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Chapter

Modeling of Fluid-Solid
Two-Phase Geophysical Flows
Zhenhua Huang and Cheng-Hsien Lee

Abstract

Fluid-solid two-phase flows are frequently encountered in geophysical flow
problems such as sediment transport and submarine landslides. It is still a challenge
to the current experiment techniques to provide information such as detailed flow
and pressure fields of each phase, which however is easily obtainable through
numerical simulations using fluid-solid two-phase flow models. This chapter
focuses on the Eulerian-Eulerian approach to two-phase geophysical flows. Brief
derivations of the governing equations and some closure models are provided, and
the numerical implementation in the finite-volume framework of OpenFOAM® is
described. Two applications in sediment transport and submarine landslides are also
included at the end of the chapter.

Keywords: granular flows, submarine landslides, sediment transport, scour,
continuum model, OpenFOAM®

1. Introduction

Fluid-solid two-phase flows are important in many geophysical problems such as
sediment erosion, transport and deposition in rivers or coastal environment, debris
flows, scour at river or marine structures, and submarine landslides. Behaviors of
fluid-solid two-phase flows are very different from those of liquid-gas two-phase
flows where bubbles are dispersed in the liquid or droplets dispersed in the gas. Vast
numbers of experiments on various scales have been carried out for different
applications of fluid-solid two-phase flows; these experiments have advanced our
understanding of bulk behaviors of some important flow characteristics. However,
development of measurement techniques suitable for collecting data that contribute
to understanding important physics involved in fluid-solid two-phase flows is a
still-evolving science. With the modern computer technology, many data that are
not obtainable currently in the experiment can be easily produced by performing
time-dependent, multidimensional numerical simulations. Of course, empirical clo-
sure models required to close the governing equations still need high-quality exper-
imental data for model validation.

Numerical approaches to two-phase flows include Eulerian-Eulerian approach,
direct numerical simulations (DNS) based on Eulerian-Lagrangian formulations
(Lagrangian point-particle approach), and fully resolved DNS approach [1]. Fully
resolved DNS can resolve all important scales of the fluid and particles, but these
simulations are currently limited to about 10 k uniform-size spheres on a Cray XE6
with 2048 cores [2], and it is not practical to use this method to model large-scale
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geophysical flow problems in the foreseeable future [1]. Lagrangian point-particle
approach uses Eulerian formulation for the fluid phase and Lagrangian formulation
for tracking the instantaneous positions of the particles. Lagrangian point-particle
simulations make use of semiempirical relationships to provide both hydrodynamic
force and torque acting on each particle and thus avoid modeling processes on scales
smaller than Kolmogorov scale [1], making it possible to include more particles and
run in a domain larger than that for fully resolved DNS. The application of
Lagrangian point-particle approach is crucially dependent on the availability and
accuracy of such semiempirical relationships. A recent study shows that good
results can be obtained for about 100k uniform-size spherical particles in a vertical
channel flow [3]; however, using this approach to investigate large-scale two-phase
flow problems is still beyond the current computing capacity. Two-phase Eulerian-
Eulerian approach treats both the fluid and particle phases as continuum media and
is suitable for solving large-scale two-phase flow problems.

Eulerian-Eulerian two-phase flow models based on large-eddy-simulations solve
a separate set of equations describing conservation of mass, momentum, and kinetic
energy for each phase [4–7] and thus have the potential to consider all important
processes involved in the interactions between the two phases through parameter-
ization of particle-scale processes. This chapter introduces the basics of Eulerian-
Eulerian two-phase flow modeling, its implementation in the finite-volume frame-
work of OpenFOAM®, and two applications in geophysical flow problems.

2. Governing equations for fluid-solid two-phase flows

Let us consider a mixture of fluid and solid particles. Fluid can be gas, water, or a
mixture of water and gas. In DNS and Lagrangian point-particle approaches to two-
phase flows, the flow field is solved by solving the Navier-Stokes equations, and the
motion of each particle is determined by the Newton’s equation of motion. In
Eulerian-Eulerian two-phase flow approaches, however, the motions of individual
particles are not of the interest, and the focus is on the macroscopic motion of the
fluid and solid particles instead. For this purpose, the solid particles are modeled as
a continuum mass through an ensemble averaging operation, which is based on the
existence of possible equivalent realizations. After taking ensemble average, the
mixture of fluid and particles consists of two continuous phases: the fluid (water,
gas, or a mixture of water and gas) is the fluid phase, and the solid particle is the
solid phase. Both phases are incompressible. The motions of the fluid and solid
phases are governed by their own equations, which are obtained by taking ensemble
average of the microscopic governing equations for each phase [8]. Even though
some aspects of fluid-solid interaction can be considered through the ensemble
average, the ensemble averaging operation itself, however, does not explicitly
introduce any turbulent dispersion in the resulting equations. To consider the tur-
bulent dispersion in the Eulerian-Eulerian description of the fluid-solid two-phase
flows, another averaging operation (usually a Favre average) is needed to consider
the correlations of turbulent components [5, 9].

2.1 Ensemble averaged equations

At the microscopic scale, the fluid-solid mixture is a discrete system. The pur-
pose of performing an ensemble averaging operation is to derive a set of equations
describing this discrete system as a continuous system at the macroscopic scale,
where the typical length scale should be much larger than one particle diameter.
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In the Eulerian-Eulerian approach to two-phase flows, it is assumed that the
equations governing the motion of phase k (for the fluid phase k ¼ f and for the
solid phase k ¼ s) at the microscopic scale are the following equations for the
conservation of mass and momentum [8, 10]:

∂ρk

∂t
þ ∇ � uk ¼ 0, (1)

and

∂ρuk

∂t
þ ∇ � ρkukukð Þ ¼ ∇ � Tk þ ρg, (2)

where ρk is the density, uk is the velocity, and g is the acceleration due to gravity.
The stress tensor Tk includes two components:

Tk ¼ �pkIþ τk (3)

where pk is the microscopic pressure and τk is the microscopic stress tensor.
Because the fluid phase and the solid phase are immiscible, at any time t, a point

in space x can be occupied only by one phase, not both. This fact can be described
mathematically by the following phase function ck x; tð Þ for phase k:

ck x; tð Þ ¼
1, if  the point x is occupied by phase k

0, if  the point x is not occupied by phase k
:

�

(4)

The volumetric concentration of phase k is directly related to the probability of
occurrence of phase k at a given location x at the time t and can be obtained by
taking ensemble average of ck. Using the phase function given in Eq. (4), the
volumetric concentration of phase k is obtained by taking the ensemble average of
ck, denoted by ckh i. The operator ⋯h i means taking an ensemble average of its
argument.

There are several methods to derive the ensemble averaged equations governing
the motion of phase k. This chapter treats the phase function as a general function
and uses it to define the derivatives of the phase function ck with respect to time and
space and the equation governing the evolution of ck. As stated in Drew [8], the
phase function ck can be treated as a generalized function whose derivative can be
defined in terms of a set of test functions. These test functions must be sufficiently
smooth and have compact support so that the integration of a derivative of the
phase function, weighed with the test function, is finite. The equation describing
the evolution of ck is

∂ck
∂t

þ ui � ∇ck ¼ 0, (5)

where ui is the velocity of the interface between the region occupied by the fluid
phase and the region occupied by the solid phase. It is stressed here that ∇ck is zero
except at the interface between two phases where ∇ck behaves like a delta-
function [8].

The ensemble averaged equations governing the motion of phase k are
obtained by multiplying Eqs. (1) and (2) with ck and performing an ensemble
average operation on every term in the resulting equations. When performing
ensemble average operations, Reynolds’ rules for algebraic operations, Leibniz’
rule for time derivatives, Gauss’ rule for spatial derivatives, and the following two
identities are used:
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ck
∂ϕk

∂t
¼

∂ckϕk

∂t
� ϕk

∂ck
∂t

¼
∂ckϕk

∂t
þ ϕku

i � ∇ck, (6)

and

ck∇ � ρkukð Þ ¼ ∇ � ckρkukð Þ � ρkukð Þ � ∇ck: (7)

The resulting equations governing the ensemble average motion of phase k
are [8]

∂ ckρkh i

∂t
þ ∇ � ckρkukh i ¼ ρk uk � ui

� �

� ∇ck
� �

, (8)

and

∂ ckρkukh i

∂t
þ ∇ � ckρkukukh i ¼ ∇ � ckTkh i þ ckρkg

� �

þ ~mk (9)

with

~mk ¼ ρkuk uk � ui
� �

� Tk � ∇ck
� �

, (10)

Note that ∇ck is not zero only on the interface of the region occupied by phase
k (grain boundary). For the fluid-solid two-phase flows, the interface of phase k
must satisfy the no-slip and no-flux conditions; therefore, uk � ui ¼ 0. As a result,
the right-hand side of Eq. (8) is zero and

~mk ¼ � Tk � ∇ckh i, (11)

which is the density of the interfacial force [8]. Physically, Tk � ∇ck is the micro-
scopic density of the force acting on a surface whose normal direction is defined
by ∇ck.

After using Eq. (3) for Tk in Eq. (9), the ensemble averaged equations can be
further written in terms of the ensemble averaged qualities describing the motion of
phase k as

∂~c~ρk
∂t

þ ∇ � ~c~ρkûk� ¼ 0
�

(12)

and

∂~ck~ρkûk

∂t
þ ∇ � ~c~ρkûkûk

� �

¼ ~c~ρkg þ ∇ � ~c ~pkIþ ~τkÞ
� �

þ ∇ � ~c~τ 0k
� �

þ ~mk,
�

(13)

where ~ck ¼ ckh i is the volumetric concentration of phase k. Other ensemble aver-
aged quantities used in Eqs. (12) and (13) to describe the motion of phase k at the
macroscopic scale are density ~ρk, pressure ~pk, stress tensor ~τk, and velocity ûk,
defined by

~ρk ¼
ckρkh i

ckh i
, ~pk ¼

ckpk
� �

ckh i
, ~τk ¼

ckτkh i

ckh i
, ûk ¼

ckρkukh i

ckρkh i
(14)

and ~t
0
k represents the c-weighted ensemble average of microscopic momentum flux

associated with the fluctuation of the velocity uk around the ensemble averaged
velocity ûk
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~τ 0k ¼ �
ckρku

0
ku

0
k

� �

ckh i
, u0

k ¼ uk � ûk (15)

For compressible materials ~ρk is not a constant. However, for incompressible
materials

~ρk ¼
ckρkh i

ckh i
� ρk, ûk ¼

ckρkukh i

ckρkh i
¼

ckukh i

ckh i
(16)

Now we examine the limiting case where the fluid-solid system is at its
static state. Because the phase functions for the two phases satisfy cf þ cs ¼ 1,
both phases are not moving, and ~mf þ ~ms ¼ 0, the governing equations
reduce to

0 ¼ 1� ~csÞ~ρfg � ∇ 1� ~csÞ~pf

	 i

� ~ms,
h	

(17)

for the fluid phase, and

0 ¼ ~cs~ρsg � ∇ ~cs~ps� þ ~ms,
�

(18)

for the solid phase.
Because ~pf is the hydrostatic pressure in this case, i.e., ∇~pf ¼ ~ρfg, it then

follows that

~ms ¼ ~pf∇~cs (19)

which, physically, is the buoyancy acting on the solid phase. Now Eq. (18) becomes

0 ¼ ~cs~ρsg � ∇ ~cs~ps
� �

þ ~pf∇~cs (20)

which states that the weight of the solid particles is supported by the buoyancy and
the interparticle forces. Therefore, the ensemble pressure of the solid phase can be
written as ~ps ¼ ~pf þ �ps, with ~pf being the total fluid pressure and �ps accounting for
the contributions from other factors such as collision and enduring contact to the
ensemble averaged pressure.

For brevity of the presentation, we shall denote simply cs by c as well cf by
1� c and drop the symbols representing the ensemble averages hereinafter.
The ensemble averaged equations governing the motion of the fluid phase are

∂ 1� cð Þρf

∂t
þ ∇ � 1� cð Þρfuf

h i

¼ 0, (21)

and

∂ 1� cð Þρfuf

∂t
þ∇ � 1� cð Þρfufuf

h i

¼ 1� cð Þρfg þ ∇ � 1� cð Þ �pf Iþ τf

	 
h i

þ ∇ � 1� cð Þτ0f

h i

�m:

(22)
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The ensemble averaged equations governing the motion of the solid phase are

∂cρs
∂t

þ ∇ � cρsusð Þ ¼ 0, (23)

and

∂cρsus

∂t
þ ∇ � cρfusus

h i

¼ ρscg þ ∇ � c �pf I� psIþ τs

	 
h i

þ ∇ � cτ0s
� �

þm: (24)

where ps denotes the contributions from interparticle interactions such as collision
and enduring contact to the ensemble averaged pressure of the solid phase.

To close the equations for the fluid and solid phases, closure models are needed
for τ0s, τ

0
f , τs, τf , ps, and m.

It is remarked here that the definitions of the ensemble averages given in
Eq. (14) do not consider the contribution from the correlations between the fluctu-
ations of the velocities and the fluctuations of phase functions at microscopic scale;
therefore, the effects of turbulent dispersion are not directly included in the
ensemble averaged equations describing the motion of the each phase. In the liter-
ature, two approaches have been used to consider the turbulent dispersion:
(i) considering the correlation between the fluctuations of ckh i and u f associated
with the turbulent flow [9] and (ii) including a term in the model for m to account
for the turbulent dispersion [8]. This chapter considers the turbulent dispersion
using the first approach in the next section by taking another Favre averaging
operation.

In the absence of the turbulent dispersion from m, the interphase force m
should include the so-called general buoyancy pf∇c and a component f
which includes drag force, inertial force, and lift force

m ¼ f þ pf∇c � f � c∇pf þ ∇ cpf

	 


: (25)

This expression for m has been derived by [11] using a control volume/surface
approach. For most fluid-solid two-phase geophysical flows, the drag force domi-
nates f [9] and thus f can be modeled by

f ¼ cρs
uf � us

τp
, (26)

where τp is the so-called particle response time (i.e., a relaxation time of the
particle to respond the surrounding flow). As expected, the particle response time
should be related to drag coefficient and grain Reynolds number.

2.2 Favre averaged equations

The volumetric concentration and the velocities can be written as

c ¼ cþ c00, pf ¼ pf þ p00f , uf ¼ uf þ u00
f , us ¼ us þ u00

s , (27)

where the Favre averages are defined as

ρs ¼
cρs
c
, ρf ¼

1� cð Þρf

1� c
,us ¼

cρsus

cρs
,uf ¼

1� cð Þρfuf

1� cð Þρf
, (28)

and the overline stands for an integration with respect to time over a time scale
longer than small-scale turbulent fluctuations but shorter than the variation of the
mean flow field.
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The averaged equations for the mean flow fields of the two phases are obtained
by taking the following steps: (i) substituting Eq. (25) with Eq. (26) in Eqs. (22)
and (24), (ii) substituting Eq. (27) in the equations obtained at step (i), and (iii)
taking average of the equations obtained at step (ii) to obtain the following
equations:

∂ρf 1� cð Þ

∂t
þ ∇ � ρf 1� cð Þuf

h i

¼ 0, (29)

∂ρf 1� cð Þuf

∂t
þ∇ � ρf 1� cð Þufuf

h i

¼ ρf 1� cð Þg � 1� cð Þ∇pf þ c00∇p00f

þ∇ � 1� cð Þ τf þ τ0f þ τ00f

	 


� cρs
uf � us

τp
�

ρs

τp
cu00

f

	 


,
(30)

for the fluid phase, with τ00f being defined by

τ00f ¼ �ρfu
00
f u

00
f , (31)

and

∂ρsc

∂t
þ ∇ � ρscus½ � ¼ 0, (32)

∂ρscus

∂t
þ∇ � ρscusus½ � ¼ ρscg � c∇pf � c00∇p00f � ∇cps

þ∇ � c τs þ τ0s þ τ00s
� �

þ cρs
uf � us

τp
þ

ρs

τp
cu00

f

	 


,
(33)

for the solid phase, with τ00s being defined by

τ00s ¼ �ρsu
00
s u

00
s (34)

It is remarked here that the terms 1� ~cð Þ∇~pf in Eq. (30) and ~c∇~pf in Eq. (33) have
been obtained by using the expression for m given in Eq. (25).

In order to close these averaged equations, closure models are required for the

following terms: c τs þ τ0s þ τ00s
� �

, 1� cð Þ τf þ τ0f þ τ00f

	 


, cu00
f , and c00∇p00f . The last term

can be neglected based on an analysis of their orders of magnitude by Drew [12].
The term cu00

f is approximated by the following gradient transport hypotheses:

cu00
f ¼ �

νft

σc
∇c (35)

where νft is the eddy viscosity and σc is the Schmidt number, which represents the
ratio of the eddy viscosity of the fluid phase to the eddy diffusivity of the solid
phase. Furthermore, the following approximations are introduced:

c τs þ τ0s þ τ00s
� �

¼ cτs, 1� cð Þ τf þ τ0f þ τ00f

	 


¼ 1� cð Þτf , cps ¼ cps (36)

For brevity of the presentation, the symbols representing Favre averages are
dropped hereinafter, and the final equations governing the conservation of mass
and momentum of each phase are

∂ρf 1� cð Þ

∂t
þ ∇ � ρf 1� cð Þuf ¼ 0, (37)

7

Modeling of Fluid-Solid Two-Phase Geophysical Flows
DOI: http://dx.doi.org/10.5772/intechopen.81449



∂ρf 1� cð Þuf

∂t
þ∇ � ρf 1� cð Þufuf

h i

¼ ρf 1� cð Þg � 1� cð Þ∇pf þ ∇ � 1� cð Þτf

� cρs
uf � us

τp
þ

ρs

τp

νft

σc
∇c

� �

,

(38)

for the fluid phase and

∂ρsc

∂t
þ ∇ � ρscus ¼ 0, (39)

∂ρscus

∂t
þ ∇ � ρscususð Þ

¼ ρscg � c∇pf � ∇ cps
� �

þ ∇ � cτs

þ cρs
uf � us

� �

τp
�

ρs

τp

νft

σc
∇c

� �

,

(40)

for the solid phase.

3. Closure models

3.1 Stresses for the fluid phase

The stress tensor for the fluid phase τf includes two parts: a part for the viscous
stress, τvf , and the other part for the turbulent Reynolds stress, τtf

τf ¼ τvf þ τtf (41)

The viscous stress tensor τvf is usually computed by

τvf ¼ �ρf
2
3
νf∇ � uf

� 


Iþ 2ρf νfDf (42)

where νf is the kinematic viscosity of the fluid phase and Df ¼ ∇uf þ ∇uf

� �T
h i

=2,

where the superscript T denotes a transpose. Some studies [13] suggested modify-
ing νf to consider the effect of the solid phase; other studies [14], however, obtained
satisfactory results even without considering this effect.

The stress tensor τtf is related to the turbulent characteristics, which need to be
provided by solving a turbulent closure model such as k� ϵ or k� ω model. For a
k� ϵ model with low-Reynolds-number correction [15], τtf can be computed by

τtf ¼ �ρf
2
3
kþ

2
3
νtf∇ � uf

� 


Iþ 2ρf ν
t
fDf (43)

where k is the turbulence kinetic energy and νtf is the eddy viscosity of the fluid
phase, given by

νtf ¼ f μCμk
2=ϵ (44)

8
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with ϵ being the turbulent dissipation of the fluid phase to be provide by solving the

k� ϵ equation. The coefficient f μ ¼ exp �3:4= 1þ Ret=50ð Þ2
h i

represents the low-

Reynolds-number correction with Ret ¼ k2=νf ϵ. The coefficient Cμ is usually
assumed to be a constant.

The equations governing k and ϵ are similar to those for clear water [15]

∂ρf 1� cð Þk

∂t
þ ∇ � ρf 1� cð Þufk

h i

¼ 1� cð Þtf : ∇uf � ρf 1� cð Þϵ

þ∇ � ρf

νtf

σc
1� cð Þk

" #

� ρs � ρf

	 
 νtf

σc
∇c � g þ

2ρsc 1� αð Þk

τp

( )

,

(45)

and

∂ρf 1� cð Þϵ

∂t
þ ∇ ρf 1� cð Þuf ϵ

h i

¼
ϵ

k
Cϵ1 f 1 1� cð Þτf : ∇uf � Cϵ2 f 2ρf 1� cð Þϵ
h i

þ∇ � ρf

νtf

σϵ
1� cð Þϵ

" #

�
ϵ

k
Cϵ3 ρs � ρf

	 
 ν
f
f

σc
∇c � g þ

2ρsc 1� αð Þk

τp

8

<

:

9

=

;

,

(46)

where coefficients Cϵ1, Cϵ2, σϵ, σk, and f 2 are model parameters, whose values can
be taken the same as those in the k� ϵ model for clear fluid under low-Reynolds-
number conditions [15]. There are two terms inside the curly brackets, and both
terms account for the turbulence modulation by the presence of particles: the first
term is associated with the general buoyancy, and the second term is due to the
correlation of the fluctuating velocities of solid and fluid phases. Cϵ3 ¼ 1 is usually
adopted in the literature [28]; however, it is remarked that the value of Cϵ3 is not
well understood at the present and a sensitivity test to understand how the value
of this Cϵ3 on the simulation results is recommended. The parameter α reflects the
correlation between the solid-phase and fluid-phase turbulent motions and is
given by

α ¼ 1þ
τp

min τl; τcð Þ

� 
�1

, (47)

where τl ¼ 0:165k=ϵ is a time scale for the turbulent flow and τc is a time scale for
particle collisions given by [16]

τc ¼
crcp
c

	 

1
3
� 1

� �

d
ρs

ps

� 
1=2

(48)

with crcp being the random close packing fraction and d being the particle diameter.

crcp is 0.634 for spheres [17]. The term crcp=c
� �1=3

� 1 is related to the ratio of the
mean free dispersion distance to the diameter of the solid particle.

It is remarked here that the presence of solid particles in the turbulent flow may
either enhance (for large particles) or reduce (for small particles) the turbulence
[18]. The k� ϵ model given here can only reflect the reduction of turbulence and
thus is not suitable for problems with large particles. Other turbulence models
[7, 18] include a term describing the enhancement of turbulence; however, includ-
ing that term in the present model may induce numerical instability in some cases.
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3.2 Stresses for the solid phase

The closure models for ps and τs used in Lee et al. [16] will be described here. In
order to cover flow regimes with different solid-phase concentrations (dilute flows,
dense flows, and compact beds), Lee et al. [16] suggested the following model for ps:

ps ¼ pts þ prs þ pes , (49)

where pts accounts for the turbulent motion of solid particles (important for dilute
flows); prs reflects the rheological characteristics of dense flows and includes the
effects such as fluid viscosity, enduring contact, and particle inertial; pes accounts for
the elastic effect, which is important when the particles are in their static state in a
compact bed.

For solid particles in a compact bed, the formula proposed by Hsu et al. [19] can
be used to compute pes

pes ¼ K max c� co;0ð Þ½ �χ 1þ sin max
c� co

crcp � co
;0

� 


π �
π

2

� �� �

, (50)

where co is random loose packing fraction and coefficients K and χ are model
parameters. For spheres, co ranges from 0.54 to 0.634, depending on the friction
[17]. The coefficient K is associated with the Young’s modulus of the compact bed,
and the other terms are related to material deformation.

The closure models for prs and pts are closely related to the stress tensor and the
visco-plastic rheological characteristics for the solid phase. The stress tensor for the
solid phase can be computed by

ts ¼ �
2
3
ρsνs∇ � us

� 


þ 2ρsνsDs, (51)

The kinematic viscosity of the solid phase νs is computed by the sum of two
terms:

νs ¼ νvs þ νts, (52)

where νvs and νts represent the visco-plastic and turbulence effects, respectively. This
model for νs can consider both the turbulence behavior (for dilute flows) and the
visco-plastic behavior (for dense flows and compact beds).

Based on an analysis of heavy and small particles in homogeneous steady turbu-
lent flows, Hinze [20] suggests that pts and νts can be computed by

pts ¼
2
3
ρsαk, (53)

and

νts ¼ ανtf : (54)

where the coefficient α is the same as that in Eqs.(45) and (46).
For dense fluid-solid two-phase flows, the visco-plastic rheological characteris-

tics depend on a dimensionless parameter I ¼ Iv þ aI2i , where Iv is the viscous
number, Ii is the inertial number, and a is a constant [21]. The viscous number is
defined by Iv ¼ 2ρfνfD

s=cps where νf is the kinematic viscosity of the fluid and Ds is
the second invariant of the strain rate. Physically, the viscous number describes the
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ratio of the viscous stress to the quasi-static shear stress associated with the weight
(resulting from the enduring contact). The inertial number is defined by
Ii ¼ 2dDs=

ffiffiffiffiffiffiffiffiffiffiffiffi

cps=ρs
p

, which describes the ratio of the inertial stress to the quasi-static
stress. The relative importance of the inertial number to the viscous number can be
measured by the Stokes number stv ¼ I2i =Iν. Some formulas have been proposed in
the literature to describe c� I and η� I relationships, where η ¼ Ts=ps with Ts being
the second invariant of τs.

Following the work of Boyer et al. [22], Lee et al. [16] assumed

c ¼
cc

1þ bI1=2
(55)

where cc is a critical concentration and b is a model parameter. Trulsson et al. [21]
proposed

η ¼ η1 þ
η2 � η1

1þ Io=I
1=2 , (56)

where η1 ¼ tan θs with θs being the angle of repose and η2 and Io are constants.
Based on Eqs. (56) and (55), the following expressions for prs and νvs can be
derived [16]:

νvs ¼
prs þ pes
� �

η

2ρsDs
, (57)

which considers the solid phase in its static state as a very viscous fluid and

prs ¼
2b2c

cc � cð Þ2
ρf νf þ 2aρsd

2Ds

	 


Ds, (58)

where b is a constant. In Lee et al. [7], a ¼ 0:11 and b ¼ 1 were taken.

3.3 Closure models for particle response time

The drag force between the two phases is modeled through the particle response
time τp. Three representative models for particle response time are introduced in
this section.

3.3.1 A model based on the particle sedimentation in still water

The first model is based on particle sedimentation in still water, which can be
simplified as a one-dimensional problem, where the steady sedimentation assures
that there are no stresses in both the solid and fluid phases in the vertical direction z.
In this case, Eqs. (38) and (40) reduce to

�ρf 1� cð Þg � 1� cð Þ
∂pf
∂z

�
cρs wf � ws

� �

τp
¼ 0, (59)

and

�ρscg � c
∂pf
∂z

þ
cρs wf �ws

� �

τp
¼ 0, (60)
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where wf and ws are the vertical velocities of the fluid and solid phases, respec-
tively.

Because net volume flux through any horizontal plane must be zero, we have

1� cð Þwf þ cws ¼ 0: (61)

Combining Eqs. (59) and (61) yields

�
∂pf
∂z

¼
�cρsws

1� cð Þ2τp
þ ρf g: (62)

Substituting Eqs. (61) and (62) into Eq. (60) leads to

τp ¼
ρsws

1� cð Þ2 ρs � ρf

	 


g
, (63)

where the solid-phase velocity ws is also called the hindered settling veloc-
ity [23]. The hindered velocity is smaller than the terminal velocity of a
single particle, w0, due to the influence of volumetric concentration (including
many-body hydrodynamic interactions). Richardson and Zaki [24] suggested

ws

w0
¼ 1� cð Þn, (64)

where the coefficient n is related to the particle Reynolds number Res ¼ w0d=νf

n ¼

4:65, Res,0:2

4:4Re�0:33
s , 0:2≤Res, 1

4:4Re�0:1
s , 1≤Res, 500

2:4, 500≤Res

:

8

>

>

>

<

>

>

>

:

(65)

The terminal velocity of a single particle w0 can be computed by

w0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4dg
3Cd

ρs � ρf

ρf

s

, (66)

where Cd is the drag coefficient for steady flows passing a single particle [25, 26].
For spheres, the following formula of White [27] can be used:

Cd ¼
24
Rep

þ
6

1þ
ffiffiffiffiffiffiffi

Rep
p þ 0:4, (67)

where Rep ¼ ∣uf � us∣d=νf . Combing Eqs. (63)–(67) yields

τp ¼
ρs

ρf

d2

νf

1� cð Þn�2

18þ 4:5= 1þ
ffiffiffiffiffiffiffi

Rep
p

	 


þ 0:3
	 


Rep
: (68)

It is remarked that Eq. (64) is validated only for c,0:4 [28]. When the concentra-
tion c is so high that contact networks form among particles, ws, becomes zero;
when this happens, Eq. (64) is no longer valid any more.
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3.3.2 A model based on the pressure drop in steady flows through a homogeneous porous
media

Another model for particle response time can be derived by examining the
pressure drop in the steady flow through a porous media. For a one-dimensional
problem of a horizontal, steady flow through porous media, the terms containing
the stresses of the fluid phase disappear, and Eq. (38) reduces to

�
∂pf
∂x

¼
cρsuf
1� cð Þτp

, (69)

where the horizontal coordinate x points in the direction of the flow and u is the
velocity component in x-direction.

For this problem, Forchheimer [29] suggested

�
∂pf
∂x

¼ aFρf 1� cð Þuf þ bFρf 1� cð Þ2u2f , (70)

where aF and bF are two model parameters. Several formulas for computing aF and
bF can be found in previous studies. The following two expressions for aF and bF
suggested by Engelund [25] are recommended for the applications presented at the
end of this chapter:

aF ¼
aEc

3νf

1� cð Þ2d2
, bF ¼

bEc

g 1� cð Þ3d
, (71)

Comparing Eqs. (69) and (70) and using Eq.(71) give

τp ¼
ρsd

2

ρf νf

1
aEc2 þ bERep

, (72)

where aE and bE are two model parameters depending on the composition of the
solid phase. The parameter aE is associated with kp as will be shown later. For
d≈ 2� 10�4 m, kp ≈ 10�10 � 10�11m2 [30], which gives aE ≈ 1:6� 103 � 1:6� 104

for c ¼ 0:5. The parameter bE varies from 1.8 to 3.6 or more [28, 31, 32].
For flow in a porous media, the particle response time can also be related to its

permeability κp. According to Darcy’s law for seepage [29], the pressure gradient
can also be written as

�
∂pf
∂x

¼
ρfνf 1� cð Þuf

κp
, (73)

where κp is the permeability. Combining Eqs. (69) and (73) gives

τp ¼
cρsκp

1� cð Þ2ρf νf
(74)

When the flow is very slow, Eqs. (70), (71), and (73) suggest that

aE ¼
d2

kp 1� cð Þ2
, (75)

which means that the particle response time can be related to the permeability.

13

Modeling of Fluid-Solid Two-Phase Geophysical Flows
DOI: http://dx.doi.org/10.5772/intechopen.81449



3.3.3 A hybrid model

Equation (64) is validated only for c,0:4 [28]. To extend Eq. (64) to high
concentration regions, Camenen [33] modified Eq. (64) to

w

ws
¼ 1� cð Þn�1 max 1� c=cm;0ð Þ½ �cm , (76)

where cm is the maximum concentration at which w ¼ 0. In this study, cm ¼ co is
adopted because when c≥ co, contact networks can form in the granular material.

Combining Eqs. (63), (76), and (66)–(67) gives

τp ¼
ρs

ρf

d2

νf

1� cð Þn�3 max 1� c=cm;0ð Þ½ �cm

18þ 4:5= 1þ
ffiffiffiffiffiffiffi

Rep
p

	 


þ 0:3
	 


Rep
: (77)

We stress that c ¼ cm will lead to τp ¼ 0 and thus an infinite drag force. Physically,
when the volumetric concentration is greater than some critical value, say cr,
Eq. (63) ceases to be valid, and Eq. (72) should be used. To avoid unnaturally large
drag force between the two phases, we propose the following model for particle
response time:

τp ¼

ρs

ρf

d2

νf

1� cð Þn�3 max 1� c=cm;0ð Þ½ �cm

18þ 4:5= 1þ
ffiffiffiffiffiffiffi

Rep
p

	 


þ 0:3
	 


Rep
, for c, cr

ρsd
2

ρf νf

1
aEc2 þ bERep

, for c≥ cr

8

>

>

>

>

>

<

>

>

>

>

>

:

(78)

where cr is the concentration at the intercept point of Eq. (72) and Eq. (77). The
transition from Eq. (77) to Eq. (72) is continuous at the intercept point where c ¼ cr.
The concentration at the point joining the two models (cr) is problem-dependent
and can be found in principle by solving the following equation:

1� crð Þn�3 max 1� cr=cm;0ð Þ½ �cm

18þ 4:5= 1þ
ffiffiffiffiffiffiffi

Rep
p

	 


þ 0:3
	 


Rep
¼

1
aEc2r þ bERep

: (79)

For given values of aE and bE, Eq. (79) implicitly defines cr as a function of Rep.

4. Numerical implementation with OpenFOAM

4.1 Introduction to OpenFOAM

This section introduces how to use OpenFOAM® to solve the governing equa-
tions with the closure models presented in the previous section. OpenFOAM® is a
C++ toolbox developed based on the finite-volume method; it allows CFD code
developers to sidestep the discretization of derivative terms on unstructured grids.

4.2 Semidiscretized forms of the governing equations

To avoid numerical noises occurring when c ! 0, Rusche [34] suggests that the
momentum equations (Eqs. (38) and (40)) should be converted into the following
“phase-intensive” form by dividing ρf 1� cð Þ and ρsc:
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∂uf

∂t
þ ∇ � ufuf

� �

� ∇ � uf

� �

uf ¼ g �
1
ρf

∇pf þ
1
ρf

∇ � τf �
τf � ∇c

ρf 1� cð Þ

�
cρs

ρf 1� cð Þ

uf � us

� �

τp
þ

ρs

ρf 1� cð Þτp

νtf

σc
∇c

(80)

and

∂us

∂t
þ ∇ � ususð Þ � ∇ � usð Þus ¼ g �

1
ρs
∇pf �

1
ρsc

∇cps

þ
1
ρs
∇ � τs þ

τs � ∇c

ρsc
þ

uf � us

� �

τp
�

1
cτp

νtf

σc
∇c

(81)

The solutions of Eqs. (80) and (81) are expressed in the following semidiscretized
forms:

uf ¼
A

f
H

A
f
D

þ
g

A
f
D

�
∇pf

ρfA
f
D

þ
ρscu

s

ρfA
f
D 1� cð Þτp

þ
ρs

ρfA
f
D 1� cð Þτp

νtf

σc
∇c (82)

us ¼
As

H

As
D

þ
g

As
D

�
∇pf
ρsA

s
D

�
∇ps
ρsA

s
D

�
ps∇c

ρsA
s
Dc

þ
ρsuf

As
Dτp

�
1

As
Dcτp

νtf

σc
∇c (83)

where Aβ (β = s or f ) denotes the systems of linear algebraic equations arising from
the discretization of either Eqs. (82) or (83). The matrix Aβ is decomposed into a
diagonal matrix, Aβ

D, and an off-diagonal matrix, Aw
O. Also, A

w
H ¼ bw �Aβ

Ou
β with

bβ relating to the second to final terms on the right-hand side of either Eqs. (82) or
(83). OpenFOAM® built-in functions are used to compute Aβ

D and Aβ
H, which

depend on the discretization schemes. For example, Lee et al. [16] and Lee and
Huang [35] used a second-order time-implicit scheme and a limited linear interpo-
lation scheme for all variables except for velocity. To interpolate velocities, the
total-variation-diminishing (TVD) limited linear interpolation scheme is adopted
for velocity.

4.3 A prediction-correction method

If Eq. (83) is directly used to calculate us and Eq. (39) to calculate c, then c may
increase rapidly toward cc, leading to an infinite ps for large c. This can be avoided
by using a prediction-correction method to compute uf and us. This is achieved by
splitting Eq. (83) into a predictor u∗

s and a corrector. The predictor is

u∗
s ¼

As
H

As
D

þ
g

As
D

�
∇pf
ρsA

s
D

þ
ρsuf

As
Dτp

(84)

which is corrected by the following corrector

us ¼ u∗
s �

ps∇c

ρsA
s
Dc

�
1

As
Dcτp

νtf

σc
∇c

 !

(85)

This predictor-corrector scheme can improve the numerical stability by intro-
ducing a numerical diffusion term. To see this, we combine Eqs. (39) and (85) to
obtain the following equation describing the evolution of c:
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∂c

∂t
þ ∇ � cu0

s

� �

¼ ∇ �
ps

ρsA
s
D

þ
1

As
Dτp

νtf

σc

 !

∇c (86)

The right-hand side of Eq. (86) now has a diffusive term introduced by the numer-
ical scheme. High sediment concentration and large ps increase the numerical dif-
fusion (the right-hand side of Eq. (86)) and thus can avoid a rapid increase of c and
the numerical instability due to high sediment concentration.

For the velocity-pressure coupling, Eq. (82) is similarly solved using a predictor
u∗
f and a corrector. The predictor is

u∗
f ¼

A
f
H

A
f
D

þ
g

A
f
D

þ
ρscus

ρfA
f
D 1� cð Þτp

þ
ρs

ρfA
f
D 1� cð Þτp

νtf

σc
∇c (87)

which is corrected by the following corrector

uf ¼ u∗
f �

∇pf

ρfA
f
D

(88)

Substituting Eq. (88) into Eq. (37) gives a pressure equation. However, when using
this pressure equation to simulate air-water flows, numerical experiments have
shown that the lighter material is poorly conserved [36]. The poor conservation of
lighter material can be avoided by combining Eqs. (37) and (39) into the following
Eq. (37):

∇ � 1� cð Þuf þ cus

� �

¼ 0 (89)

and using Eq. (89) to correct pf . The method proposed [37] can help avoid the
numerical instability. To show this, we follow Carver [37] and define

ûs ¼
As

H

As
D

þ
g

As
D

�
∇ps
ρsA

s
D

�
ps∇c

ρsA
s
Dc

þ
ρsuf

As
Dτp

�
1

As
Dcτp

νtf

σc
∇c (90)

and combine Eqs. (83) and (88)–(90) to obtain the following equation

∇ � 1� cð Þûf þ cûs

� �

¼ ∇ �
1� c

ρfA
f
D

þ
c

ρsA
s
D

" #

∇pf (91)

The numerical diffusion term on the right-hand side of Eq. (91) can help
improve the numerical stability.

The prediction-correction method presented here deals with velocity-pressure
coupling and avoids the numerical instability caused by high concentration. The
turbulence closure k� ϵ model is also solved in “phase-intensive” forms. For other
details relating to the numerical treatments, the reader is referred to
“twoPhaseEulerFoam,” a two-phase solver provided by OpenFOAM®.

4.3.1 Outline of the solution procedure

When c ! 0, Eq. (83) becomes singular. To avoid this, 1=c is replaced by
1= cþ δcð Þ in numerical computations, where δc is a very small number, say 10�6.
When c≤ δc, only a very small amount of solid particles are moving with the fluid;
replacing 1=c by 1= cþ δcð Þmay introduce error in computing us; to avoid this error,
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we can set us ¼ uf , which means the solid particles completely follow the water
particles; this does not affect the computations of other variables because the
momentum of the solid phase cus is very small when c≤ 10�6. Because the maxi-
mum value of c is always smaller than 1, there is no singularity issue with Eq. (82).

An iteration procedure is needed to solve the governing equations at each time
step for the values of c,uf , ûs, and pf obtained at the previous time step, and it is
outlined below:

1. Solve Eqs. (80) and (81).

2. Compute u∗
s from Eq. (84).

3. Solve Eq. (86) for c.

4. Compute us from Eq. (85).

5. Compute ûs from Eq. (90).

6. Compute u∗
f from Eq. (87).

7. Solve Eq. (91) for pf .

8. Repeat Eqs. (5)–(7) for n times (say n = 1).

9. Compute uf from Eq. (88).

10.Set us ¼ uf for very dilute region, specifically c≤ 10�6.

11. Repeat Eqs. (1)–(10) with the updated c, uf , ûs, and pf until the residuals of

Eqs. (80), (86), and (91) are smaller than the tolerance (say 10�5).

12. Solve Eqs. (45) and (46) for k and ϵ, and compute the related coefficients.

Figure 1 is a flowchart showing these 12 solution steps.
In the absence of the solid phase, the numerical scheme outlined here reduces to

the “PIMPLE” scheme, which is a combination of the “pressure implicit with split-
ting of operator” (PISO) scheme and the “semi-implicit method for pressure-linked
equations” (SIMPLE) scheme. Iterations need to be done separately to solve
Eq. (80) for uf , Eq. (81) for us, Eq. (86) for c, Eq. (91) for pf , Eq. (45) for k, and

(46) for ϵ; the convergence criteria are set at the residuals not exceeding 10�8.
Because Eqs. (80), (81), (86), and (87) are coupled, additional residual checks need
to be performed at step 11; however, the residual for Eq. (81) is not checked because
us ¼ uf is enforced in step 10.

To ensure the stability of the overall numerical scheme, the Courant-
Friedrichs-Lewy (CFL) condition must be satisfied for each cell. The local Courant
number for each cell, which is related to the ratio between the distance of a
particle moving within Δt and the size of the cell where such particle is located, is
defined as

CFL ¼ ∑
abs u j � S j
� �

2V
Δt, (92)
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where in u j ¼ 1� cð Þu
j
f þ cu

j
s, the subscript “j” represents the jth face of the cell, S j

is a unit normal vector, V is the volume of the cell, and Δt is the time step.
The Courant number must be less than 1 to avoid numerical instability.
Generally, max (CFL) <0.1 is suggested. The values of CFL for high
concentration regions should be much smaller than those for low concentration
regions so that rapid changes of c can be avoided. Therefore, it is recommended

that max CFLjc>co

	 


< 0.005. The time step is recommended to be in the range of

10�5 and 10�4 s.

5. Applications

This section briefly describes two examples that have been studied using the
two-phase flow models described. The problem descriptions and numerical setups
for these two problems are included here; for other relevant information, the reader
is referred to Lee and Huang [35] and Lee et al. [38].

5.1 Scour downstream of a sluice gate

A sluice gate is a hydraulic structure used to control the flow in a water channel.
Sluice gate structures usually have a rigid floor followed by an erodible bed. The

Figure 1.
A flow chart showing the solution procedure using OpenFOAM®.
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scour downstream of a sluice gate is caused by the horizontal submerged water jet
issuing from the sluice gate. It is of practical importance to understand the maxi-
mum scour depth for the safety of a sluice gate structure. Many experimental
studies have been done to investigate the maximum scour depth and the evolution
of scour profile (e.g., Chatterjee et al. [39]). For numerical simulations, this prob-
lem includes water (fluid phase) and sediment (solid phase) and is best modeled by
a liquid-solid two-phase flow approach. In the following, the numerical setup and
main conclusions used in Lee et al. [38] are briefly described. The experimental
setup of Chatterjee et al. [39] is shown in Figure 2. To numerically simulate the
experiment of [8], we use the same sand and dimensions to set up the numerical
simulations: quartz sand with ρs ¼ 2650 kg/m3 and d ¼ 0:76 mm is placed in the
sediment reservoir, with its top surface being on the same level as the top surface of
the apron; the sluice gate opening is 2 cm; the length of apron is 0:66 m; the
sediment reservoir length is 2:1 m; the overflow weir on the right end has a height of
0:239 m; the upstream inflow discharge rate at the sluice opening is 0:204 m2/s,
which translates into an average horizontal flow velocity V ¼ 1:02 m/s under the
sluice gate. As an example, the computed development of scour depth ds is shown in
Figure 3 together with the measurement of Chatterjee et al. [39].

The problem involves also an air-water surface, which can be tracked using a
modified volume-of-fluid method introduced in [38]. A nonuniform mesh is used in
the two-phase flow simulation because of the air-water interface, the interfacial
momentum transfer at the bed, and the large velocity variation due to the water
jet. The finest mesh with a vertical mesh resolution of 2d is used in the vicinity of
the sediment-fluid interface; this fine mesh covers the dynamic sediment-fluid

Figure 2.
A sketch of the experimental setup for scour induced by a submerged water jet.

Figure 3.
Comparison of the computed scour depth with measurements of Chatterjee et al. [39].
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interface during the entire simulation. In regions away from the sediment-fluid
interface or regions where the scouring is predicted to be negligible (e.g., further
downstream the scour hole), the mesh sizes with a vertical resolution ranging from 3
to 5 mm are used. The aspect ratio of the mesh outside the wall jet region is less than
3.0. Since in the wall jet, horizontal velocity is significantly larger than the vertical
velocity, the aspect ratio of the local mesh in the wall jet region is less than 5.0.

The scour process is sensitive to the model for particle response time used in the
simulation. Because Eq. (72) can provide a better prediction of sediment transport
rate for small values of Shields parameter, it is recommended for this problem. The
two-phase flow model can reproduce well the measured scour depth and the loca-
tion of sand dune downstream of the scour hole.

5.2 Collapse of a deeply submerged granular column

Another application of the fluid-solid two-phase flow simulation is the simula-
tion of the collapse of a deeply submerged granular column. The problem is best
described as a granular flow problem, which involves sediment (a solid phase) and
water (fluid phase). Many experimental studies have been reported in the literature
on this topic. This section describes a numerical simulation using the fluid-solid
two-phase flow model described in this chapter.

Figure 4 shows the experimental setup of Rondon et al. [40]. A 1:1 scale two-
phase flow simulation was performed by Lee and Huang [35] using the fluid-solid
two-phase flow model presented in this chapter. The diameter and the density of
the sand grain are 0.225 mm and 2500 kg/m3, respectively. The density and the
dynamic viscosity of the liquid are 1010 kg/m3 and 12 mPa s, respectively. Note that
the viscosity of the liquid in the experiment is ten times larger than that for water at
room temperature. For this problem, using a mesh of 1.0 � 1.0 mm and the particle
response model given by Eq. (78), the fluid-solid two-phase flow model presented
in this chapter can reproduce well the collapse process reported in Rondon et al.
[40]. Figure 5 shows the simulated collapsing processes compared with the mea-
surement for two initial packing conditions: initially loosely packed condition and
initially densely packed condition.

The two-phase model and closure models presented in this chapter are able to
deal with both initially loose packing and initially dense packing conditions and
reveal the roles played by the contractancy inside the granular column with a loose
packing and dilatancy inside a granular column with a dense packing. One of the
conclusions of Lee and Huang [35] is that the collapse process of a densely packed
granular column is more sensitive to the model used for particle response time than
that of a loosely packed granular column. The particle response model given by
Eq. (78) performs better than other models; this is possibly because the liquid used
in Rondon et al. [40] is much viscous than water.

Figure 4.
A sketch of the experimental setup for the collapse of a deeply submerged granular column.
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6. Summary

This chapter presented a brief introduction to the equations and closure models
suitable for fluid-solid two-phase flow problems such as sediment transport, sub-
marine landslides, and scour at hydraulic structures. Two averaging operations
were performed to derive the governing equations so that the turbulent dispersion,
important for geophysical flow problems, can be considered. A new model for the
rheological characteristics of sediment phase was used when computing the stresses
of the solid phase. The k� ϵ model was used to determine the Reynolds stresses. A
hybrid model to compute the particle response time was introduced, and the
numerical implementation in the framework of OpenFOAM® was discussed. A
numerical scheme was introduced to avoid numerical instability when the concen-
tration is high. Two applications were describe to show the capacity of the two-
phase flow models presented in this chapter.
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(e)–(h). The lines represent contours of the computed concentrations, and the symbols were experimental data
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