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Abstract

A series of CoMo/γ-Al2O3 catalysts was synthesized by a reverse microemulsion 
method using 1-butanol as organic agent and cetyltrimethylammonium bromide as 
surfactant. The aqueous phase was used to form the solution of three corresponding 
Co, Mo and Al precursor salts. The materials were prepared at different solution 
concentrations in order to obtain different metal contents. All samples were char-
acterized by X-ray diffraction, Raman spectroscopy, nuclear magnetic resonance 
and nitrogen physisorption. A chemical species distribution study was performed to 
establish conditions of preparation and the preponderant species present in solu-
tion as a function of pH. The materials obtained present high surface areas which 
decrease as the metal content (Co + Mo) increases. All samples with the exception 
of that with the highest metal content were amorphous as shown by X-ray diffrac-
tion. By Raman spectroscopy, Mo-O-Mo and MoO2t species were observed in all 
calcined samples. Mo-O-Co, Al-O-Mo, monomers and heteropolymolybdates were 
observed for the lower metal content samples, and the formation of CoMoO4 and 
aluminum molybdate species for the higher metal contents. These results suggest 
that the materials with lower metal loading have species that are easily sulfidable 
and provide high activity in hydrodesulfurization reactions. A model for the inter-
action of the species in the aqueous phase of the micelle is presented.

Keywords: reverse microemulsion, CoMo/γ-Al2O3 catalysts, chemical species 
distribution diagrams, catalyst characterization

1. Introduction

Regarding sulfur content in diesel fuels, more stringent environmental regula-
tions have motivated research on new catalysts and novel synthesis methods, to pro-
duce highly active hydrodesulfurization (HDS) catalysts [1]. The commercial HDS 
catalysts are based on MoS2 promoted by Co or Ni, supported on high-surface area 
γ-alumina. The most common synthesis procedure involves impregnation of aque-
ous solutions of Mo and Co (or Ni), followed by drying and calcination steps prior 
to the activation by a sulfur-containing agent. Generally, it is found that Mo could 
form a monolayer to prevent Ni or Co species to interact with the support. This 
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helps to avoid the formation of undesired species such as cobalt or nickel aluminates 
or segregated sulfides [2]. Nevertheless, different preparation sequences or proce-
dures have been investigated since this is not a simple task [3, 4]. Furthermore, Co 
and Mo form the so-called “CoMoS” phase which has been reported as the active 
phase in this reaction to remove sulfur from compounds such as dibenzothiophene 
(DBT) and 4, 6-dimethyl dibenzothiophene (4,6-DMDBT) [4, 5]. This means to 
synthesize sulfides of 3 slabs stacking (CoMoS type II) [4, 6, 7]. It has also been 
reported that Co(Ni) MoS species can be obtained, with the use of thiomolybdate 
precursors in the presence of nonionic surfactants. Moreover, the morphology can 
be controlled, resulting in an increased activity as compared with more conven-
tional synthesis using ammonium polymolybdates [8]. To carry out the impregna-
tion of the support, solutions of ammonium heptamolybdate tetrahydrate and 
nickel(II) nitrate hexahydrate are generally used. Firstly, monomeric species such as 
MoO4

2− are deposited on the carrier. These ions are obtained at pH values between 
10 and 12 and MoO3 species are formed after calcination [9, 10]. After impregnation 
of molybdenum, Co2+ species are impregnated at pH between 2 and 5.96 [11, 12] 
and CoOx species are obtained after calcination [12]. Alternative synthesis methods 
have been tested. For instance, spray pyrolysis allowed the formation of nanosized 
spherical particles of CoMo sulfides supported on Al2O3 that increased the activity 
of the catalysts, due to weak interaction of CoMo and alumina [2].

A method capable of obtaining nanoparticles with interesting applications as 
heterogeneous catalysts is inverse microemulsion [13]. The water/oil microemul-
sion (reverse microemulsion) uses surfactant molecules to stabilize the water/oil 
interface of nanosized water droplets that are dispersed in an organic solvent. These 
water droplets consist of an aqueous solution of metal precursors [13, 14]. Recently, 
reverse microemulsion has been used to prepare NiMo catalysts by precipitation; 
after calcination and sulfidation, nickel was found decorating the edges of MoS2. 
However, after HDS reaction, a significant amount of nickel was segregated, 
provoking a low activity in comparison with a NiMo/γ-Al2O3 catalyst taken as 
reference [15]. Reverse microemulsion is attractive to extend the actual studies to 
obtain CoMo/γ-Al2O3 catalysts with active species as required for HDS, preparing 
structured nanoparticles in only one step.

In the microemulsion systems, the interaction between ions in solution and the 
interface where the surfactant and the organic agent coexist is an important issue. 
13C NMR studies have shown that Co (II) is retained at the CTAB-hexanol-water 
interface, with a 1:1 interaction between Co(II) and hexanol [16]. Also, at low 
concentrations, octahedral Co(II) complexes are formed. On the other hand, in the 
preparation of alumina, sodium dodecyl sulfate (SDS, anionic) and cetyltrimeth-
ylammonium bromide (CTAB, cationic) have been used as mixtures in different 
proportions. It was found that the SDS head remains in the alumina network with a 
decrease in its surface area [17]. Some reports describe the synthesis of unsupported 
Co(Ni)-Mo-S catalyts for HDS reactions, using surfactants and chelating agents 
as textural promoters, and the materials obtained show bigger surface areas and a 
higher catalytic activity than commercial catalysts [8].

The effect of the surfactant on the preparation of CoMo/γ-Al2O3 by the micro-
emulsion method was reported [18]. Sodium dodecyl sulfate (SDS) and cetyltri-
methylammonium bromide (CTAB) were used and compared. Microemulsions 
synthesized with SDS provided larger size nanodrops than those obtained with 
CTAB, with a lower amount of surfactant added. After calcination, the solids 
prepared with SDS showed the presence of sodium sulfate and had surface areas 
50% lower than those obtained with CTAB.

In this work, the preparation of catalysts by a reverse microemulsion method 
has been undertaken to provide nanostructured-supported metals used in HDS. A 
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series of CoMo/γ-Al2O3 catalysts were synthesized and characterized, and the 
influence of concentration of metals on the calcined solid materials was evalu-
ated. In order to determine the solution conditions to obtain Co and Mo on Al2O3, 
chemical species distribution calculations were made. These calculations allowed 
us to establish pH and concentrations to employ for the microemulsion prepara-
tion and the proper chemical species to be obtained in the solid materials. In a first 
attempt to correlate the catalyst synthesis parameters with the resultant structural 
and textural characteristics, characterization of the oxidic phases by atomic 
absorption, N2 physisorption, X-ray diffraction (XRD), magic angle spinning-
nuclear magnetic resonance (MAS-NMR) and Raman spectroscopy is presented 
and discussed.

2. Experiment

2.1 Preparation of reverse microemulsions

Five samples were prepared using 1-butanol, water and cetyltrimethylam-
monium bromide (CTAB), according to the mass percentages shown in Table 1. 
All chemicals were reagent grade from Sigma Aldrich, otherwise it is indicated. 
Figure 1 shows a diagram for material synthesis. For each catalyst, the organic 
phase was 1-butanol (C4H9OH), and the aqueous phase was composed of cobalt 
nitrate (Co(NO3)2 6H2O), ammonium heptamolybdate (AHM, (NH4)6Mo7O24 
4H2O) and aluminum nitrate Al(NO3)3 9H2O (J. T. Baker). For each microemulsion, 
the required amount of CTAB (CH3(CH2)15NBr (CH3)3) cationic surfactant was 
added. During the microemulsion formation, the mixture was continuously stirred 
with a magnetic stirrer, the CTAB surfactant was added slowly, until it turned from 
turbid to translucent. The electric conductivity was measured continuously with a 
LabPro Vernier (model CON-BTA) coupled to a conductivity probe with a sensitiv-
ity of ±0.001 S/m. Measurements were conducted at a constant temperature of 
20 ± 0.1°C. Critical micelle concentration (cmc) was established for all the samples. 
This occurred at a point where the conductivity showed a sharp inflection point. 
Each microemulsion was adjusted to pH = 10 with n-butylamine to generate the 
required species in solution. Their molar concentrations are shown in the last three 
columns of Table 1. The use of pH 10 in the microemulsions was determined with 
the development of species distribution diagrams obtained through the Medusa 
(Make Equilibrium Diagrams Using Sophisticated Algorithms) program that gener-
ates distribution curves for species in solution, depicted as the logarithm of the 
concentration versus pH.

Microemulsions Species concentration

Key Aqueous phase 

(%)

1-Butanol 

(%)

CTAB 

(%)

Co(II) 

(mM)

Mo(VI) 

(mM)

Al(III) 

(mM)

C1 31.7 47.2 21.1 8.05 20.95 197.61

C2 31.9 47.4 20.7 8.50 22.14 162.43

C3 32.2 47.9 19.9 9.21 23.96 125.52

C4 32.6 48.4 19.0 9.65 25.11 78.95

C5 33.0 49.0 18.0 10.03 26.09 27.34

Table 1. 
Nominal compositions for the synthesis of microemulsions.
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Subsequent to the formation of the microemulsions, the wet solids were main-
tained at room temperature for 48 h to evaporate the solvents. The obtained solids 
were calcined at 500°C for 6 h, with an air flow of 20 ml/min.

2.2 Characterization

The concentrations of the metallic elements in calcined samples were deter-
mined in a Varian SpectrAA 220 FS Atomic Absorption Spectrometer equipment. 
The spectrophotometer was calibrated with certified standards.

The nitrogen physisorption analysis for calcined catalysts was developed in an 
Autosorb 1 gas sorption system (Quantachrome). Samples were outgassed at 477 K 
under vacuum for 6 h. Then, nitrogen physisorption experiments were carried out 
at 77 K. The determination of surface area and volume and pore diameter were 
carried out using the BET equation and the BJH method, respectively.

To determine the coordination number and crystallographic arrangements of the 
synthesized support (alumina), a magic angle spinning-nuclear magnetic resonance 
equipment (MAS-NMR) Bruker Avance II 300, equipped with a multinuclear 
detector of 4-mm CPMAS with a frequency range 31P to 15N was utilized. Analyses 
were carried out with a rotational speed of 10 kHz.

The crystalline phases of the calcined samples were identified using a Siemens 
D-500 Kristalloflex diffractometer, with a CuKα radiation, λ = 0.15406 nm, and 
with primary and secondary monochromators. The equipment was operated at 
35 kV, 20 mA, with a time interval of 1 s and scan rate of 0.03°/s.

Raman spectra for the calcined samples were recorded using Raman HORIBA 
Jobin Yvon T64000 equipment. The excitation laser source wavelength was 
532.1 nm, with a power of 20 mW at the laser head; 100 scans of each sample were 
performed and accumulated at room temperature, and the spectra were recorded in 
the range 100–1300 cm−1.

Figure 1. 
Diagram for the synthesis method used for preparing the reverse microemulsion.
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3. Results and discussion

3.1 Determination of species in solution

Figure 2 shows the theoretical diagrams for Co, Mo and Al species as determined 
from the MEDUSA program for the C3 CoMo/Al2O3 sample. A total of 28 possible 
reactions were considered, including 5 soluble compounds (H+, Co2+, MoO4

2−, Al3+, 
C4H9NH2), 3 solid species (Al(OH)3(cr), Co(OH)2(c), H2MoO4(c)), and the other 
species were Co, Mo or Al complexes.

Figure 2a depicts the distribution of two Co species. One Co2+ species appeared 
at acidic pH and it decreased after a pH value higher than 7. At this value, the 
formation of Co(OH)2 began to increase, reaching maximum concentration at pH 
higher than 8.5. Some authors have reported cobalt species in solution pH values 
higher than 6 [19, 20], in agreement with theoretical calculations. Moreover, these 
compounds exhibited also high stability.

Seven Mo species were identified in Figure 2b. Six of them were observed 
at acidic pH, among them HMoO4− y Mo7O24

6− species were found at pH values 
between 4 and 6. MoO4

2− species began to be noticeable at pH values around 4, 
reaching maximum concentration at pH higher than 6. Furthermore, this was 
the only remaining species at pH higher than 8. Regarding MoO4

2− species, it has 
been reported that they exist primarily at low concentrations and at pH = 10 [11]. 
[MoO4]2− has also been determined as the predominant oxo-molybdenum (VI) 
species in the catalyst MoO3/Al2O3, in which case this species is found in solution 
and adsorbed on the alumina surface depending on the concentration of Mo 
[21–23].

Regarding Al, Figure 2c shows three species. Al3+ ions began to disappear at 
pH values near 2.8 and Al(OH)3 concentration increased. This crystalline species 
reached its maximum concentration at pH = 4.3 and it decreased at pH = 10.5. 
The Al(OH)4

− species began to appear at pH = 11 and its concentration reached a 
maximum value at pH = 13.7.

Several authors have reported that Al(OH)3 in solution was obtained at pH 
values between 8 and 11 [17, 24].

Table 2 gives those reactions favoring the most common complexes involved in 
CoMo catalysts synthesis. These were formed at pH 10. The results from reactions in 
Table 2 were considered to establish concentration and pH ranges in which the forma-
tion of suitable species within the nanodroplets of the microemulsion may occur. 
Moreover, these values were taken into account to avoid the release and precipitation 
of solid particles. This can be observed when an excessive growth of particles within of 
the micelles takes place. For catalysts with different metal loading (C1, C2 C4 and C5 
samples), analogous diagrams were obtained, showing the same species distribution.

Overall, the selected species to be obtained at the conditions fixed experi-
mentally have been those needed for the formation of the precursors of the active 
species in HDS catalysts [9, 19, 20, 25].

3.2 Atomic absorption

Table 3 gives the results for metallic loadings as determined by atomic absorp-
tion for catalysts after calcination. According to Table 3, it can be observed that the 
Co/Mo ratio was around 0.236 for all the samples. Therefore, it was shown that the 
method of reverse microemulsion allowed us to obtain a Co/Mo ratio with the same 
average value for all samples, independently of the metal content. Furthermore, the 
ratio Co/Mo is comparable to metal contents in an industrial catalyst (CoMoind), 
taken as reference.
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Figure 2. 
Species distribution diagrams for the synthesis for CoMo/γ-Al2O3 catalysts (C3): (a) cobalt species, (b) 
molybdenum species (c), aluminum species.
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CoMo/γ-Al2O3 catalysts have been synthesized by several methods and previous 
papers [4] agree that the content of metals on the support, including an average 
ratio of Co/Mo of 0.24, is adequate to prepare active HDS catalysts. However, it has 
also been reported that metal loading on the support depends on the method of 
preparation [4]. In some cases, it has been determined that the number of slabs on 
the support (alumina) increases and the edges on the slabs decrease with increasing 
Mo content. These edges are generally decorated by deposition of cobalt species as 
promoter [7]. Therefore, the metal loading must be controlled to an extent, that is, 
15 or 20 wt.% of Mo, since high loadings lead to the formation of inactive struc-
tures [4]. Furthermore, some studies have been aimed at obtaining a monolayer of 
molybdenum species on the surface of the carrier and Co/(Co + Mo) ratios corre-
sponding to high dispersion of Co on the edges of the slabs of molybdenum [25, 26]. 
In our case, the results indicate that precipitation of the particles out of the micelles 
of the microemulsion systems did not occur during catalyst preparation, since it 
would have resulted in a heterogeneous distribution of the catalyst composition.

3.3 Nitrogen physisorption

Results for nitrogen physisorption for the catalysts in this work and for an 
industrial catalyst are given in Table 4. Catalysts C1, C2 and C3 exhibited higher 
surface areas than the industrial catalyst (CoMoind). Catalyst C4 showed a compa-
rable surface area as that of the CoMoind sample, while the C5 catalyst exhibited a 
significantly lower surface area. Furthermore, pore diameter values increased from 
catalyst C1 to C5, showing a comparable value between C2 and CoMoind. One of 
the fundamental aspects of the analysis of physisorption that has been suggested 
for HDS supports is that their surface area must be high enough to ensure a high 
dispersion of the active species [2].

Thus, we observed high surface areas for the synthesized catalysts by using 
microemulsions. It is possible that nanosized particles were formed inside the 
micelles systems as reported in the literature [27–30]. However, high Mo loading 
such as those in C4 and C5 catalysts could lead to different porous structures and 
one cannot rule out pore blocking by the metals.

Ions Formed species log K

2H2O + Co2+ = 2H+ + Co(OH)2 (c) −18.6

3H2O + Al3+ = 3H+ + Al(OH)3(cr) −8.11

4H2O + Mo7O24
6− = 8H+ + 7MoO4

2− −52.99

Table 2. 
Hydrolysis reactions for Al, Co and Mo species.

Key Co (wt.%) Mo (wt.%) Co/Mo

C1 3.7 15.3 0.236

C2 4.6 18.6 0.234

C3 5.6 24.0 0.238

C4 8.0 33.1 0.238

C5 13.2 54.6 0.235

CoMoind 5.7 24.5 0.233

Table 3. 
Metal content for the catalysts as determined by atomic absorption.
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Catalysts Tc (500°C) SBET (m2/g) Pore volume (cm3/g) Dp (Ǻ)

C1 294 0.74 55.8

C2 286 0.62 56.2

C3 261 0.41 68.3

C4 212 0.28 71.2

C5 125 0.19 76.2

CoMoind 204 0.49 56.6

Table 4. 
Nitrogen physisorption results for the calcined catalysts.

3.4 Spinning-nuclear magnetic resonance equipment (MAS-NMR)

Figure 3 shows the 27Al MAS-NMR spectrum for the C3 catalyst before calcina-
tion. One can observe a broad band with a maximum at around 0 ppm, that can 
be ascribed to the formation of the Al(OH)3 (gibbsite) compound. This species 
has low electronegativity and, therefore, it can interact more easily with more 
electronegative elements [31], such as molybdenum species, rather than with cobalt 
species. This is relevant for the preparation method, considering that the latter has 
a tendency to form cobalt aluminate with the support when using impregnation 
methods [3, 32, 33].

Figure 4 displays the 27Al MAS-NMR spectra for the calcined catalysts. 
The CoMoind sample exhibited a broad band at 0 ppm that can be assigned to 
octahedral species of the support. Besides, formation of tetrahedral species was 
determined as a weak band at around 60 ppm. These two bands are characteristic of 
γ-Al2O3 [34, 35]. It is likely that during calcination up to 250°C, the gibbsite formed 
boehmite (α-AlO(OH)). This compound was transformed to γ-Al2O3, when the 
temperature reached 500°C [36].

Additionally, Figure 4 shows that pentahedral species between 40 and 50 ppm 
appeared for the C5 and CoMoind catalysts. These species have been identified as 
defects in the support structure, as originated by the replacement of oxygen in the 
network of octahedral symmetry by hydroxyl groups [37]. For C5 sample, a band 
around −14 ppm was detected. This band has been related to the presence of the 
Al2(MoO4)3 species which distorts the octahedral network of the support [35].

Some authors have reported that the Al2(MoO4)3 species can be due to the disso-
lution of the Al3+ species, which subsequently react with heptamolybdate complexes 
during the impregnation step, forming the Anderson-type heteropolymolybdate 
[Al(OH)6Mo6O18]3− [35]. In this study, the appearance of the molybdate species 
(around −15 ppm) could be due to the formation of an Anderson-type heteropoly-
molybdate obtained in the synthesis mixture.

3.5 X-ray diffraction

Figures 5 and 6 show the diffractograms for the calcined catalysts. As it can be 
seen, no XRD lines were observed for almost all catalysts, except for the C5 solid, 
pointing out to amorphous solids. Thus, cobalt and molybdenum oxides may be 
highly dispersed on the support (γ-Al2O3). This has also been observed by other 
authors who detected a broad band between 5 and 50° (2Ө) describing amorphous 
catalysts. Figure 6 (extended from Figure 5) shows the diffractogram for the C5 
catalyst. Well-defined XRD lines were detected and they were associated with 
CoMoO4 and Al2(MoO4)3 [2]. This finding is consistent with MAS-RMN results for 
the highly loaded CoMo catalyst (C5).
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Figure 3. 
27Al MAS-NMR spectrum for the C3 CoMo/γ-Al2O3 uncalcined catalyst.

Figure 4. 
27Al MAS-NMR spectra for the CoMo/γ-Al2O3 calcined catalysts series.
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Figure 5. 
XRD results for the CoMo/γ-Al2O3 calcined catalysts series.

3.6 Raman analysis

Raman spectra for the CoMo/γ-Al2O3 catalysts series and the CoMoind catalyst 
are given in Figure 7. For C1, C2 and C3 CoMo catalysts, more attenuated and wider 
bands were observed, as compared with C4 and C5 spectra. It could be due to more 
microcrystalline particles in low-content Mo samples. Thus, particle sizes for highly 
loaded catalysts C4 and C5 were larger, as expected.

Table 5 summarizes all the Raman bands indicating the type of species as 
assigned for the catalysts in oxidic state. To assign the species present in the 
samples, the signals were deconvoluted and identified according to those reported 
in the literature.

One can notice bands between 500 and 700 cm−1 for C1 and C2 catalysts. 
These peaks can be assigned to the stretching mode vibration for bridged 
Mo-O-M links [38]. Specifically, the presence of Mo-O-Co bonds between 540 
and 560 cm−1 was identified. This type of band corresponds to the interval of 
heteropolymolybdate structures and they indicate a strong interaction between 
cobalt and molybdenum oxides. This means that a weak interaction with the 
support occurs and, thus, it can induce a high degree of sulfidation of the catalyst 
as published by others [2, 39]. Besides, bands at 817–818 cm−1 were observed 
for samples with Mo loadings >20% in catalysts C4 and C5. These peaks are 
generated by MoO3 species, indicating that a monolayer of MoO3 on the surface 
of the support has been exceeded [40, 41]. Moreover, these MoOx species have 
been identified as orthorhombic molybdate species [42, 41]. Bands between 850 
and 875 cm−1 were attributed to Mo-O-Mo bonds, assigned to the asymmetric 
vibrational stretching mode [2, 41, 43]. Other bands located between 930 and 
960 cm−1 were assigned to Mo=O links, as the vibrational stretching mode for 
the dioxo groups in oxomolybdate species. This indicates the formation of MoO2t 
species, where t indicates terminal oxygen atoms. This type of species was present 
in all studied catalysts, as tetrahedral MoOx structures on alumina [40].

Furthermore, it was found that the bands corresponding to the Mo-O-Mo links 
increased proportionally when increasing the bands corresponding to the MoO2t 
links [2, 41, 43]. This suggests that there was an increase in the number of bridges 
of Mo, which implied high dispersion of Mo on the support [40, 44].
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Figure 6. 
XRD results for the CoMo/γ-Al2O3 calcined C5 catalyst.

Figure 7. 
Raman spectra for the CoMo/γ-Al2O3 calcined catalysts series.
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Additionally, bands between 905 and 918 cm−1 for the C5 and CoMoind catalysts 
were attributed to the presence of molybdate CoMoO4 species, either isolated or 
polymerized, involving a strong interaction with the support. As reported by some 
authors [33, 42, 45, 46], the formation of aluminum molybdate species occurs at 
high Mo loadings. It has been published also that some amount of Mo reacts with Co 
during calcination.

For C1 and C2 catalysts, a band in the range between 970 and 1100 cm−1 was 
detected and highly dispersed MoO4 tetrahedral species can be assigned in agree-
ment with MAS-NMR results. It is likely that these metal loadings did not reach the 
MoOx monolayer formation [44, 47]. Moreover, the bands appearing between 200 
and 400 cm−1 were attributed to Mo monomeric species [33].

Regarding Co species, no bands associated with this oxide were identified. 
However, since no segregation of Co species was noticed, one can propose that there 
exists an interaction of Mo and Co.

3.7 A model for the interaction of species in solution and the micelle

The results obtained in this work for the characterization of the catalytic materi-
als demonstrate that these have: high surface areas, amorphous γ-Al2O3, a MoO3 
type species on the surface of the support and a constant Co/Mo ratio independent 
of the metal loading. Overall, it is possible to establish an interaction between Co 
species at the interface with the micelles, preventing the migration of Co into the 
alumina network. There is also an interaction between Mo and AlOOH in solution 
which hindered the Co-Al interaction and promoted the formation fo Mo-O-Co, 
as shown by Raman results. It is possible to depict a representative scheme of the 
species inside the micelles as can be observed in Figure 8. In this diagram, 1-butanol 
replaces water in the first coordination sphere of Co ion, so that Co is retained at the 
interface of the micelles [16].

Range 

(cm−1)

C1 C2 C3 C4 C5 CoMoind Assigned species

200–300 215 Heptamolybdates or 

octamolybdates

300–

400

320 320 360 335–

365

346–

369

354 Monomers

Heptamolybdates or 

octamolybdates

500–700 570 570 560 Mo-O-Co

Al-O-Mo

800–

900

850 850 870 818

870

817

875

850 MoO3

Mo-O-Mo

900–

1000

937 930 930, 

950

939, 

950

978

905

938, 

949

978

918

951

CoMoO4

*MoO2t

Al2(MoO4)3

1000–

1100

1085 1086 1090 1045 (MoO4)2−

Table 5. 
Raman bands and the species associated for the calcined CoMo/γ-Al2O3 catalysts.
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4. Conclusions

CoMo/γ-Al2O3 catalysts were synthesized at several metal (Co + Mo) contents 
employing a reverse microemulsion method. The microemulsion was formed using 
1-butanol as organic agent, cetyltrimethylammonium bromide as surfactant and 
water. A study of chemical species distribution in solution as a function of pH was 
performed and provided the pH and precursor salt concentrations to be used in the 
synthesis to obtain the desired final material. The study allowed to obtain stable 
micelles, no precipitation of the metallic particles outside the micelles occurred 
and a constant Co/Mo ratio in all samples independent of the metal loading was 
observed. The solids calcined at 500°C showed large surface areas which decrease 
as the metal content was increased. All the calcined samples were amorphous for 
X-ray diffraction and only at the highest Co + Mo concentration some crystalline 
phases were found. On these samples, species such as Mo-O-Mo, MoO2t, Mo-O-Co, 
Al-O-Mo were detected. These species are considered precursors of highly active 
catalytic sites in HDS reactions. Based on these results, a schematic model for the 
micelle formed was produced. In this model, Al and Mo species in solution interact 
whereas Co species interact with 1-butanol at the interface. With this model, it 
is possible to envisage the formation of the solid material with Mo covering the 
surface of Al2O3 and Co interacting with Mo on the surface of the aluminum oxide.
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Figure 8. 
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