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Chapter

Porosity Prediction of a Carbonate 
Reservoir in Campos Basin Based 
on the Integration of Seismic 
Attributes and Well Log Data
Roberta Tomi Mori and Emilson Pereira Leite

Abstract

We have calculated and interpreted a 3D porosity model of a reservoir through 
the integration of 3D seismic data with geophysical well logs using an artificial 
neural network (ANN). The reservoir is composed of Albian carbonates. In the 
first main stage of the study, horizons were traced by following continuous seismic 
events on seismic sections, along depths between top and base of the reservoir. In 
the second main stage, predictions of reservoir porosity values were obtained, as 
well as a 3D model, through the designed ANN. The estimated porosity values range 
from 5 to 30%. The correlation coefficient and the error of the estimated values 
with respect to the actual values extracted along the wells are equal to 0.90 and 
2.86%, respectively. Porosity values increase from southwest to the northeast por-
tion, and lower values are found at depths related to the traced horizons. Although 
isolated peaks of maximum porosity are observed, spatial patterns depicted in the 
model are associated with geological features such as different porosity types and 
cementation degree.

Keywords: porosity, artificial neural networks, carbonate reservoir

1. Introduction

Reservoir characterization has become increasingly important to hydrocarbon 
exploration. Accurate characterization reduces the risk of drilling a dry well, as well as 
exploration and development costs. For this reason, different types of data are used, 
such as geophysical well logs, and seismic, petrophysical, in addition to geological 
models, in order to predict reservoir properties such as porosity, lithology, and fluid 
saturation [1]. In particular, the integration of well logs with seismic data is important 
in order to obtain some models with better vertical and horizontal resolutions, since 
well logs have a very restricted area and a better vertical resolution when compared 
to seismic data; however, seismic data presents a better horizontal resolution and 
covers a larger area. Integrated quantitative interpretation is used to estimate reservoir 
properties, obtained through seismic amplitudes and seismic attributes [2–4].

A seismic attribute is any direct or indirect information obtained from the seismic 
data through mathematical calculation and/or logical reasoning. Depending on how 
it is derived, an attribute may help the interpreter to delineate geologic structures, 



Oil and Gas Wells

2

map geologic features, estimate physical properties, etc. [4]. Because each indepen-
dent attribute provides a particular view of the seismic data, the use of a single attri-
bute leads to a high uncertainty in interpretation [5]. Therefore, the application of 
multiattribute analysis has grown during the last few decades [2, 6–8]. Multiattribute 
analysis employs a combination of various seismic attributes through mathematical 
modeling in order to increase the accuracy in the prediction of a particular property.

In this context, artificial neural networks (ANN) are tools to perform a multiat-
tribute analysis. They allow us to establish a quantitative relationship between the 
well log data and the seismic data, such that it can be used to predict a physical prop-
erty in positions where there are no well log data. In general, an ANN is composed of 
an input layer, an output layer, and one or more intermediate layers that are hidden. 
In the input layer, there are neurons that represent the input dataset. In the hidden 
layers, the neurons adjust the input data to the target well log values in the output 
layer, through an iterative calculation of weights. These weights define the model that 
is used for prediction of unknown values [3, 7, 9, 10].

In this chapter, we have predicted porosity values of a carbonate reservoir 
located on Campos Basin through an ANN method, applied to the integration 
of well log and 3D seismic data. This process provided a 3D numeric volume of 
porosity of the entire reservoir. We have interpreted the spatial distribution of the 
porosity values according to geological information obtained from the literature 
and from descriptions of core samples.

2. Geology of the study area

The Campos Basin is located offshore of the southeastern portion of the 
Brazilian continental margin (Figure 1). It encompasses an area of ~120,000 km2 
and the maximum water depth is ~3400 m. It is limited by the Vitoria Arc on the 
north, the Cabo Frio Arc on the south, the boundary of the salt diapir region at 
water depths of ~2200 m on the east, and the updip limits of the turbidites to the 
west. Campos Fault divides the deepest part (east portion), where cretaceous 

Figure 1. 
Some of the offshore sedimentary basins of Brazil. Campos Basin is highlighted in red (source accessed in April 
2018: http://wdetail.asp?img_id=4775&a_id=117349).
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sediments were deposited, from the west portion where the sediments were depos-
ited on top of the basement [11].

The studied reservoir is inserted into the Quissamã formation, which was formed 
during the final stage of the lower Cretaceous (Albian). This formation is composed 
of byoncolitic, oolitic, and peloid dolomites, poorly sorted sandstones, polymictic 
conglomerate associated to calcilutites and marls, and pelitic sediments dominated 
by marl ([12]; Figure 2). Quissamã formation is contained in the Macae Group, 
which has a shallow carbonate platform dominated by thick shoal carbonates with 
ooliths and oncolites. The reservoir consists mainly of oncolytic calcarenites and 
calcirudites, distributed in bars forming a NE trend. It essentially contains micropo-
rosity varying between 15 and 30% and has low permeabilities, but the presence of a 
fracture system contributes to the increasing of permeability in some regions [13].

3. Materials and methods

We have used profiles of neutron porosity, bulk density, gamma ray and sonic 
travel time from well logs, and a 3D seismic data. P-wave velocity was calculated 
from sonic logs. HRS (Hampson Russell Software1—CGG Veritas) was employed to 
perform time-depth conversions through seismic-well ties. These tie processes were 
applied within a time window analysis ranging from the top markers to the base 
markers. The overall correlation obtained was 0.65, which is not uncommon for this 
type of application (e.g., [14]).

We then identified continuous reflection events on the seismic sections and 
defined seismic horizons from the interpolation of picked time/distance pairs. This 

1http://www.cgg.com/hampson-russell.aspx?cid=3609.

Figure 2. 
Simplified stratigraphic column of Campos Basin (adapted from: [12]).
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is a qualitative interpretation which does not take into account the seismic ampli-
tude but only the P-wave travel time.

After horizon tracing, we designed and trained an artificial neural network 
(ANN) to construct a porosity model of the studied reservoir. In the final interpre-
tation stage, we analyzed the results and made the appropriated associations with 
the geological features found in the literature. These interpretations are also consis-
tent with descriptions of core samples and petrophysical analysis. Figure 3 shows a 
simplified scheme of the overall process applied in this work.

3.1 Multiattribute analysis

The general goal of a multiattribute analysis is to find a mathematical rela-
tionship between target reservoir properties and seismic attributes. Assuming 
that seismic-well ties were already conducted, two main stages are necessary to 
perform a multiattribute analysis (e.g., after this relationship is established along 
the wells, it is applied to populate the 3D seismic space with the chosen reservoir 
property (e.g., [9]):

1. To train the seismic attributes along the wells, so that they are mapped onto the 
desired property space. The most appropriated attributes are defined during 
this training.

2. To make predictions of the desired property for the entire seismic volume, 
using the mathematical relationship found on the first stage.

3.2 Probabilistic neural network

In this chapter, we performed a multiattribute analysis using a probabilistic 
neural network (PNN). This type of ANN has been described, for instance, 
by Specht [15] and by Masters [16, 17]. It basically consists in an interpolation 
scheme that uses the architecture of an ANN in its implementation. For example, 

Figure 3. 
Flowchart that describes the process applied to obtain our 3D porosity model of the reservoir.
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consider  n  training samples where each sample is composed of two input attri-
butes,   A  1    and   A  2   , and one output property value  L  each, which is the measured 
target log value. In matrix form, this training set is a n × 3 matrix whose entries 
are {A1i, A2i, Li} where i = 1, … n. 

A PNN assumes that each new output value can be described as a linear combi-
nation of the input values in the training set. For a new input sample,  x =  { A  1j  ,  A  2j  } ;   
an output value   L   

,
  (x)   is estimated as

   L   
,

  (x)  =   
  ∑ i=1  

n   L  i   exp  (− D (x,  x  i  ) ) 
  ________________  

 ∑ i=1  
n    exp  (− D (x,  x  i  ) ) 

  ,  (1)

where

  D (x,  x  i  )  =  ∑ 
i=1

  
2
      [  

 x  j   −  x  ij  
 _____  σ  j  

  ]    
2

 .  (2)

 D (x,  x  i  )   is the distance between the input data and each training point xi 
(Figures 4 and 5). This distance is measured in a multidimensional attribute space 
and normalized by the quantity   σ  j    [2].

The PNN training consists in determining the best group of smoothing param-
eters σj. The criterion used to determine these parameters is a minimum validation 
error [2].

The validation result for the mth target sample is defined as

   L   
,
  ( x  m  )  =   

 ∑ i≠m      L  i   exp  (− D ( x  m  ,  x  i  ) ) 
  ____________________  

 ∑ i≠m  n    exp  (− D ( x  m  ,  x  i  ) ) 
   .  (3)

This is the predicted value of the mth target sample when this sample is left out 
of the training dataset. In other words, this means that the dataset is trained with-
out that sample. By repeating this process for each training sample, total prediction 
error can be defined as

Figure 4. 
Representation of the positions at which the input vectors (x1 and x2) are associated to known target values of 
an output vector (y1 and y2) and a position where an input vector (x) is associated to an unknown target value 
of an output vector (extracted from [5]).
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  E ( σ  1  ,  σ  2  ,  σ  3  )  =  ∑ 
i=1

  
N

      ( L  i    –  L   ,i )    
2

 .  (4)

4. Results and discussion

We have defined four horizons that were delineated by tracking continuous 
seismic events (Figure 6). The deepest one (Figure 6a) represents the reservoir 
base, while the shallowest (Figure 6d) represents the reservoir top. Between 
these horizons, there are more two horizons, termed intermediate horizons 
(Figure 6c and d). Drill core data show carbonate textures such as packstones 
and wackestones at depths near these horizons. These textures are composed by 
rock matrices rich in carbonate, which explains the decrease of porosity in these 
regions.

The PNN method was applied in the interval between the reservoir base and top 
horizons. After the training process, we have obtained a seismic attribute list that 
yields the highest correlation between predicted porosity and actual porosity at the 
wells and the lowest prediction error, through a stepwise regression. The attribute 
list and the total training error are presented in Table 1.

Then, using this attribute list, we applied the training process through the PNN 
using 12–19 attributes. Each training result was analyzed based on a correlation 
coefficient and a training error (Figure 7b and c). Based on the correlation and 
error values, 17–19 attributes yield the best predictions. Therefore, we chose the 
minimum number of attributes that produces the highest correlation and the lowest 
error. The prediction power of the trained PNN can be observed in the scatter plot 
of Figure 7a. The correlation coefficient is ~0.9 and the fitting error is ~2.86.

The trained PNN was applied to predict porosity values in the entire 3D seismic 
volume. Figures 8a, b and 9a–d show the porosity distribution along vertical and 
time slices extracted from the 3D porosity model. The spatial distribution of this 
model can also be observed in Figure 9e and f.

This model shows high heterogeneity in the distribution of the predicted poros-
ity values, which vary from 5 to 30%, with an average of around 19%. These values 

Figure 5. 
Schematic graph of vectors x1, x2, and x, relative to Figure 4 where the coordinate axes represent the attribute 
amplitudes instead of Cartesian distances (modified from [5]).
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Figure 6. 
(a) Deepest horizons representing reservoir base, (b) deepest intermediate horizon, (c) the shallowest 
intermediate horizon, (d) the shallowest horizon representing reservoir top, and (e) reservoir top and base 
horizons.

Target log Attribute Training error

1 Porosity Dominant frequency 6.066539

2 Porosity Amplitude weighted phase 5.847074

3 Porosity Average frequency 5.770756

4 Porosity Integrated absolute amplitude 5.677001

5 Porosity Apparent polarity 5.634725

6 Porosity Instantaneous frequency 5.595683

7 Porosity Amplitude weighted cosine phase 5.577585

8 Porosity Amplitude envelope 5.552585

9 Porosity Amplitude weighted frequency 5.512237

10 Porosity Quadrature trace 5.496368

11 Porosity Instantaneous phase 5.484175

12 Porosity Cosine instantaneous phase 5.454468

13 Porosity Second derivative instantaneous amplitude 5.441876

14 Porosity Filter 5/10–15/20 5.432924

15 Porosity Filter 15/20–25/30 5.423227

16 Porosity Integrate 5.414948

17 Porosity Filter 25/30–35/40 5.409717

18 Porosity Second derivative 5.407269

19 Porosity Derivative 5.407243

Table 1. 
Attribute list obtained after training with PNN and stepwise regression.
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increase from south to north and from west to east, with the highest values occurring 
on the northeast and on the central portion. Besides the horizontal porosity varia-
tion, we can also observe a significant vertical variation, in which the highest values 
are concentrated on the intermediate depths of reservoir, and there is also a decrease 

Figure 7. 
(a) Correlation between predicted porosity and well log porosity and the errors related to this correlation, 
obtained by probabilistic ANN. (b) Correlation between predicted porosity and actual porosity of PNN 
training using 12–19 attributes. (c) PNN training error.

Figure 8. 
(a) Predicted porosity obtained by a PNN along inlines 1100, 1200, and 1300. (b) Predicted porosity obtained 
by a PNN along crosslines 1100, 1200, and 1300.
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on these values on depths corresponding to the interpreted seismic horizons. Based 
on this information, we could identify three different groups of porosity: (1) those 
with low values (5–10%) and concentrated on the southwest portion and near 
seismic horizons; (2) those with intermediate values (10–22%) and dispersed in 
the entire seismic volume, however concentrating more on the northeast and on 
the central portion; and (3) those with high values (22–30%) concentrated in some 
specific regions, mostly on the northeast and on the central portion.

Figure 9. 
(a) A plan view of predicted porosity obtained by probabilistic ANN in 2400 ms, with north pointing to the 
bottom right corner of the image. (b) Predicted porosity in 2500 ms. (c) Predicted porosity in 2600 ms. (d) 
Predicted porosity in 2700 ms. (e) 3D volume of predicted porosity obtained by probabilistic ANN, on inline 
1092 and crossline 1080. (f) 3D volume of predicted porosity on inline 1370 and crossline 1420.
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Melani [13] explains the difference between the porosity values on the northeast 
portion and on the southwest portion as the result of different porosity types. On 
the northeast, the porosity is the original macroporosity of the rocks, while in the 
southwest it is essentially microporosity. Besides this noticeable division, according 
to petrophysical and drill core data, porosity values vary due to rock texture varia-
tion of reservoir carbonates. Grainstones are related to higher porosity values, while 
packstones and wackestones are related to lower values, because of the difference in 
the degree of cementation.

Furthermore, the lower porosity values near the seismic horizons can be related 
to a higher cementation degree in these regions, where rock textures vary from 
packstone to wackestone. The variation of cementation degree occurred because of 
different energy availability in the depositional environment, which corresponds to 
drowning and shallowing cycles on these regions.

5. Conclusions

We have created a 3D porosity model of a carbonate reservoir in the Campos 
Basin through the application of a PNN that integrates well logs and seismic data. 
The overall correlation between predicted and actual porosity values is ~0.90, 
while the training error is ~2.86. This model presents high spatial heterogeneity. 
In general, porosity values increase from southwest to northeast, and the highest 
concentration is located on the northeast and central areas. This is explained by 
different porosity types in the reservoir, where the higher values are concentrated 
in regions where the original macroporosity was preserved and the lower values 
are concentrated where the porosity is classified as microporosity. While the 
shallowest horizon is related to the reservoir top and the deepest is related to the 
reservoir bottom, the two intermediate horizons are related to discontinuities with 
different cementation degrees. These horizons are associated to different rock 
textures caused by energy availability variation in the depositional environment. 
Our interpretations are based on petrophysical and drill core data available in the 
published literature.
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