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Chapter

Equilibrium and Nonequilibrium
Hydrodynamic Modes of a
Nematic Liquid Crystal
Jorge Fernando Camacho and Rosalío Fernando Rodríguez

Abstract

We use a fluctuating hydrodynamics (FH) approach to study the fluctuations of
the hydrodynamic variables of a thermotropic nematic liquid crystal (NLC) in a
nonequilibrium steady state (NESS). This NESS is produced by an externally
imposed temperature gradient and a uniform gravity field. We calculate analytically
the equilibrium and nonequilibrium seven modes of the NLC in this NESS. These
modes consist of a pair of sound modes, one orientation mode of the director and
two visco-heat modes formed by the coupling of the shear and thermal modes. We
find that the nonequilibrium effects produced by the external gradients only affect
the longitudinal modes. The analytic expressions for the visco-heat modes show
explicitly how the heat and shear modes of the NLC are coupled. We show that they
may become propagative, a feature that also occurs in the simple fluid and suggests
the realization of new experiments. We show that in equilibrium and in the isotro-
pic limit of the NLC, our modes reduce to well-known results in the literature. For
the NESS considered, we point out the differences between our modes and those
reported by other authors. We close the chapter by proposing the calculation of
other physical quantities that lend themselves to a more direct comparison with
possible experiments for this system.

Keywords: fluctuating hydrodynamics, nonequilibrium fluctuations,
hydrodynamic modes, thermotropic nematic liquid crystals

1. Introduction

When a fluid is in thermodynamic equilibrium, its state variables always present
spontaneous microscopic fluctuations due to the thermal excitations of its mole-
cules, producing deviations around the state of equilibrium. The theory of fluctua-
tions for fluids in states close to equilibrium was initiated long ago by Einstein and
Onsager, and it has been reformulated in several but equivalent ways. The first
more systematic approach to introduce thermal fluctuations into the hydrodynamic
equations was the fluctuating hydrodynamics (FH) of Landau and Lifshitz [1, 2].
It stems from the idea that the hydrodynamic equations are valid for any flow,
including fluctuating changes in its state. Accordingly, stochastic currents are
incorporated into the deterministic energy and momentum fluxes by adding fluctu-
ating sources. This theory was put on a firm basis within the framework of the
general theory of stationary Gaussian Markov processes by Fox and Uhlenbeck [3–5].
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This approach has matched the theory of Onsager and Machlup with that of Landau
and Lifshitz for systems where the basic state variables do not possess a definite
time reversal symmetry [6, 7]. However, in spite of the fact that the theory of
fluctuations for nonequilibrium fluids was initiated in the late 1970s, and was
pursued by many authors [8], still nowadays several questions concerning the
nature of hydrodynamic fluctuations in stationary nonequilibrium states (NESS)
are of current active interest. One of these issues is the long-range character of
these fluctuations, especially far away from instability points [9]. Thermal fluctua-
tions in an equilibrium fluid always give rise to short-range equal time correlation
functions, except close to a critical point. But when external gradients are applied,
equal-time correlation functions can develop long-range contributions, whose
nature is very different from those in equilibrium. For many models and systems
in nonequilibrium states, it has been shown theoretically that the existence of the
so-called generic scale invariance is the origin of the long-range nature of the
correlation functions [10, 11].

In the case of a simple fluid in a thermal gradient, the structure factor, which
determines the intensity of the Rayleigh scattering, diverges as k�4 for small values
of the wave number k. This amounts to an algebraic decay of the density-density
correlation function, a feature that has been verified experimentally [12–14]. How-
ever, there are few similar studies for NESS of complex fluids. Among these, the
enhancement of concentration fluctuations in polymer solutions under external
hydrodynamic and electric fields [15], or the case of a polymer solution subjected to
a stationary temperature gradient in the absence of any flow [16], has been
discussed. Also, the behavior of fluctuations about some NESS has been analyzed in
the case of thermotropic nematic liquid crystals. Specific examples are the
nonequilibrium situations generated by a static temperature gradient [17], a sta-
tionary shear flow [18] or by an externally imposed constant pressure gradient
[19, 20]. In the first two cases, it was found that the nonequilibrium contributions
to the corresponding light scattering spectrum were small, but in the case of a
Poiseuille flow induced by an external pressure gradient, the effect may be quite
large. To our knowledge, however, at present, there is no experimental confirma-
tion of these effects, in spite of the fact that for nematics, the scattered intensity is
several orders of magnitude larger than for ordinary simple fluids.

When a hydrodynamic system relaxes from a state of thermodynamic equilib-
rium to another, almost all its degrees of freedom will return to that equilibrium
value in a short, finite time τ determined by the microscopic interactions of the
system. There are, however, some other degrees of freedom of collective character,
the hydrodynamic modes, which will decay much more slowly. When τ ! ∞, its
characteristic frequencies ω ! 0 ω � 1=τð Þ, when k ! 0: Such is the case, for
example, of the propagation of sound waves and the conduction of heat in a simple
fluid [21]. Hydrodynamics allows to describe these modes or degrees of freedom of
greater duration, through the laws of conservation and balance of the system, and,
as in the case of ordered systems, by the continuous breaking of symmetries
[22, 23].

The central purpose of this work is to briefly review the general procedure
developed by Fox and Uhlenbeck and show that it may be employed to treat
fluctuating complex fluid systems like a thermotropic nematic liquid crystal (NLC)
in a NESS. In particular, we describe the dynamics of the fluctuations of its hydro-
dynamic variables induced by a stationary temperature gradient and under the
influence of gravity (a Rayleigh-Bénard system) on a nematic layer confined
between two parallel horizontal plates in a steady state in a nonconvective
regime [24–26]. Once the dynamics of fluctuation is established, we calculate the
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time-dependent correlation functions in equilibrium between the fluctuating
hydrodynamic variables, quantities that allow to obtain the transport properties of

the system [27, 28]. One of these properties is the dynamic structure factor S k
!
;ω

� �

of the system, which measures the magnitude of the changes in energy and
momentum between the light beam and the fluid as functions of the wave vector k

←

and ω.

For simple fluids with fixed k
!
, S k

!
;ω

� �
consists of three well-separated

Lorentzian features: a line or central peak (Rayleigh peak) located at ω ¼ 0 and two
Brillouin peaks symmetrically located with respect to the central one [29, 30]. These
three lines are directly related to the hydrodynamic modes of the simple fluid, and
from them, it is possible to obtain relevant information about transport properties.
For instance, the Rayleigh line, associated with a thermal diffusive mode, is due to
the fluctuations of the entropy (or temperature) that diffuse in the fluid and its
width is proportional to the thermal diffusivity. On the other hand, the Brillouin
lines are related to two acoustic propagative modes and are the result of the coupled
dynamics of the pressure fluctuations and a component of the flow velocity that are
transmitted with the speed of sound in the medium. Their widths are proportional
to the absorption of sound.

In the case of an anisotropic system like a NLC, fluctuating hydrodynamic
theories have recently been proposed [22, 31] based on the methodology proposed
by Landau and Lifshitz [1]. However, this analysis of the fluctuations of the nematic
hydrodynamic variables is not precise, since it does not take into account the parity
with respect to time reversal, so their description using the Onsager-Machlup for-
malism would be strictly inadequate. The correct theoretical framework should be
the more general theory of Fox and Uhlenbeck [3–5, 20, 24]. However, although a
NLC disperses light by several orders of magnitude more than an ordinary fluid
[32], from both a theoretical and experimental point of view, the studies
corresponding to the behavior of the fluctuations in these media around stationary
states out of equilibrium are rather scarce. From the theoretical point of view, and
only for the case of the transverse hydrodynamic variables [33], some studies of the
behavior of orientational fluctuations have been carried out when analyzing the
effect produced in the light scattering spectrum of a NLC in NESS induced by the
presence of uniform temperature gradients [17] and by the action of a shear flow
[18]. In both cases, it has been found that the effect of fluctuations in the light
scattering spectrum is small, being difficult to detect experimentally. On the other
hand, as far as we know, no theoretical study has been carried out on the behavior
of the longitudinal variables of a nematic and much less on its spectrum of light
scattering, both in states of thermodynamic equilibrium and outside of it. This is an
open research topic. Nor have been performed analyzes of stationary states gener-
ated by other types of external gradients in these systems, with which could be
obtained qualitatively and quantitatively much greater effects than those reported
so far in the literature for simple fluids. It should be mentioned that although
preliminary attempts have been made to calculate the transverse hydrodynamic
modes of a nematic [34, 35], there are few studies that also involve the
corresponding longitudinal modes [31]. Unfortunately, a clear and systematic
method to derive the set of complete, transverse, and longitudinal hydrodynamic
modes of a NLC is still lacking.

By introducing an alternative set of state variables that takes into account the
asymmetry presented by both, the velocity and the director fields due by their
mutual coupling, two groups of fluctuating variables, namely, longitudinal and
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transverse, can be clearly identified. Both set of variables are completely decoupled:
there are five in the first and two in the second group. The longitudinal variables in
turn can be separated into two mutually independent sets. The first is composed of
two variables whose dynamics determine the existence of acoustic propagation
modes; while the second, formed by three variables, giving rise to three hydrody-
namic modes: one related to the orientation of the director and two more, the so-
called visco-heat modes, that result from the coupling of the thermal diffusive and
shear modes due by the presence of the gradient thermal and the gravitational field.
As will be discussed later on, from the set of transverse variables, two hydrody-
namic modes emerge: one due to the orientation of the director and another one
due to shearing. Altogether, there are seven nematic hydrodynamic modes: five
longitudinal and two transversal. As will be shown below, the applied gradient of
temperature and gravitational field produce their greatest effect in the pair of visco-
heat modes, which is quantified in them by means of the Rayleigh quotient R=Rc,
where R is the number of Rayleigh and Rc the value that it reaches when in the
nematic initiates the convection.

2. Liquid crystalline phases

The liquid crystal phase is a well-defined and specific phase of matter
characterized by a remarkable anisotropy in many of their physical properties as
solid crystals do, although they are able to flow. Liquid crystal phases that undergo a
phase transition as a function of temperature (thermotropics) exist in relatively
small intervals of temperature lying between solid crystals and isotropic liquids.
Due to this intermediate nature, sometimes, these states are called also mesophases
[32]. In general, liquid crystals are synthesized from organic molecules, some of
which are elongated and uniaxial, so they can be represented as rigid rods; others
are formed by disc-like molecules [35]. This molecular anisotropy is manifested
macroscopically through the anisotropy of the mechanical, optical, and transport
properties of these substances. The typical dimensions of the lengths of this type of
structures are some tens of angstroms.

Liquid crystals are classified by symmetry. As it is well known, isotropic liquids
with spherically symmetric molecules are invariant under rotational, O 3ð Þ, and

Figure 1.
Representation of the average orientation of the molecules of a thermotropic NLC by means of the director
vector n̂.
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translational, T 3ð Þ, transformations. Thus, the group of symmetries of an isotropic
liquid is O 3ð Þ � T 3ð Þ: However, by decreasing the temperature of these liquids,
the translational symmetry T 3ð Þ is usually broken corresponding to the isotropic
liquid-solid transition. In contrast, for a liquid formed by anisotropic molecules,
by diminishing the temperature, the rotational symmetry O 3ð Þ is broken, which
leads to the appearance of a liquid crystal. The mesophases for which only the
rotational invariance has been broken are called nematics. As shown, the centers
of mass of the molecules of a nematic have arbitrary positions, whereas the
principal axes of their molecules are spontaneously oriented along a preferred
direction. If the temperature decreases even more, the symmetry T 3ð Þ is also
partially broken. The mesophases exhibiting the translational symmetry T 2ð Þ are
called smectics [36].

This preferential direction is described by a local unitary vector field, n̂, called
the director. This vector is easily distorted by the presence of electric and magnetic
fields, as well as by the surfaces of the containers of the liquid crystals if they have
been prepared properly [32]. With respect to NLC, it is important to point out that
the director’s orientation does not distinguish between the n̂ and �n̂ directions
(nematic symmetry). A schematic representation of the order presented by the
molecules in a nematic is shown in Figure 1 .

3. Model

Consider a NLC thin layer of thickness d under the presence of a constant
gravitational field g

!
¼ �gẑ, where g denotes its magnitude and ẑ the unit vector

along the z axis. The initial configuration of the layer is homeotropic with a prefer-
ential orientation n̂0 along the z axis, as depicted in Figure 2. The nematic is
confined between two parallel flat plates kept at fixed temperatures T1 and T2

(T1,T2), so that a uniform temperature gradient ∇zT � �αẑ is established down-
ward in the layer. The situation where the temperature gradient goes from bottom
to top can also be considered, and in this case, ∇zT � αẑ. The gravitational force
induces a pressure gradient, ∇zp ¼ �ρgẑ, where ρ is the mass density.

Figure 2.

TheNLC cell subject to a constant gravitational field g
!
and an external uniform temperature gradient ∇T. k

!
is

the scattering vector.
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3.1 Stationary state

The external gradients drive the nematic layer into a nonequilibrium steady
state. We shall assume that the temperature difference T1 � T2 amounts only to a
few degrees, so that there are no nematic layer flows vsti ¼ 0

� �
, nor instabilities of

the Rayleigh-Bénard type. In this NESS, we choose as the nematodynamic variables

the set Ψ ¼ ρ; s; vi; nif g, where s r
!
; t

� �
is the specific entropy density (entropy per

unit mass), the hydrodynamic velocity is vi r
!
; t

� �
and ni r

!
; t

� �
is the director field.

It is to be expected that in this steady state, the changes in Ψ
st will only occur in the

z direction, so that Ψst ¼ Ψ p zð Þ;T zð Þ½ �, where p is the local pressure. We assume that
Ψ

st admits an expansion of the Taylor series around an equilibrium state T0; p0
� �

at
z0 ¼ 0, and we consider only first-order terms in the gradients. Thus, by setting the
values of the temperature at the plates, T1 ¼ T z ¼ �d=2ð Þ and T2 ¼ T z ¼ d=2ð Þ, the
steady temperature profile is completely determined by:

Tst ¼ T zð Þ ¼ T0 þ
dT

dz
z ¼ T0 1�

α

T0
z

� �
, (1)

where T0 � T st z ¼ 0ð Þ ¼ T1 þ T2ð Þ=d and α � ΔT=d, with ΔT � T1 � T2. In
what follows, we shall only consider T0≈3� 102K, and it will be convenient to
introduce the effective temperature gradient ∇zT

st � Xẑ as [37],

X � �αþ
gβT0

cp
, (2)

which contains explicitly the contributions of both external forces. In Eq. (2), cp
is the specific heat at constant pressure, β is the thermal expansion coefficient,
which satisfies the relationship β2 � γ � 1ð Þcp=T0c

2
s , where cs is the adiabatic sound

velocity in the nematic, γ � cp=cv ¼ c2s =c
2
T, being cv the specific heat at constant

volume and cT the isothermic sound velocity in the nematic.

4. Nematodynamic equations

The geometry of the proposed model allows us to separate the hydrodynamic
variables into transverse (T) and longitudinal (L) variables with respect to n̂0

and k
!
, [33]. The former set is ΨT r

!
; t

� �
� vx; nxf g, while the latter reads

Ψ
L r

!
; t

� �
� p; vy; vz; s; ny
� 	

. We want to describe the stochastic dynamics of the

spontaneous thermal deviations (fluctuations) δΨ r
!
; t

� �
¼ Ψ r

!
; t

� �
� Ψ

st around the

above defined stationary state. A complete set of stochastic equations for the space-
time evolution of the fluctuations is obtained by linearizing the general
nematodynamic equations [20, 22, 24], and by using the FH formalism. This
starting set of equations is given explicitly by Eqs. (19)–(22) in Ref. [25]. However,
since for the nematic mesophase, the rotational invariance has been broken, it is
convenient to rewrite these nematodynamic equations in a representation which
takes into account that a symmetry breaking has occurred along the z axis.

In order to take into account the effect of the intrinsic anisotropy of the fluid in
the dynamics of the fluctuations, as well as to facilitate the calculation of the
nematic modes and the spectrum of light scattering, it is convenient to introduce a
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new state variables. In the case of the present model, owing to the initial orientation
of the director n̂st

i , the NLC exhibits several symmetries: rotational invariances
around the z axis, symmetry under inversions with respect to both, the xy plane and
with respect to reflections on planes containing the z axis. A proper set of variables
for this purpose was proposed long ago [38, 39], in terms of the variables
δp; δφ; δs; δξ; δf 1; δψ ; δf 2
� 	

, defined in detail in Eqs. (6)–(10) in Ref. [26] (or
Eqs. (53)–(57) in [25]). In this new representation, the complete set of stochastic
hydrodynamic equations for the fluctuations takes an alternative form given by
Eqs. (11)–(17) in Ref. [26] (or Eqs. (58)–(64) in [25]). The matrix representation of
the Fourier transformation of this set of equations is given by:

∂

∂t
δ X

!
k
!
; t

� �
¼ �Mδ X

!
k
!
; t

� �
þ Θ

!
k
!
; t

� �
, (3)

where δ X
!

k
!
; t

� �
¼ δX

!
L; δX

!
T

� �t
with δX

!
L k

!
; t

� �
¼ δep; δeφ; δes; δeξ; δef 1
� �t

and

δX
!

T k
!
; t

� �
¼ δeψ ; δef 2
� �t

. The superscript t denotes the transpose, while L and T

indicate, respectively, the longitudinal and transverse sets of variables. In Eq. (3),M
stands for a 7 � 7 hydrodynamic matrix which is diagonal in the 5� 5 NL and the
2� 2 NT blocks. The explicit form of these matrices is not necessary in our discus-
sion; however, they are given explicitly by Eqs. (21) and (22) in Ref. [26] (see also

Eqs. (72) and (73) in Ref. [25]). The stochastic terms, Θ
!

k
!
; t

� �
, in Eq. (3) are given

by the column vector Θ
!

k
!
; t

� �
¼ Θ

!
L;Θ

!
T

� �t
which explicit form of its components

can be found in Eqs. (32) and (33) in Ref. [26] (or Eqs. (84) and (85) of Ref. [25]). It
is important to emphasize that as a consequence of this change of representation, in
this last system, it can be clearly seen how the nematic variables are separated in

two sets completely independent: the five longitudinal δep; δeφ; δes; δeξ; δef 1
n o

and the

two transverse δeψ ; δef 2
n o

.

However, in order to facilitate the calculation of the hydrodynamic modes, we

define a new set of variables having the same dimensionality, δzj k
!
; t

� �h i
¼

M1=2L�1=2t (j ¼ 1,…, 7): z1 � ρ0c
2
s

� ��1=2
δep, z2 � ρ0k

�2� �1=2
δeφ, z3 � ρ0T0c

�1
p

� �1=2
δes,

z4 ¼ ρ0k
�4� �1=2

δeξ, z5 � ρ0c
2
s k

�2� �1=2
δef 1 , z6 � ρ0k

�2� �1=2
δeψ , z7 � ρ0c

2
s k

�2� �1=2
δef 2 . In

terms of these new variables, the system of equations (3) is rewritten in the more
compact form as:

∂

∂t
Z
!

k
!
; t

� �
¼ �N Z

!
k
!
; t

� �
þ Ξ

!
k
!
; t

� �
, (4)

where Z
!

k
!
; t

� �
¼ Z

!
L; Z

!
T

� �t
with ZL

!

k
!
; t

� �
¼ z1; z2; z3; z4; z5ð Þt and

Z
!
T k

!
; t

� �
¼ z6; z7ð Þt. In Eq. (4), N stands for a 7 � 7 hydrodynamic matrix which is

diagonal in the 5� 5 NL and the 2� 2 NT blocks. Again, the explicit form of these
matrices is not necessary in our discussion, but they are given explicitly by
Eqs. (39)–(41) in Ref. [26] (see also Eqs. (94)–(96) in [25]). In Eq. (4),

Ξ
!

k
!
; t

� �
¼ Ξ

!
L;Ξ

!
T

� �t
is the stochastic term, composed by the longitudinal

Ξ
!
L k

!
; t

� �
¼ ζ1; ζ2; ζ3; ζ4; ζ5ð Þt and transverse Ξ

!
T k

!
; t

� �
¼ ζ6; ζ7ð Þt noise vectors. The
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explicit form of the components ζm, m ¼ 1…7, as well as their fluctuation-
dissipation relations (FDR), can be found in Eqs. (169)–(175) and Eqs. (176)–(186),
respectively, in Appendix A of [25].

5. Hydrodynamic modes

In order to find the hydrodynamic modes, or decay rates [37], we need the
Fourier transform of the linear system (4), which yields an algebraic system of

equations in terms of the variables k
!
and ω: The hydrodynamic modes are obtained

by calculating its eigenvalues λ ¼ iω, given by the roots of the characteristic equa-
tion p λð Þ ¼ pL λð ÞpT λð Þ ¼ 0, where pL λð Þ and pT λð Þ are the characteristic polyno-
mials of fifth and second order in λ of the matrices NL and NT, respectively. These
roots are calculated below.

5.1 Longitudinal modes

Following the method proposed by [13] for a simple fluid, it can be shown that
longitudinal variables can be separated in turn and within a very good approxima-

tion, into two completely independent sets of variables, Z
!L

X ¼ z1; z2ð Þt and

Z
!L

Y ¼ z3; z4; z5ð Þt, as it is shown in the Subsection 3.1 of Ref. [25], or in more detail in
[24]. This approximation allows us to rewrite the characteristic polynomial of
longitudinal variables as pL λð Þ ¼ pLXX λð ÞpLYY λð Þ: It should be mentioned that pLXX λð Þ

and pLYY λð Þ are polynomials of second and third degree in λ, and explicitly are given
by the Eqs. (44) and (45) in Ref. [26] (or Eqs. (117) and (118) in [25]).

While there is no analytical difficulty to solve the quadratic and cubic equations
pLXX λð Þ and pLYY λð Þ, the explicit form of their exact roots can be quite complicated.
However, it is possible to estimate them following a procedure based partially on a
method suggested in Ref. [40], which allows to identify the following quantities in
the equation for pLYY λð Þ, namely, γ � 1ð ÞDTk

2, σ1k
2, k2c2s and g2k2∥= c2s k

2� �
. They

depend on the anisotropic coefficients of diffusivity DT and on the viscosity σ1: The
former quantity is a function of the parallel χ∥ and perpendicular χ⊥ components of
thermal diffusivity, while the latter depends on the nematic viscosity coefficients
νi i ¼ 1;…; 5ð Þ (see Eqs. (23) and (24) in Ref. [26], or Eqs. (74) and (75) in [25]). In
the same way, in the equation for pLYY λð Þ, the following quantities can be identified,

gαβ k2⊥
k2
, gXβ k2⊥

k2
, DTk

2, Ωχak
2, σ3k

2, K1
γ1
k2, Ω

2KI

ρ0
k4, which depend on the anisotropic

coefficients of viscosity σ3, of elasticity KI, symmetry Ω (see, respectively,
Eqs. (26), (28), and (30) in [26]), as well as the anisotropy χa ¼ χ∥ � χ⊥ and the
torsional viscous coefficient γ1. We now compare all these quantities with ω � csk,
by introducing the (small) reduced dimensionless quantities:

a0 �
gαβ

ω2

k2⊥
k2

, a00 �
gXβ

ω2

k2⊥
k2

, a000 �
g2k2∥

ω2c2s k
2 , a1 �

DTk
2

ω
, a01 �

Ωχak
2

ω
,

a2 �
σ1k

2

ω
, a3 �

σ3k
2

ω
, a5 �

KIk
2

γ1ω
, a6 �

Ω
2KIk

4

ρ0ω
2 :

(5)

The relevant point for our purpose is to realize that for most nematics at ambient
temperatures, ρ0 and Ω are of order of magnitude 1, γ1 � 10�1, χi and νi are of order
10�2

–10�3, Ki � 10�6
–10�7, while β � 10�4 [32]. If we consider that α≲ 1 and
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g � 103, and knowing that in a typical light scattering experiments k ¼ 105cm�1 and
cs ¼ 1:5� 105cms�1 [41], the quantities given in Eq. (5) have the following orders of
magnitude: a0 � 10�21, a00 � 10�21, a000 � 10�24, a1 � 10�3, a01 � 10�3, a2 � 10�2,
a3 � 10�2, a5 � 10�5 and a6 � 10�6. We now follow the method of Ref. [40] and
the solutions of the polynomial pLYY λð Þ may be obtained by a perturbation approxi-
mation in terms of these small quantities. However, in what follows, we improve
this approximation by using its exact roots and by expressing them in terms of the
reduced quantities (Eq. (5)) of order k2 [24].

5.1.1 Sound longitudinal modes

They are the roots of the characteristic equation pLXX λð Þ ¼ 0. Its roots are com-
plex conjugate and are given by (see Eqs. (47) and (48) in [26], or Eqs. (128) and
(129) in [25]):

λ1 ≃Γk2 þ icsk, λ2 ≃Γk2 � icsk, (6)

where Γ � 1
2 γ � 1ð ÞDT þ σ1½ � is the anisotropic sound attenuation coefficient

of the NLC. This result shows that the sound propagation modes, λ1 and λ2, are
in complete agreement with those already reported in the literature for NLC
[31, 34].

5.1.2 Visco-heat and director longitudinal modes

These modes are the roots of the characteristic equation pLYY λð Þ ¼ 0. In Ref. [26]
(or in [25]), it is shown that, up to first order in the small quantities (Eq. (5)), these
roots can be written approximately as:

λ3,4 ¼
1
2

DTk
2 þ σ3k

2 �
Ω

2KIk
4

ρ0σ3k
2

 !

∓
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DTk
2 þ σ3k

2 �
Ω

2KIk
4

ρ0σ3k
2

 !2

� 4DTk
2
σ3k

2 1�
R

Rc

� �
vuut ,

(7)

and

λ5 ≃
KIk

2

γ1
þ
Ω

2KIk
4

ρ0σ3k
2 , (8)

with

R k
!� �

Rc
� �

gβk̂
2
⊥

DTσ3k
4 X þ

αΩχa

DTσ3
σ3 þDTð Þ

� �
, (9)

where k̂2
⊥ � k2⊥=k

2. In Eq. (7), R �
βgΔTd3

σ3χ
is the Rayleigh number and Rc denotes

its critical value above which convection sets in. It should be emphasized that our

results are expressed in terms of the ratio R k
!� �

=Rc and are, therefore, independent

of the value of the separation d between the plates. However, the appropriate value
of d in an experiment should be chosen with an experimental criterion [42].
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The Rayleigh-number ratio R k
!� �

=Rc contains two contributions: the first term is

due to the presence of the effective temperature gradient X, which depends on
both, the temperature gradient α and the gravity field g. The second term is entirely
a contribution due to α and the nematic anisotropy χa. For typical nematics and
conventional light scattering experiments, both contributions are approximately of
order 10�16.

The decay rates λ3 and λ4 for an inhomogeneous nematic given by Eq. (7) are
called visco-heat modes, because they are composed of the coupling between the

thermal DTk
2 and shear σ3k

2 � Ω
2KIk

4

ρ0σ3k
2 diffusive modes through the ratio R k

!� �
=Rc.

The nature of these modes may be propagative or diffuse, as will be shown below.

5.1.3 Values of R k
!� �

=Rc

The three nematic modes (7) and (8) could be two propagative and one diffu-
sive, or all of them completely diffusive; its nature depends on the values assumed

by the ratio R k
!� �

=Rc. For simple fluids, these features have been predicted theo-

retically and corroborated experimentally, but to our knowledge, not for anNLC. In
this sense, the following results suggest that it might be feasible to be also verified
experimentally for nematics.

5.1.3.1 Propagative and diffusive modes

If we take into account the orders of magnitude of the small quantities (Eq. (5)),
the nematic modes (7) and (8) in general are real and different. Nevertheless, it
may happen that these modes may be transformed into one real and two complex

conjugate roots. This occurs if R k
!� �

=Rc,R0, where

R0 � �
σ3 �

Ω
2KI

ρ0σ3

� �
�DT

h i2

4DTσ3
, (10)

which is always negative. Thus, if we consider the orders of magnitude of the
involved quantities and typical light scattering experiment values of k, DTk

2 � 107,

σ3k
2 � 108, and Ω

2KIk
4

ρ0
� 1014, then R0 ffi �101 and the visco-heat modes, Eq. (7),

will be propagative when R k
!� �

=Rc ≲ � 101. This situation corresponds to the

propagation region indicated in Figure 3. The decay rate λ5, Eq. (8), remains to be
real. It is worth emphasizing that this case corresponds to overstabilized states,
where out of the three decay rates, two are propagative visco-heat modes and the
other one is completely diffusive. According to Eq. (9), this occurs if the α
contained in the effective temperature gradient X changes its sign and increases by
several orders of magnitude, situation that may be achieved by reversing the direc-
tion in which the temperature gradient is applied, i. e., when heating from below,
and by increasing its intensity. As far as we know, there are no theoretical analyses
nor experimental evidence for the existence of visco-heat propagating modes in
NLC under the presence of a temperature gradient and a uniform gravitational
field. Given that in simple fluids, under these conditions, there are analytical
[8, 37, 38] and experimental [43] studies that support the presence of visco-heat
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propagation modes, this prediction suggests that it may be worth to design experi-
ments to corroborate this phenomenon for nematics.

5.1.3.2 Pure diffusive modes

When R0 ≤R k
!� �

=Rc ≤ 1, the two visco-heat modes preserve the same form as in

Eq. (7) and the other one remains identical to Eq. (8), but all are real and completely
diffusive. In this regime, the following cases are of special interest. For instance, if

R k
!� �

=Rc ¼ R0, then the visco-heat modes (7) reach the same value, and conse-

quently, the three decay rates are:

λ3,4 ¼
1
2

DTk
2 þ σ3k

2 �
Ω

2KIk
4

ρ0σ3k
2

 !
, (11)

and λ5, that takes the same form as in Eq. (8). These visco-heat modes are
identified at the vertex of the parabola in Figure 3.

Since for nematics, σ3 � Ω
2KI

ρ0σ3
is usually greater than DT, it can be seen from

Eq. (7) that, as R ek
� �

=Rc grows and approaches 1, the magnitude of the heat diffu-

sive mode decreases, whereas the one of the shear mode increases. At the onset of

convections regime, R k
!� �

=Rc ¼ 1, i. e., when R reaches its critical value Rc and the

two visco-heat modes (7) are simplified to:

λ3 ¼ 0, (12)

λ4 ¼ DTk
2 þ σ3k

2 �
Ω

2KIk
4

ρ0σ3k
2 , (13)

Figure 3.

The real part of the nematic visco-heat modes λ3 and λ4 as a function of the Rayleigh ratio R k
!� �

=Rc. When

R k
!� �

=Rc,R0, both modes are propagative; if R0 ≤R k
!� �

=Rc ≤ 1, both are completely diffusive. For

R k
!� �

=Rc ¼ R0, both modes are equal. In equilibrium, R k
!� �

=Rc ¼ 0, and the onset of convection occurs for

R k
!� �

=Rc ¼ 1.
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while the third, λ5, is identical to Eq. (8). This behavior for the decay rates λ3
and λ4 is also shown in Figure 3.

It should be noted that our expressions for these three decay rates are not in
agreement with those reported for an NLC in the literature [44, 45]. In these works,
the director mode tends to zero, the shear mode does not change and there is an
additional mode which is the sum of the thermal and director modes. In contrast,
we have found that the thermal mode λ3 vanishes, the director mode λ5 is virtually
unchanged, while λ4 has contributions from the thermal and shear diffusive modes.
We know that this phenomenon also occurs in the simple fluid, where there are two
diffusive modes, the thermal mode also vanishes and the other one has contribu-
tions from the shear and thermal modes. In other words, our results reduce to the
corresponding one for a simple fluid as R reaches its critical value Rc. Because for a
simple fluid, these features have been predicted theoretically, our results suggest
that it might be feasible to verify them experimentally also for nematics [8, 37, 38].

5.2 Transverse modes

As mentioned earlier, pT λð Þ is the characteristic polynomial of second order in λ

of the matrix NT. The corresponding transverse hydrodynamic modes are the roots
of this equation pT λð Þ ¼ 0.

5.2.1 Shear and director transverse modes

Accordingly, the shear and director transverse modes are the roots of pT λð Þ ¼ 0,
and are given by Eq. (63) in Ref. [26] (or by Eq. (157) in [25]). Following again
the approximate method of small quantities used previously, the quantities σ4,
KIIk

2=γ1 and λþKIIk
2k2∥=ρ0, may be identified in this equation. In terms of them, we

have another set of anisotropic coefficients given by the viscosity σ4, the elasticity
KII, and symmetry λþ (see, respectively, Eqs. (27), (29), and (31) in [26]). We also
define the small or reduced dimensionless quantities, analogous to those defined in

Eq. (5), namely, a4 � σ4k
2

ω
, a05 �

KIIk
2

γ1ω
, a06 �

λ2þKII

ρ0ω
2 k

2k2∥, where again ω � csk. It should

be noted that the viscous coefficient σ4 only depends on the viscous coefficients ν2,
ν3, while the elastic coefficient KII depends on the two Frank elastic constants K2

and K3: Since for typical nematics λþ � 1, γ1 � 10�1, σ4 � 10�2, KII � 10�6 [32],
and also by taking into account that cs � 105, k � 105, g � 103, the quantities a4, a05
and a06 have the orders of magnitude a4 � 10�2, a05 � 10�5, and a06 � 10�6.
According to Eqs. (64) and (65) in Ref. [26] (or Eqs. (167) and (168) in [25]), up to
first order in such small amounts, these two roots can be written as:

λ6 ¼ σ4k
2 �

λ2þKIIk
2k2∥

ρ0σ4k
2 , λ7 ¼

KIIk
2

γ1
þ
λ2þKIIk

2k2∥

ρ0σ4k
2 (14)

It should be noted that these shear and director diffusive transverse modes also
match completely with those already reported for nematics [22, 31, 32].

6. The equilibrium and simple fluid limits

From the hydrodynamic modes calculated for an NLC in a NESS determined by
a Rayleigh-Bénard system, it is possible to obtain, as limit cases, the corresponding
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modes of a nematic in the state of equilibrium and those of a simple fluid under the
same nonequilibrium regime. Both situations are of physical interest and are
discussed below.

6.1 Nematic in equilibrium

It has been found that for anNLC in a NESS, the effects of the external gradients
α and g are only manifested in the coupling of the thermal diffusive and shear
longitudinal modes, which gives rise to the visco-heat modes λ3,4 indicated, respec-
tively, by means of Eq. (7). If the nematic layer is in a state of homogeneous
thermodynamic equilibrium, g ¼ 0 and α ¼ 0, and therefore X ¼ 0 and

R k
!� �

=Rc ¼ 0: Thus, the hydrodynamic modes of a nematic, in the state of equilib-

rium (denoted by the superscript e), are composed of five longitudinal and two
transverse modes. The longitudinal modes are integrated by the two acoustic prop-
agatives λe1 and λe2 given by Eq. (6); as well as by the three diffusives, which consist
of one thermal:

λe3 ¼ DTk
2, (15)

another of shear:

λe4 ¼ σ3k
2 �

Ω
2KIk

2

ρ0σ3
(16)

and one more of the director, λe5, which is the same as Eq. (8). The longitudinal
diffusive modes (15) and (16) are obtained precisely from Eq. (7), since in this, the
Rayleigh ratio, given by Eq. (9), is zero if α and g vanish. Moreover, the pair of
transverse modes consist of the shear and director modes λe6 and λe7 which are equal
to the Eq. (14). It is necessary to mention that the decay rates λei i ¼ 1…7ð Þ are well
known in the literature [22, 31, 46]. Note that λe3 and λe4 are shown in the middle part
of Figure 3.

6.2 Simple fluid in a Rayleigh-Bénard system

Given that in the isotropic limit (simple fluid limit), the degree of nematic order
goes to zero, ni is no longer a hydrodynamic variable, and the elastic constants Ki

(for i ¼ 1, 2, 3) and the kinetic parameters γ1, λ vanish. Also, χ⊥ and χ∥ are reduced
to the coefficient of thermal diffusivity χ and χa ¼ 0. On the other hand, the
nematic viscosities are reduced in the following way: ν1 ! η, ν2 ! η, ν3 ! η,
ν4 ! ζ þ 1

3 η, ν5 ! � 2
3 ηþ ζ, where η and ζ denote, respectively, the shear and

volumetric viscosities of the simple fluid. As a result, from Eqs. (23)–(31) in Ref.
[26] (or Eqs. (74)–(82) in [25]), it follows that in the isotropic limit DT ! χ,
σ1 !

1
ρ0

4
3 ηþ ζ
� �

, σ2 ! 0, σ3 ! ν, σ4 ! ν, where ν � η=ρ0 is the kinematic viscosity,

whereas KI ! 0, KII ! 0, and Ω ! 0. Consequently, by making the identifications
indicated above, the corresponding hydrodynamic modes of a simple fluid can be
obtained when it is in a Rayleigh-Bénard system. Thus, according to Eq. (6), a
simple fluid has the two acoustic propagative modes:

λ1 ≃Γ
0k2 þ icsk, λ2 ≃Γ

0k2 � icsk, (17)
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where cs corresponds to the adiabatic velocity of the sound in this medium and

Γ
0 � 1

2 γ � 1ð Þχ þ 1
ρ0

4
3 ηþ ζ
� �h i

is the corresponding coefficient of sound attenuation.

On the other hand, according to the Eq. (7), the longitudinal visco-heat modes are:

λ3,4 ≃
1
2

χ þ νð Þk2∓
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ þ νð Þ2k4 � 4χνk4 1�

R

Rc

� �s
: (18)

In the isotropic limit of the simple fluid, λ5 ¼ λ7 ¼ 0, so that, according to the
Eq. (14), the only transverse mode of this substance in a Rayleigh-Bénard system is:

λ6 ¼ νk2: (19)

In Eq. (18), the ratio R k
!� �

=Rc is defined as:

R k
!� �

Rc
� �

gβXk̂
2
⊥

χνk4
, (20)

which, in this limit case, can be derived from Eq. (9). It should be pointed out
that Eq. (20) coincides with the Eq. (2.21) of reference [37]. The modes (17)–(19)
are in complete concordance with those analytically calculated in [8, 37, 38].

Moreover, if in the coefficient matrix M of the stochastic system given by
Eq. (20) in Ref. [26], the simple fluid limit is taken, it reduces to a matrix that is a
generalization of the one given by the Eq. (6) in [38]. Additionally, if in the
corresponding matrix M found for the simple fluid, the equilibrium limit is now
considered, i. e., when α and g vanish, the resulting matrix is also reduced to that
given by Eq. (4) of [38].

6.2.1 Values of R k
!� �

=Rc

The two visco-heat mode, as in the nematic, could be propagative or diffusive.

These characteristics depend on the values assumed by the ratio R k
!� �

=Rc. For

simple fluids, these have been predicted theoretically and corroborated experimen-
tally.

6.2.1.1 Propagative modes

If R k
!� �

=Rc,R0, where R0 � � ν� χð Þ2= 4χνð Þ,0, the visco-heat modes (18)

will be propagative. According to Eq. (20), this occurs again if the α contained in X
changes its sign and increases by several orders of magnitude, a situation that is
achieved by inverting the temperature gradient (when heated from below and its
intensity is increased). There are analytical [8, 37, 38] and experimental [43] studies
that report, for simple fluids in these conditions, the presence of visco-heat propa-
gative modes.

6.2.1.2 Pure diffusive modes

When R0 ≤R k
!� �

=Rc ≤ 1, the visco-heat modes preserve the form (Eq. (18)),

they are real and completely diffusive. In this regime, there are again three cases of
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special interest. If R k
!� �

=Rc ¼ R0, then both visco-heat modes (18) are identical and

equal to:

λ3,4 ¼
1
2

χ þ νð Þk2: (21)

On the other hand, if the simple fluid is in a state of homogeneous thermody-

namic equilibrium, g ¼ 0 and α ¼ 0, so that X ¼ 0 and R k
!� �

=Rc ¼ 0; conse-

quently, in this equilibrium state (identified by the superscript e), there is a thermal
diffusive mode:

λe3 ¼ χk2 (22)

and the shear mode:

λe4 ¼ νk2: (23)

These decay rates are well known in the literature [8, 37, 38]. Finally, because in

a simple fluid, commonly ν is greater than χ, according to Eq. (18), and as R k
!� �

=Rc

grows and approaches to 1, the magnitude of the thermal diffusive mode decreases,

while the shear mode grows. At the threshold of the convective regime (when R k
!� �

reaches its critical value Rc), R k
!� �

=Rc ¼ 1, and the two visco-heat modes (18)

acquire the values:

λ3 ¼ 0 (24)

and

λ4 ¼ χ þ νð Þk2: (25)

These three cases are consistent with those obtained in analytical studies already
reported for simple fluids in this regime [8, 37, 38]. Schematically, its behavior is
very similar to that illustrated in Figure 3, and this can be seen in Figure 1 of the
reference [37].

7. Conclusions

In this work, we have used the standard formulation of FH to describe the
dynamics of the fluctuations of a NLC layer in a NESS characterized by the simul-
taneous action of a uniform temperature gradient α and a constant gravitational
field g, which corresponds to a Rayleigh-Bénard system. The analysis carried out
takes into account only the nonconvective regime. The most important results are
the analytic expressions for the seven nematic hydrodynamic modes. The explicit
details of several of the calculations can be found in Refs. [25, 26]. To summarize
the results obtained in this work and to put them into a proper context, the follow-
ing comments may be useful.

First, in our analysis, the symmetry properties of the nematic are taken into
consideration, and this allowed us to separate its hydrodynamic variables into two
completely independent sets: one longitudinal, composed of five variables, and the
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other transverse, consisting of only two variables. From the equations that govern
the dynamics of the variables in these sets, the corresponding hydrodynamic modes
were calculated. The longitudinal modes are two acoustic, λ1 and λ2, modes (6), as
well as the triplet formed by the visco-heat pair λ3 and λ4, modes (7), and the
director λ5, mode (8). In addition, the transverse ones are given by the shear λ6 and
the director λ7, modes (14). We find that the influence of the temperature gradient
α and the gravitational field g occurs only in the longitudinal modes, being greater
its effect � 10�9

� �
on the visco-heat pair λ3 and λ4. This effect is quantified by

means of the Rayleigh ratio R k
!� �

=Rc, Eq. (9), where R is the Rayleigh number and

Rc is its critical value above which convection sets in. The developed analysis
corresponding to the nonconvective regime was carried out under the condition

R k
!� �

=Rc ≤ 1:

The analytical expressions calculated for the hydrodynamic modes of a nematic
in the NESS considered exhibit behaviors that are of great interest in the following
particular situations. First, if the isotropic limit of the simple fluid is taken, the NLC
hydrodynamic modes reduce to those in the same state out of equilibrium, modes
(17)–(19), [8, 37, 38]. If R ¼ 0, that is, in the absence of the uniform temperature
gradient and the constant gravitational field, our expressions are simplified and
reduce to those already reported for a nematic in the state of thermodynamic
equilibrium, modes (6), (8), (14), (15), and (16), [22, 31, 46]. In this case, if we also
consider the limit of the simple fluid, they agree with those of this system in
equilibrium, modes (17), (19), (22), and (23), [41, 47, 48]. When R ¼ Rc, that is, at
the threshold of convection, from the triplet of longitudinal λ3, λ4 and λ5, the visco-
heat λ3 vanishes, and λ4 is the sum of the thermal and shear modes, modes (12) and
(13); while that of director λ5 is identical to mode (8) [37, 38]. Moreover, if in this
nematic threshold of convection, the limit of the simple fluid is considered, the
modes of this system are recovered: one is zero, mode (24), and the other is the sum

of the thermal and shear modes, mode (25), [37, 38]. Also, if R k
!� �

=Rc,R0
ek
� �

,

where R0 k
!� �

is the reference value (10), our results predict that the visco-heat pair

λ3 and λ4, modes (7), become propagative; in the limit of the simple fluid, under
similar conditions, the corresponding modes (18) are also propagative. The latter
have been predicted theoretically [8, 37, 38] and verified experimentally [43].

However, it should be mentioned that our hydrodynamic modes λ3, λ4, and λ5
do not coincide with those reported in the literature for an NLC in the same NESS
considered here [44, 45], which consist in one mode due to the director, another
more product of the coupling of the thermal and director modes, and a shear
mode. The effect of external forces α and g is only manifested in the first two
modes. This triplet is reduced to the corresponding director, thermal, and shear
longitudinal modes of an NLC in the state of thermodynamic equilibrium, as well
as to the thermal and shear modes of a simple fluid in such state. It should be
noted that from the analytical expressions of these modes, the existence of
nematic propagative modes cannot be predicted; much less, in this NESS, in the
simple fluid. In addition, when the threshold of convection in the nematic is
considered, the director mode is canceled, another one is the sum of the thermal
and director modes, and the shear mode remains unchanged; consequently, when
the limit of the simple fluid is taken, they are reduced to thermal and shear
modes. This last result differs completely from the already reported [37, 38] for
the hydrodynamic modes of a simple fluid at the threshold of convection, where
one is zero, mode (24), and the other the sum of the thermal with the shear,
mode (25).
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Nevertheless, our calculated expressions for the visco-heat λ3, λ4, and director
λ5 modes predict both the existence of propagative modes and the form that this
triplet acquires in the convection threshold, and moreover, they reduce to the
corresponding modes in all the different limit cases already mentioned. In this
respect, we believe that they are more general than those reported in the literature
[44, 45]. As far as we know, the diffusive or propagative nature of the modes λ3 and

λ4, depending on the values taken by the ratio R k
!� �

=Rc, was not known; therefore,

its derivation represents a relevant contribution of this work. Since in simple fluids,
the existence of propagative modes has been predicted and verified experimentally,
our predictions about the existence of this phenomenon in the modes of an NLC
suggest the realization of new experiments.

Finally, it should be noted that this theory can be useful, since the description of
some characteristics of our model lend themselves to establish a more direct contact
with the experiment. Actually, physical quantities, such as director-director and
density-density correlation functions, memory functions or the dynamic structure

factor S k
!
;ω

� �
, may be calculated from our FH description. In Ref. [49], an appli-

cation of this nature was developed by calculating the Rayleigh dynamic structure
factor for the NLC under the NESS already mentioned, and its possible comparison
with experimental studies is discussed; a preliminary analysis can be consulted in
Ref. [50]. Another studies of the dynamic structure factor for an NLC in a different
NESS, such as that produced by the presence of an external pressure gradient, were
published in the references [19, 20].
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Nomenclature

k wave number
ω angular frequency
τ relaxation time of almost all degrees of freedom

S k
!
;ω

� �
dynamic structure factor

k
! wave vector

R Rayleigh number
Rc Rayleigh number at the convection threshold
R=Rc Rayleigh ratio
O 3ð Þ orientation symmetry group
T 3ð Þ translation symmetry group
n̂, n! or nα director field
d thickness of the nematic layer
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g
! constant gravitational force of magnitude g
x̂, ŷ, ẑ Cartesian unitary vectors
x, y, z Cartesian coordinates
T temperature
α temperature gradient of magnitude ∇zT
p hydrostatic pressure
∇zp pressure gradient
ρ volumetric density of mass
v
! flow velocity
s specific density of entropy (entropy per unit mass)
r
! position vector
ΔT temperature difference between the plates of the cell
X effective temperature gradient
β coefficient of thermal expansivity
cp specific heat at constant pressure
cv specific heat at constant volume
γ ratio of specific heats
cs adiabatic sound velocity
cT isothermic sound velocity
Ψ set of nematodynamic variables
δφ divergence of δ v

!

δψ component z of the rotational of δ v
!

δξ component z of the double rotational of δ v
!

δf 1 divergence of δ n
!

δf 2 component z of the rotational of δ n
!

t as superscript, indicates transpose matrix

δ X
!

k
!
; t

� �
vector whose components are the spatial Fourier trans-
form of the variables δp, δφ, δs, δψ , δξ, δf 1 and δf 2

δXL
!

k
!
; t

� �
longitudinal component of δ X

!
k
!
; t

� �

δXT
!

k
!
; t

� �
transverse component of δ X

!
k
!
; t

� �

M coefficient matrix of the linear system for δ X
!

k
!
; t

� �

ML and MT longitudinal and transverse submatrices of M

Θ
!

k
!
; t

� �
stochastic vector of the linear system for δ X

!
k
!
; t

� �

ΘL
!

k
!
; t

� �
longitudinal component of Θ

!
k
!
; t

� �

ΘT
!

k
!
; t

� �
transverse component of Θ

!
k
!
; t

� �

zi k
!
; t

� �
variables of same dimensionality (i ¼ 1,…, 7)

Z
!

k
!
; t

� �
vector of the variables zi k

!
; t

� �

ZL
!

k
!
; t

� �
longitudinal component of Z

!
k
!
; t

� �

ZT
!

k
!
; t

� �
transverse component of Z

!
k
!
; t

� �

N coefficient matrix of the linear system for δ Z
!

k
!
; t

� �

NL and NT longitudinal and transverse submatrices of N

Ξ
!

k
!
; t

� �
noise vector of the linear system for Z

!
k
!
; t

� �
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ΞL
!

k
!
; t

� �
longitudinal component of Ξ

!
k
!
; t

� �

ΞT
!

k
!
; t

� �
transverse component of Ξ

!
k
!
; t

� �

ζi noise components of ΞL
!

(i ¼ 1,…, 5) and ΞT
!

(i ¼ 6, 7)
p λð Þ characteristic polynomial of the matrix N

pL λð Þ characteristic polynomial of the submatrix NL

pT λð Þ characteristic polynomial of the submatrix NT

λ eigenvalues of p λð Þ

Z
!L

X k
!
; t

� �
and Z

!L

Y k
!
; t

� �
components of the vector ZL

!

k
!
; t

� �

pLXX λð Þ and pLYY λð Þ polynomials in which pL λð Þ is broken down
DT anisotropic thermal coefficient
σ1, σ2, σ3, and σ4 anisotropic viscous coefficients
χ∥ and χ⊥ thermal diffusivities parallel and perpendicular to n

!

χa anisotropic thermal diffusivity
νi nematic viscosities (i ¼ 1,…, 5)
Ω and λþ anisotropic adimensional nematic coefficients
K1, K2 and K3 elastic coefficients of Frank
KI and KII anisotropic elastic coefficients
γ1 torsion viscosity
ω auxiliary parameter
a0, a

0
0, and a000 small dimensionless longitudinal quantities

a1, a
0
1, and a2 small dimensionless longitudinal quantities

a3, a5, and a6 small dimensionless longitudinal quantities
λ1 and λ2 acoustic propagative longitudinal modes
Γ anisotropic sound attenuation coefficient
λ3 and λ4 visco-heat longitudinal modes
λ5 director diffusive longitudinal mode
k⊥and k∥ components of k

!
perpendicular and parallel to n̂0

k̂⊥ � k⊥=k unit vector of k̂⊥

R0 reference value of the Rayleigh ratio below which visco-
caloric modes are propagative

a4, a
0
5, and a06 small dimensionless transverse quantities

λ6 and λ7 shear and director diffusive transverse modes
λei nematic modes in the state of equilibrium (i ¼ 1,…, 7)
χ thermal diffusivity of a simple fluid
η and ζ shear and volumetric viscosities of a simple fluid
ν kinetic viscosity of a simple fluid
Γ0 attenuation coefficient of sound in a simple fluid
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