanism which further contributes to the whole energy transfer. Taking into account that there 

are BODIPYs available along the whole visible region, the scientific community has been tempted 
to link them to each other through suitable spacers to customize energy transfer cassettes. These 
molecular antennae outstand by their broadband absorption, spanning the whole visible, but 

selective red emission from the last energy acceptor after transport of the light via successive and 

efficient energy transfer hops from the energy donors (Figure 3D). This kind of molecular design 
is being applied in dye lasers, biomedicine and photovoltaic devices, as explained hereafter in 
Section 2.5.

2.5. Photosensitizers in solar cells

Photovoltaic devices usually feature inorganic semiconductors, where an electron is pro-

moted from the valence band to the semiconductor band upon irradiation, thus converting 

sunlight into electricity. In this regard, one of the main drawbacks is their low absorption 

of the solar spectrum, which is limited to the NIR region, and low efficiency. One way to 
circumvent this limitation is by means of organic dyes since their light absorption ability 

is much better. Thus, the role of these photosensitizers is to absorb light and afterward 
inject an electron into the conduction band of the conductor (dye-sensitized solar cells, 
Figure 3E) [20, 21]. To this aim dyes should have a push-pull character (chromophore 
decorated with electron donors and acceptors) to enable an ulterior electron transfer upon 
excitation. Moreover, the antennae described in Section 2.4 are ideal for these devices since 
they ensure an efficient light harvesting of the sunlight (both in efficiency owing to the 
high absorption coefficient of BODIPYs and in spectral interval since all the incoming light 
from the UV–Vis–NIR can be absorbed simultaneously) and, after choosing a suitable red-
emitting BODIPY subunit ables to promote electron transfer, activate the semiconductor 

with a better exploitation of the sunlight.

The aforementioned fields are the most tested ones with BODIPYs, but other areas of interest 
are tackled also successfully, such as materials science (self-assembly, or grafting the dye to 

nanoparticles, polymers, graphene, etc.) [22], electrochemistry (light-emitting diodes based 
on electroluminescence, photocatalyst and photochemical reactions overall) [23] or chirality 

(as optically active compounds able to absorb or emit selectively circularly polarized light 
of specific handedness) [24]. Even theoretical chemists have been attracted by the boom of 
BODIPYs, and many computational studies can be found in the bibliography to unravel their 
excited state dynamics [25].
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Of course, BODIPYs have some drawbacks, mainly their low Stokes shift and poor water 
solubility. However, even those limitations can be easily overcome after suitable structural 
modifications. Indeed, BODIPYs endowed with high Stokes shift [26], and improved solubil-

ity [27] are now readily available to reduce the reabsorption/reemission effects at high optical 
densities and enable their solubility in the physiological media.

Therefore, BODIPYs can be described as an all-in-one scaffold where different functionalities 
can be added to the chomophore simultaneously and different non-interfering chromophoric 
positions, being the right choice for any application field or device demanding an organic dye.

This book aims to describe the state-of-art related to BODIPYs and provides an overview 

of their chemical versatility and tunable photophysical and electrochemical properties, and 

degradation mechanisms upon irradiation or external factors, to explore their performance 
as stable fluorescent sensors and biomarkers, or for electrochemical purposes. Costero et al. 
report the design of BODIPYs for chemosensing of anions, cations and neutral molecules in 
solution, gas phase and even in the solid state using nanoparticles. They also describe the 

ongoing mechanisms allowing the recognition of the target analyte. Related to this topic, 
Dokyoung et al. revisit the synthetic approaches to develop blue-emitting BODIPYs and their 
viability as fluorescent probes and sensors. They highlight the possibility of these fluoro-

phores to label biomolecules (like proteins) or to detect metals, amino acids (like cysteine) 
or gases (like phosgene). Afterward, Heiden et al. report the electrochemical properties of 
BODIPY. They prove their ability to electrogenerate chemiluminescence and claim the key 

role of this chromophore in photochemistry and photocatalysis owing to their tunable redox 
activity. Finally, Yuriy et al. overview the degradation mechanisms and kinetics of BODIPYs 
in acid and basic media via spectroscopic techniques and computational simulations. They 
enlarge the study to dipyrrinates and bis-dipyrrinates, owing to their structural similarity 

with the dipyrrin core of BODIPYs. Indeed, BODIPY is named in the literature as the “little 
sister” of porphyrins.
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