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Chapter

Alternative Strategies for Stem 
Cell Osteogenic Differentiation
Carla Cristina Gomes Pinheiro and Daniela Franco Bueno

Abstract

Discovering strategies that increase the osteogenic differentiation potential of 
mesenchymal stem cells (MSCs) can lead to new perspectives for bone disease treat-
ments. The possibility to associate the mesenchymal stem cells with scaffolds and 
to use them in bone regeneration as well as the number of studies to understand the 
signaling pathway of osteogenesis are increasing. Identifying osteogenic induction 
factors is extremely important and crucial for the success of bone regeneration. 
Studies have shown that proteins, such as bone morphogenetic proteins (BMPs), 
trichostatin A and IGF-1, can be efficiently used for osteogenic regeneration. 
However, the use of these proteins increases the treatment cost. Fortunately, 
low-level laser therapy (LLLT) may be a new alternative for adjuvant therapy to 
treat bone regeneration because it has biostimulatory effects on the conversion of 
mesenchymal stem cells into osteoblasts and on the induction of ex vivo ossifica-
tion. The principle of tissue photobiomodulation with LLLT was first described in 
dermatology for healing wounds; however, other applications have been described, 
with anti-inflammatory and anti-edema effects and cellular proliferation and 
differentiation. Following this way, we will discuss some alternative strategies for 
osteogenic differentiation and suggest that the low-power lasers can be an innova-
tive instrument for cell differentiation.

Keywords: osteogenesis, mesenchymal stem cells, low-level laser therapy,  
low-power laser, osteogenic differentiation

1. Introduction

Bone transplantation is one of the most common tissue transplants in the world, 
second only to blood transplant. There are approximately 15 million bone fractures 
per year worldwide and about 10% of those will experience no tissue regeneration, 
potentially leading to complications such as infections and pain [1]. Technological 
advances and increase in life expectancy of the global population have sparked 
interest in and use of alternative strategies in regenerative medicine.

Tissue bioengineering is an interdisciplinary field where engineering and bio-
logical science strategies are applied jointly in order to develop biological substitutes 
to restore, maintain, and/or increase the function of damaged tissues [2, 3].

In concern to bone tissue engineering different medical areas as well as den-
tistry areas have developed bone tissue engineering strategies (stem cells (SCs), 
biomaterials, and growth factors) to rehabilitate congenital malformations and 
craniofacial syndromes associated with bioengineering [3, 4]. Therefore, the main 
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goal of bioengineering is to overcome limitations imposed by current conventional 
treatments, which are based on reconstructive surgery or organ transplant. Above 
all, it aims at being able to produce substitutes for organs and tissues with immune 
tolerance, so that transplantation can be achieved without the risk of rejection by 
the organism [5].

Three elements are necessary for bone tissue bioengineering: osteoconduction, 
osteoinduction, and osteogenesis; together, these three elements form the basis for 
obtaining a new, functional bone tissue [6, 7]. Given the increase in regenerative medi-
cine studies and the need to find a biological source to promote tissue formation, that 
is, osteogenesis, stem cells appear to be a potentially unlimited biological source [8].

Stem cells (SCs) can be defined as cells that are capable of: (1) proliferation 
and self-renewal and (2) answering to external stimuli and giving rise to different 
specialized cell lines. Consequently, they are considered important for regenerative 
medicine [8]. Stem cells are classified based on their source and plasticity; hence, 
they can be divided into three different groups: embryonic stem cells, induced 
pluripotent stem cells (iPSCs), and adult stem cells.

Embryonic stem cells are those derived from the inner mass of a blastocyst (4 or 
5 days after the egg has been fertilized), that are capable of differentiating in the three 
germ layers (endoderm, ectoderm, and mesoderm). They are known as being plu-
ripotent. However, the therapeutic use of these cells has been questioned by several 
studies due to teratoma formation after transplantation in animals, potential immune 
rejection by the host, and strong association with ethical issues [9].

An increasing number of studies have been published about induced pluripotent 
stem cells (iPSCs). iPSCs are somatic cells—able to differentiate into the same cell 
type—but genetically altered, with four genes being inserted into their genome: 
OCT-4, SOX2, c-Myc, and KLF4. This increases their ability to differentiate and 
decreases their plasticity, changing them from somatic to pluripotent cells [9].

Another type of stem cell is the multipotent stem cell, which includes adult 
stem cells. They have lower plasticity than pluripotent cells and, although they can 
differentiate into some types of cells of adult tissues, they are unable to differenti-
ate into germ layers. Adult stem cells are found in the body and are responsible for 
tissue maintenance and repair [5].

The first adult SCs described in the literature were those found in bone marrow, 
which have been used in the treatment of several diseases affecting the hematopoi-
etic SCs since the 1950s. Hematopoietic SCs found in bone marrow can give rise to 
all types of blood cells (lymphocytes, red blood cells, platelets, etc.). In addition, 
studies about bone marrow transplant have led to the discovery of another impor-
tant cell type—larger and adherent—that support regeneration of other tissues: the 
mesenchymal stem cells. Since then, several studies have begun using particularly 
these stem cells [10, 11].

2. Mesenchymal stem cells (MSCs)

Even after birth and growth, we can still find stem cell niches in different 
tissues—bone marrow, adipose tissue, skeletal muscle, dental pulp, placenta and 
umbilical cord, and fallopian tube—usually involved in tissue maintenance and 
repair [12–17].

Those are known as adult mesenchymal stem cells (MSCs). Their own 
characteristics are preserved, that is, they remain multipotent and undifferenti-
ated, capable of self-renewal and differentiation into multiple cell lines—under 
specific in vitro conditions—including osteogenic, chondrogenic, adipogenic, 
and myogenic lineages [18].
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The first three sources are considered key differentiation lineages in determining 
MSCs’ multipotentiality [19]. In 1976, Friedenstein et al. isolated cells with morpho-
logical features that were described as colony-forming unit-fibroblasts (CFU-Fs). 
Bone marrow stromal cells were first described as bone progenitor cells present in 
its stromal fraction [12]. In 1991, Caplan named those stromal cells as mesenchymal 
stem cells with potential for cell expansion while remaining undifferentiated, the 
cells being a great option in cell therapy for tissue regeneration [11]. Subsequent 
studies have shown that these cells are able to remain undifferentiated when cul-
tured for prolonged periods of time. Moreover, they have the ability to differentiate 
into mesodermal cell lineages, including chondrocytes, osteoblasts, adipocytes, and 
myoblasts [5].

Currently, the definition of MSCs includes several morphological and immu-
nophenotypic factors as well as functional features. According to the International 
Society for Cellular Therapy (ISCT), MSCs: (i) are plastic-adherent when maintained 
in in vitro conditions; (ii) show positive expression of the CD13, CD29, CD44, CD54, 
CD73, CD90, CD105, CD166, and Stro-1 cell surface markers and negative expres-
sion of the CD14, CD19, CD34, CD45, and HLA-DR markers; and (iii) are a group of 
clonogenic cells, capable of differentiating into several mesodermal cell lineages [19].

A range of studies have shown that multipotent MSCs can also differentiate 
into unrelated germline cells in a process known as transdifferentiation. Thus, in 
addition to differentiating into mesodermal cells—such as bone, fat, and carti-
lage—MSCs also have the potential for endodermal and neuroectodermal differ-
entiation [20]. Even though adult MSCs are generally considered to originate from 
mesoderm, some authors describe embryonic MSCs derived from neuroepithelium 
and the neural crest, such as MSCs from deciduous dental pulp [20, 21].

Adult MSCs can be isolated from several tissues, with similar membrane recep-
tor functions and expressions. However, none of those membrane receptors is 
considered a MSC-specific cell surface marker; rather, MSCs show a profile of cell 
surface markers, with positive and negative expression, varying according to source 
and cell heterogeneity [22, 23].

Furthermore, important features of MSCs for clinical use are their non-
immunogenicity, as described in the literature, and immunomodulatory properties, 
which can be observed from two different perspectives, namely: (i) immunosup-
pressive effects of allogeneic MSCs, inducing immune tolerance; and (ii) effect 
of inflammatory cytokines in MSCs’ activity and differentiation, in cell-to-cell 
interactions [8, 24–27].

Bone marrow is considered one of the main sources of MSCs, both in experi-
mental studies and clinical use [26]. Yet, bone marrow MSCs are obtained through 
a painful surgical incision that produces a low number of harvested cells [28], with 
only about 0.001–0.01% of the total population of nucleated cells being identified 
as MSCs [5, 29].

Therefore, due to the aforementioned difficulties, alternative sources of MSCs—
such as lipoaspirated adipose tissue, dental pulp, umbilical cord tissue, and skeletal 
muscle among others—have been studied, as they are often discarded and can be 
easily procured and manipulated in order to obtain MSCs [16, 22, 30, 31]. Cells 
obtained from sources other than the bone marrow contribute greatly to the devel-
opment of cell therapies and consequently to the choice of the best cellular source 
for clinical uses and better response to target tissue regeneration [6, 16, 17, 25].

The possibility to use a non-invasive source of MSCs in bone tissue engineering 
has been increased by researches, because of the ease of obtaining the tissue, since 
they are discarded and do not involve ethical controversy. Since the year 2000, 
described by Gronthos, mesenchymal stem cells derived from dental pulp (DPSCs) 
have been studied by other researchers, and the use of DPSCs in vitro and in vivo 
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has generated a great expectation for the translational use in tissue bioengineering, 
especially for bone neoformation [8, 30–32]. The profile of DPSCs when compared 
to stem cells derived from human adipose tissue (hASCs), the DPSCs present an 
increase in the extracellular matrix formation capacity and presented expression 
profile for osteogenic genes (RUNX2, BGLAP and ALP) [33]. These comparative 
results between alternative sources for translational use may help us find the best 
source of stem cells for each type of tissue to being repaired.

Recently re-emerged as an attractive source of osteogenic progenitor cells (OCPs), 
the periosteum can be isolated from several locations in the body, such as the anterior 
tibia, and the spinous process [34]. Periosteal OCPs were involved in bone repair and 
may also differentiate in response to paracrine signals from mechanically stimulated 
osteocytes. However, the interconnection of load stimulation with the molecular 
mechanisms is still unclear. On the other hand, another group of researchers recently 
described the presence of an immature cell with clonal multipotency and self-renewal 
characteristics in the long bones and calvarium of mice denominated with periosteal 
stem cells (PSCs) that are also involved in the support of the bone tissue repair [35]. 
With the advancement of technology, a new cellular and molecular markers can be 
innovative therapeutic target to open the best possibilities for promising therapies.

3. Strategies for osteogenic differentiation

A basic premise for a cell to be characterized as MSC is its ability to differenti-
ate into a range of mesenchymal tissues—as mentioned above. Thus, stimulus for 
osteogenic differentiation must be efficient, resulting in viable and functional cells 
that produce bone extracellular matrix. This functionality is highly important for 
cellular characterization and applications in regenerative medicine [36].

In accordance with the basic requirements for carrying out tissue bioengineer-
ing, selection and strategy of signs of differentiation (osteoinduction) are other 
key aspects that should be explored. These are external inducers that promote cell 
proliferation and differentiation to regenerate the new tissue [36–38].

The biomaterial is not only involved as a structural support but can also be used 
as an inducer of osteogenic factors depending on its composition. The biomaterial 
classes most cited in the literature are the active ceramics, biodegradable polymers, 
and biodegradable metals. The mechanisms of the interaction between the cell and 
the biomaterial as well as of the osteogenic stimuli have not been clarified yet [39].

Another growing trend in bioengineering is the use of three-dimensional (3D) 
culture system, this possibility of cell culture is innovative and being explored by 
researchers, one of the factors that draws attention to this technique is the release of 
bioincomparable or non-absorbable compounds and the possible customization of 
the area to be regenerated [40].

Osteogenic induction and differentiation are often achieved via growth fac-
tors, which—through molecular mechanisms involving pathways, such as Wnt, 
BMP, FGF, and PTH, and genes that are essential for osteogenesis [41], such as 
RUNX 2, COL, ALP, OCN, OP, BGLAP, and SSP1—play a key role in osteogenesis 
and osteogenic differentiation, as shown in Figure 1 [42–44]. In this context, 
identifying those factors is crucial for successful tissue regeneration.

3.1 Bone morphogenetic protein (BMP)

Bone morphogenetic proteins (BMPs) are cytokines from the beta family 
and are used in clinical applications to stimulate bone regeneration [45]. These 
proteins are involved in the development of the embryo and in skeletal formation. 
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Manochantr et al. showed that after in vitro stimulation of bone marrow-derived 
MSCs with 100 ng/ml BMP-2, there was upregulation of the level of expression of 
genes associated with osteogenic differentiation (RUNX2 and OCN) and increase in 
alkaline phosphatase (ALP) production [46].

During a regular bone remodeling process, typical of an organism maintaining 
physiological stability, both BMPs and their antagonists are needed since BMPs 
induce osteo-precursor cells to proliferate and differentiate, thereby leading to 
formation of bone tissue. Members of the BMP family have different functions and 
are primarily related to the formation of bone and cartilage [47].

Upon BMP-receptor activation, receptor-regulated SMADs (R-SMADs) are 
translocated to the nucleus, where they regulate gene transcription by binding to 
DNA and interacting with DNA-binding proteins. Additionally, SMADs interact 
with transcription factors, transcriptional coactivators, and corepressors. The 
transcription factor associated with Runt-Runx is one of the most studied transcrip-
tion factors for BMP signaling, responsible for regulating processes such as bone 
formation and hematopoiesis [46, 47].

Runx2 transcription factors cooperatively regulate gene transcription that lead 
to differentiation of mesenchymal progenitor cells into osteoblasts [48]. Hence, 
it is widely regarded as a marker for cells committed to the osteochondral lineage 
and osteoblast differentiation. Runx2 expression is low in mesenchymal cells and is 
induced by BMP signaling [49].

Figure 1. 
Representative illustration of osteogenic signaling pathways. These pathways can activate several transcription 
factors, among them, RUNT (Runx 2), osterix (OSX), nuclear factor of activated T-cells 1 (NFATc1), and 
transcription factors of the Wnt pathway. Continuous arrows indicate interactions and signaling; dashed 
arrows indicate the actions described in boxes; and t-bar indicates block.
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Osterix (OSX) is another example of a transcription factor mediated by BMP/
SMAD signaling and likely by MAPK signaling and other pathways [50]. Taken 
together, Runx2 and Osterix are the most studied transcription factors for BMP 
signaling involved in the differentiation of MSCs into osteoblasts.

Moreover, recombinant BMP-2 (rhBMP-2) has been used for bone induction in 
humans being treated for long bone fractures and spinal arthrodesis [45]. A clinical 
study showed improved bone density and quantity formed when compared to the 
gold standard surgery (anterior iliac crest bone graft), used in maxilla reconstruc-
tion in cleft lip and palate patients.

3.2 Insulin-like growth factor type I

Insulin-like growth factor type I (IGF-1) is yet another factor currently being 
studied as an osteoinducer. IGF-1 is the most abundant growth factor found in 
the bone matrix and it plays an important role in development and maintenance 
of skeletal tissue [51]. It has been shown, under in vitro conditions, that IGF-1 is a 
stimulant for osteogenic differentiation through the increase in expression of ALP, 
Runx2, and OCN genes in MSCs from molar dental pulp [51].

Previous studies have demonstrated that the stimulant effect of IGF-1 on bone 
matrix synthesis in cell cultures derived from rat calvaria is a result of at least two 
distinct regulatory signals: first, the effect on cellular differentiation—osteoprogenitor 
cells and pre-osteoblasts—in osteoblasts (increased production of bone collagen); and 
second, the stimulation of osteoprogenitor cells’ proliferation, thereby resulting in an 
increase in the number of functional osteoblasts. Despite working together to increase 
production of extracellular matrix, those signals differ in origin and can act syner-
gistically with other factors, such as, for example, BMP-9 [37] and OSX, to promote 
osteogenic differentiation [50].

Insulin-like growth factors are known for mediating skeletal growth and bone 
formation [37, 52, 53]. Different studies have shown that IGF-1, in particular, 
promotes differentiation of bone cells in autocrine and paracrine pathways [52, 53]. 
Previous in vitro and in vivo studies have used IGF-1 to promote osteogenesis while 
treating dental pulp-derived osteoblastic cells [53, 54] and in an aged rat model, 
respectively. On the other hand, studies using rat fracture models show that the 
use of IGF-1 or PDGF alone does not stimulate OCN expression [55]. Nevertheless, 
using IGF-1 along with MSCs can cause expression of both factors to increase, as 
well as a significant upregulation of OCN by ODM in comparison to ODM alone.

The use of those factors for cell proliferation and differentiation is still being 
tested and is correlated with high treatment costs. On the other hand, low-
level laser therapy (LLLT) could be a new alternative adjunct therapy for bone 
regeneration.

3.3 Low-level laser therapy

In the last 30 years, low-level laser therapy (LLLT) has been used mainly for 
the treatment of wounds; however, its applicability in pathological conditions such 
as tissue regeneration, pain relief, and inflammation has increased in different 
branches of regenerative medicine and dentistry [56, 57].

LLLT consists of exposing cells or tissues to low-level red and infrared lasers 
at wavelengths of 600–1100 nm and energy output of 1–500 mW and is called 
“low-level” due to its use of low-density light when compared to other forms of laser 
therapy. This type of irradiation may be a continuous or pulsed wave comprised 
of a constant, low-density energy beam (0.04–50 J/cm2). The laser is directed at 
the target tissue or a monolayer of cells, with power in milliwatts (mW) [36, 58]. 
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LLLT transmits energy at low levels; hence, there is no heat or sound emission nor 
vibrations. There are no thermal reactions because there is no immediate increase in 
temperature in the tissue being irradiated by laser. Experiments after low-level laser 
have shown negligible, immediate heat increase in tissue (±1°C) [36, 59].

Studies with LLLT have proven effective in biostimulation, increasing the rate 
of cell proliferation, migration, and adhesion. Several different lasers with varying 
sources of light—including helium-neon (HeNe), ruby, and gallium-aluminum-
arsenide (GaAIA)—have been used in a range of LLLT treatments and protocols 
[36, 60–63].

As mentioned above, LLLT can promote a range of biological processes, includ-
ing cell proliferation [59, 64, 65] and differentiation [36, 66]. The effects of LLLT 
on cell proliferation have been studied in vitro in several types of cells, namely: 
fibroblasts, endothelium, keratinocytes, myoblasts, and mesenchymal stem cells, 
among others [36, 66–71]. Nevertheless, the molecular mechanism associated with 
the stimulatory effects remains unclear.

One possible theory is the ability of LLLT to influence photoreceptors in cells. 
This mechanism is called photobiology or biostimulation. It has been stated that 
biostimulation occurs through the electron transport chain in mitochondrial 
enzymes, inducing high levels of cell respiration by endogenous porphyrin or 
cytochrome c during tissue stress (lesioned) [62], which increases cell metabolism 
and function [66]. The response to LLLT’s biostimulation effects is an increase in 
microcirculation, leading to higher ATP production and subsequent increase in 
DNA and RNA synthesis, thereby improving cellular oxygenation, nutrition, and 
regeneration [59, 65].

Similar to any drug treatment, LLLT has its own “active ingredient,” that is, 
its irradiation parameters, such as wavelength, power, power density, and energy 
density. Regarding interaction of the laser with matter, the effects of LLLT have 
been described by Karu [72] as: primary, acting as modulators of cell function, 
and secondary, relieving pain or inducing healing. Indeed, those effects depend on 
appropriate irradiation parameters [72].

Several mechanisms that aim at explaining the mitogenic effects of low-level 
laser therapy have been proposed, including: light absorption by mitochondrial 
enzymes; photon absorption by flavins and cytochromes in the mitochondrial 
respiratory chain, affecting electron transfer; singlet oxygen production through 
photoexcitation of endogenous porphyrins; and photoactivation of calcium chan-
nels, resulting in higher intracellular calcium concentrations and cell proliferation 
[73, 74].

Furthermore, laser therapy alters cell membrane permeability, causing subse-
quent physiological changes in the target cells. The magnitude of the biostimulation 
effect will depend on the wavelength used as well as the physiology of cell at the 
time [69].

It has been suggested that porphyrins and cytochromes, which are part of 
the mitochondrial respiratory chain, are the first photoreceptors in the visible 
wavelength range. When energy (photons) is absorbed by the photoreceptors’ 
cell membrane, a cascade of cellular response occurs, provoking production of 
reactive oxygen species (ROS), ATP synthesis, changes in cell membrane perme-
ability, and release of nitric oxide. Those effects in turn lead to an increase in 
cell proliferation; changes in extracellular matrix synthesis; and local effects in 
components of the immune, vascular, and nervous system. Besides, intracellular 
pH levels are altered—a change associated with activation of ATPase. Changes in 
oxidation-reduction status cause higher levels of intracellular Ca2 and stimulate 
cell metabolism. High levels of intracellular Ca2 promote several biological pro-
cesses, such as RNA and DNA synthesis, cell mitosis, and secretion of proteins. It 
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has been observed that Ca uptake by mammal cells can be induced by monochro-
matic red light (laser), depending on the dosage applied. Most cellular responses 
to LLLT derive from changes in mitochondrial and membrane activity, including 
mitochondrial membrane potential, as shown in Figure 2. Despite the positive 
results that argue for this type of treatment, the underlying action mechanism is 
yet to be understood [75].

In addition, studies show that ATP can activate P13K signaling pathway (phos-
phoinositide 3-kinase) through the ERK1/ERK2 genes, a pathway that regulates 
proliferation of certain types of cells [76]. Studies have also shown that LLLT 
promotes wound healing, collagen synthesis, nerve regeneration, bone remodeling 
and repair, and pain relief [57, 59, 77–80].

There are several studies in the literature that state the relationship between 
osteogenic differentiation, mesenchymal stem cells and LLLT, showing stimulation 
of matrix production, DNA synthesis, and formation of bone nodules in cultures 
of osteoblast-lineage cells after LLLT [36, 81, 82]. In 2005, Abramovitch-Gottlieb 
and colleagues used bone marrow MSCs cultured in 3D coralline (Porites lutea) 
biomaterial and He-Ne red laser irradiation (wavelength of 632.8 nm) to promote 
osteogenic differentiation [66]. Samples of biomaterial containing irradiated bone 
marrow MSCs showed an increase in neoformed bone tissue when compared to 

Figure 2. 
The cellular effect of low-level laser therapy (LLLT) on cellular metabolism. LLLT is proposed to act via 
mitochondria (cytochrome c oxidase) displacing nitric oxide (NO) from the respiratory chain and increasing 
levels of adenosine triphosphate (ATP) and reactive oxygen species (ROS). These changes act via intermediaries 
cyclic adenosine monophosphate (cAMP)-activated transcription factors AP-1. The interaction of the ROS 
and IkB further transcription factor NF-κB. The LLLT can be photoactive of calcium channels, resulting in 
higher intracellular calcium concentrations. All stimuli resulting in changes in gene expression and subsequent 
downstream production of chemical messengers implicated in the cellular changes increase cell proliferation, cell 
differentiation, cell motility, and growth factors production.



9

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Alternative Strategies for Stem Cell Osteogenic Differentiation
DOI: http://dx.doi.org/10.5772/intechopen.82333

non-irradiated samples. This suggests that tissue bioengineering (biomaterial 
containing mesenchymal stem cell) together with LLLT have biostimulation effects 
on osteogenic induction.

Osteogenic differentiation in MSCs has also been reinforced by another study 
using red laser at 647 nm. MSCs were irradiated with LLLT at differing periods of 
time and energy levels. Non-irradiated cells (control) were kept under the same 
conditions as irradiated cells. Samples of cells receiving LLLT showed a significant 
increase in production of extracellular matrix after 4–5 days compared to non-
irradiated cells, indicating that red laser promotes osteoblast differentiation. This 
increase in extracellular production was maintained with daily irradiation (5, 
10, and 20 J) for 21 days, which corresponds to the period of differentiation and 
maturation of MSCs in osteoblasts [36].

Moreover, in a study using a blue laser, MSCs were irradiated (wavelength of 
405 nm) for 180 s through a fiber connected to the bottom of the culture plate. 
The results showed that irradiation with blue laser can promote extracellular 
calcification produced by MSCs differentiated into osteoblasts, in addition to 
inducing translocation of CRY1 protein (cryptochrome 1) from the cytoplasm to 
the nucleus. CRY1 is a regulator for circadian rhythm and extracellular calcification 
in MSCs [70]. Based on hypotheses described in previous studies, LLLT can act as 
adjunct treatment in tissue bioengineering, representing a new strategy in bone 
rehabilitation.

4. Final considerations

The creation of biobanks of mesenchymal stem cells due to the possibility of 
isolating and manipulating MSCs from a range of tissues as well as storing them in 
ultralow temperatures for future use as a bioengineering strategy for bone or other 
tissues’ rehabilitation is of great economic and scientific interest. Yet, strategies and 
quality management of these biocomponents must still be developed.

The ability of MSCs for osteogenic differentiation has been well established in 
the literature; however, the analysis of the potential for differentiation between 
in vitro and in vivo sources of MSCs may direct their use in future therapies.
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