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Chapter

A Study on the Comparison of the
Effectiveness of the Jackknife
Method in the Biased Estimators
Nilgün Yıldız

Abstract

In this study, we proposed an alternative biased estimator. The linear regression
model might lead to ill-conditioned design matrices because of the multicollinearity
and thus result in inadequacy of the ordinary least squares estimator (OLS). Scien-
tists have developed alternative estimation techniques that would eradicate the
instability in the estimates. Several biased estimators such as Stein estimator, the
ordinary ridge regression (ORR) estimator, the principal components regression
(PCR) estimator. Liu developed a Liu estimator (LE) by combining the Stein esti-
mator with the ORR estimator. Since both ORR and LE depend on OLS estimator,
multicollinearity affects them both. Therefore, the ORR and LE may give mislead-
ing information in the presence of multicollinearity. To overcome this problem, Liu
introduced a new estimator, which is based on k and d biasing parameters, the
authors worked on developing an estimator that would still have the valuable
characteristics of the Liu-type estimator (LTE) but have a smaller bias. We are
proposing a modified jackknife Liu-type estimator (MJLTE) that was created by
combining the ideas underlying both the LTE and JLTE. Under mean square error
matrix criteria, the MJLTE is superior to Liu-type estimator (LTE) and jackknifed
Liu-type estimator (JLTE). Finally, a real data example and a Monte Carlo simula-
tion are also given to illustrate theoretical results.

Keywords: jackknifed estimators, jackknified Liu-type estimator, multicollinearity,
MSE, Liu-type estimator

1. Introduction

With regression analysis; Is there a relationship between dependent and inde-
pendent variables? If there is a relationship, what is the power of this relationship?
What is the relationship between variables? Is it possible to predict prospective
variables and how should they be estimated? What is the effect of a particular
variable or group of variables on other variables or variables in the event that
certain conditions are checked? Try to search for answers to questions such as.
Linear regression is very important, popular method in statistics. According to Web
of Science, the number of publications about linear regression between 2014 and
2018 is given in Figure 1.

According to Figure 1, the number of studies conducted in 2014 is 12,381, while
the number of studies conducted in 2018 is 13,137.
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The number of publications about linear regression by document types is given
in Figure 2.

The most common type of document about linear regression is the article. This is
followed by proceeding paper, review, and editorial material.

The number of publications about linear regression by research area is given in
Figure 3.

The most widely published area related to linear regression is engineering,
followed by mathematics, computer science, environmental sciences, ecology and
other scientific fields.

The number of publications about linear regression by countries is given in
Figure 4.

Figure 1.
Number of publications published between 2014 and 2018.

Figure 2.
Number of publications by document types.

Figure 3.
Number of publications by research area.
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The countries with the most publications on linear regression are USA, China,
England, Germany, Canada, Australia, respectively.

In regression analysis, the most commonly used method for estimating coefficients
is ordinary least squares (OLS). We considered the multiple linear regression model
given as

y ¼ Xβ þ ε (1)

where y is n� 1ð Þ observable random vector, X is a n� pð Þ matrix of
non-stochastic (independent) variables of rank p; β is p� 1ð Þ vector of unknown
parameters associated with X, and ε is a n� 1ð Þ vector of error terms with

E eð Þ ¼ 0, Cov eð Þ ¼ σ2I (2)

In regression analysis, there are several methods to estimate unknown
parameters. The most frequently used method is the least squares method
(OLS). Apart from this method, there are three general estimation methods:
maximum likelihood, generalized least squares, and best linear unbiased esti-
mator BLUE [1].

Since the use of once very popular estimators such as the ordinary least
squares (OLS) estimation has become limited due to multicollinearity, which
makes them unstable and results in bias and reduced variance of the regression
coefficients.

We can give, it is a linear (or close to linear) relationship between the indepen-
dent variables as the definition of multicollinearity. In the regression analysis,
multicollinearity leads to the following problems:

• In the case of multicollinearity, linear regression coefficients are uncertain and
the standard errors of these coefficients are infinite.

• The regression coefficients of the multicollinearity increase the variance and
covariance of OLS.

• The value of the model R2 is high but none of the independent variables is
significant compared to the partial t test.

• The direction of the related independent variables’ relations with the
dependent variable may contradict the theoretical and empirical expectations.

Figure 4.
Number of publications by countries.
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• If independent variables are interrelated, some of them may need to be
removed from the model. But what variables will be extracted? Removing an
incorrect variable from the model will result in a model error. On the other
hand, there are no simple rules that we can use to include and subtract the
arguments in the model.

Methods for dealing with multicollinearity are collecting additional data,
model respecification. Instead of two related variables, the sum of these two
variables (as a single variable) can be taken and use of biased estimators. In
this book provides information on biased estimators used as OLS alternatives.
In literature many researchers have developed biased regression estimators
[2, 3].

Examples of such biased estimators are the ordinary ridge regression (ORR)
estimator introduced by Hoerl and Kennard [4].

β̂k ¼ X0X þ kIð Þ
�1
X0y k≥0 (3)

where k is a biasing parameter, in later years researchers combined various
estimators to obtain better results. For example, Baye and Parker [5] introduced
r� kð Þ class estimator, which combines the ORR and principal component
regression (PCR). In addition, Baye and Parker also showed that r� kð Þ class
estimator is superior to PCR estimator based on the scalar mean square error
(SMSE) criterion.

Since both ORR and LE depend on OLS estimator, multicollinearity affects both
of them. Therefore, the ORR and LE may give misleading information in the
presence of multicollinearity. Liu estimator (LE) was developed by Liu [6] by
combining the Stein [7] estimator with the ORR estimator.

β̂d ¼ X0X þ Ið Þ
�1

X0yþ dβ̂
� �

0, d, 1 (4)

To overcome this problem, Liu [8] introduced a new estimator, which is based
on k and d biasing parameters as follows

β̂LTE ¼ X0X þ k Ið Þ
�1

X0yþ dβ̂
� �

k.0, �∞, d,∞ (5)

Next, the authors worked on developing an estimator that would still have
valuable characteristics of the Liu-type estimator (LTE), but have a smaller bias. In
1956, Quenouille [9] suggested that it is possible to reduce bias by applying a
jackknife procedure to a biased estimator.

This procedure enables processing of experimental data to get statistical estima-
tor for unknown parameters. A truncated sample is used calculate specific function
of estimators. The advantage of jackknife procedure is that it presents an estimator
that has a small bias while still providing beneficial properties of large samples. In
this article, we applied the jackknife technique to the LTE. Further, we established
the mean squared error superiority of the proposed estimator over both the LTE and
the jackknifed Liu-type estimator (JLTE).

The article is organized as follows: The model as well as LTE and the JLTE
are described in Section 2. The proposed new estimator is introduced in Section
3. Superiority of the new estimator vis-a-vis the LTE and the JLTE are studied
and the performance of the modified Jackknife Liu-type estimator (MJLTE) is
compared to that of the JLTE in Section 4. Sections 5 and 6 consider a real data
example and a simulation study to justify the superiority of the suggested
estimator.
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2. The model

We assume that two or more regressors in X are closely linearly related,
therefore model suffers from multicollinearity problem. A symmetric matrix
S ¼ X0X has an eigenvalue–eigenvector decomposition of the form S ¼ TΛT0,
where T is an orthogonal matrix and Λ is (real) a diagonal matrix. The diagonal
elements of Λ are the eigenvalues of S and the column vectors of T are the
eigenvectors of S. The orthogonal version of the standard multiple linear regres-
sion models is

y ¼ XTT0β þ ε ¼ Zγ þ ε (6)

where Z ¼ XT, γ ¼ T0β and Z0Z ¼ Λ. The ordinary least squares estimator
(OLSE) of γ is given by

γ̂ ¼ Z0Zð Þ
�1
Z0y ¼ Λ�1Z0y (7)

Liu [8] proposed a new biased estimator for γ, called the Liu-type estimators
(LTE), and defined as

γ̂LTE k; dð Þ ¼ Λþ kIð Þ�1 Z0y� dγ̂ð Þ for k≥0 and�∞≤ d≤ þ∞

¼ Λþ kIð Þ�1 Z0y� dΛ�1Z0y
� �

¼ I � Λþ kIð Þ�1 kþ dð Þ
h i

γ̂

¼ F k; dð Þγ̂

(8)

where

F k; dð Þ ¼ Λþ kIð Þ�1
Λ� dIð Þ (10)

γ̂LTE has bias vector

Bias γ̂LTEð Þ ¼ F k; dð Þ � Ið Þγ½ � (11)

and covariance matrix

Cov γ̂LTEð Þ ¼ σ2F k; dð ÞΛ�1F k; dð Þ0 (12)

By using Hinkley [10], Singh et al. [11], Nyquist [12], and Batah et al. [13] we
can propose the jackknifed form of γ̂LTE. Quenouille [9] and Tukey [14] introduced
the jackknife technique to reduce the bias. Hinkley [10] stated that with few
exceptions, the jackknife had been applied to balanced models. After some algebraic
manipulations, the corresponding jackknife estimator is obtained by deleting the ith

observation zi
0; yi

� �

as

A� zizi
0ð Þ
�1

¼ A�1 þ
A�1zizi

0A�1

1� zi0A
�1zi

γ̂LTE�i
k; dð Þ ¼ A� zizi

0ð Þ
�1

Z0y� ziyi
� �

¼ A�1 þ
A�1zizi

0A�1

1� zi0A
�1zi

� �

Z0y� ziyi
� �

¼ A�1Z0y� A�1ziyi þ
A�1zizi

0A�1

1� zi0A
�1zi

Z0y�
A�1zizi

0A�1

1� zi0A
�1zi

ziyi

5

A Study on the Comparison of the Effectiveness of the Jackknife Method in the Biased Estimators
DOI: http://dx.doi.org/10.5772/intechopen.82366



¼ γ̂LTE k; dð Þ þ A�1ziyi 1þ
zi
0A�1zi

1� zi0A
�1zi

� �

þ
A�1zizi

0

1� zi0A
�1zi

γ̂LTE k; dð Þ

¼ γ̂LTE k; dð Þ � A�1zi
A�1zi yi � zi

0γ̂LTE k; dð Þ
� �

1� zi0A
�1zi

¼ γ̂LTE k; dð Þ �
A�1ziei
1�wi

(13)

where zi0 is the i th row of Z, ei ¼ yi � zi
0γ̂LTE k; dð Þ is the Liu-type residual,

wi ¼ zi
0A�1zi is the distance factor and A�1 ¼ Λþ kIð Þ�1 I � dΛ�1

� �

¼ F k; dð ÞΛ�1.
In the view of the non-zero value of wi reflecting the lack of balance in the model,
we use the weighted jackknife procedure. Thus, weighted pseudo values are
defined as

Q i ¼ γ̂LTE k; dð Þ þ n 1�wið Þ γ̂LTE k; dð Þ � γ̂LTE�i
k; dð Þ

� �

the weighted jackknifed estimator of γ is obtained as

γ̂ JLTE k; dð Þ ¼
1

n
∑
n

i¼1
Q i ¼ γ̂LTE k; dð Þ þ A�1 ∑

n

i¼1
ziei (14)

∑
n

i¼1
zi ei ¼ ∑

n

i¼1
zi yi � zi

0γ̂LTE k; dð Þ
� �

¼ I � A�1
� �

Z0y

γ̂ JLTE k; dð Þ ¼ γ̂LTE k; dð Þ þ A�1Z0y� A�1Λ A�1Z0y ¼ 2I � A�1Λ
� �

γ̂LTE k; dð Þ (15)

However, since I � A�1Λ ¼ I � Λþ k Ið Þ�1
Λ� dIð Þ ¼ I � F k; dð Þ, we obtain

γ̂ JLTE k; dð Þ ¼ 2I � F k; dð Þð Þγ̂LTE k; dð Þ (16)

From (9) we have

γ̂ JLTE k; dð Þ ¼ 2I � F k; dð Þð ÞF k; dð Þγ̂ (17)

Bias γ̂ JLTE k; dð Þ
� �

¼ I � F k; dð Þð Þ2γ (18)

Variance of the JLTE as,

Cov γ̂ JLTE k; dð Þ
� �

¼ σ2 2I � F k; dð Þð ÞF k; dð ÞΛ�1F k; dð Þ0 2I � F k; dð Þð Þ0 (19)

MSEMs of the JLTE and LTE as

MSEM γ̂ JLTE k; dð Þ
� �

¼ Cov γ̂ JLTE k; dð Þ
� �

þ Bias γ̂ JLTE k; dð Þ
� �

γ̂ JLTE k; dð Þ
� �0

¼ σ2 2I � F k; dð Þð ÞF k; dð ÞΛ�1F k; dð Þ0 2I � F k; dð Þð Þ0

þ F k; dð Þ2γγ0 I � F k; dð Þð Þ2
0

(20)

MSEM γ̂LTE k; dð Þð Þ ¼ σ2F k; dð ÞΛ�1F k; dð Þ0 þ F k; dð Þ � Ið Þββ0 F k; dð Þ � Ið Þ (21)

3. Our novel MJLTE estimator

In this section, Yıldız [15] propose a new estimator for γ. The proposed estimator
is designated as the modified jackknifed Liu-type estimator (MJLTE) denoted by
γ̂MJLTE k; dð Þ
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γ̂MJLTE k; dð Þ ¼ I � kþ dð Þ2 Λþ k Ið Þ�2
h i

I � kþ dð Þ Λþ k Ið Þ�1
h i

γ̂ (22)

It may be noted that the proposed estimator MJLTE in (22) is obtained as in the
case of JLTE but by plugging in the LTE instead of the OLSE. The expressions for
bias, covariance and mean squared error matrix (MSEM) of γ̂MJLTE k; dð Þ are

obtained as

Bias γ̂MJLTE k; dð Þ
� �

¼ � kþ dð Þ Λþ kIð Þ�1W Λþ kIð Þ�1
γ (23)

Cov γ̂MJLTE k; dð Þ
� �

¼ σ2ΦΛ�1Φ0 (24)

MSEM γ̂MJLTE k; dð Þ
� �

¼ σ2ΦΛ�1Φ0 þ kþ dð Þ2 Λþ kIð Þ�1W Λþ kIð Þ�1

γγ0 Λþ kIð Þ�1W Λþ kIð Þ�1
h i0 (25)

where W ¼ I þ kþ dð Þ Λþ kIð Þ�1 � kþ dð Þ2 Λþ kIð Þ�2 ¼ I þ F k; dð Þ � F k; dð Þ2

and Φ ¼ 2I � F k; dð Þð ÞF k; dð Þ2

4. Properties of the MJLTE

One of the most prominent features of our novel MJLTE estimator is that its
bias, under some conditions, is less than LTE estimator from which it originates
from.

Theorem 4.1. Under the model (1) with the assumptions (2), the inequality

Bias γ̂MJLTE k; dð Þ
� ��

�

�

�

2
, Bias γ̂LTE k; dð Þð Þk k2 holds true for d.0 and k. d

Proof. From 11 and 23, we can obtain that

Bias γ̂MJLTE k; dð Þ
� ��

�

�

�

2
� Bias γ̂LTE k; dð Þð Þk k2 ¼ kþ dð Þ2 Λþ k Ið Þ�2 W2 � Λþ k Ið Þ2

h i

Λþ k Ið Þ�2
.0

It is obvious that the difference is greater than 0, because it consists of the
product of the squares in the expression above. Thus, the proof is completed.

Corollary 4.1. The bias of the absolute value of the i th component of MJLTE is

smaller than that of LTE, namely Biasðγ̂MJLTE k; dð Þ
�

�

�

i
, Biasðγ̂LTE k; dð Þ

�

�

�

i

�

�

�

�

�

� .

Theorem 4.2. The MJLTE has smaller variance than the LTE
Proof. From 12 and 24, it can be shown that

Cov γ̂LTE k; dð Þð Þ � Cov γ̂MJLTE k; dð Þ
� �

¼ σ2H

where

H ¼ I þ kþ dð Þ Λþ kIð Þ�1
h i

Λ�1 I þ kþ dð Þ Λþ kIð Þ�1
h i0

�ΦΛ�1Φ0

¼ I � F k; dð Þð Þ Λ�1 � I � F k; dð Þ2Λ�1ðI � Fðk; dÞ2
0

� 	h i

I � F k; dð Þð Þ

H is a diagonal matrix and ith element

hii ¼
λi þ kið Þ4 � λi þ 2ki þ dið Þ2 λi � dið Þ2

h i

λi � dið Þ2

λi λi þ kið Þ6
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is a positive number. Thus we conclude that H is a positive definite matrix. This
completes the proof.

Next, we prove necessary and sufficient condition for the MJLTE to outperform
the LTE using the MSEM condition. The proof requires the following lemma.

Lemma 4.1. Let M be a positive definite matrix, namely M.0, α be some
vector, then

M� αα0 ≥0 if and only if α0M�1α≤ 1
Proof. see Farebrother [16]
Theorem 4.3. MJLTE is superior to the LTE in the MSEM sense,

namelyMSEM γ̂LTE k; dð Þð Þ �MSEM γ̂MJLTE k; dð Þ
� �

.0, if the inequality

Δ1 ¼ MSEM γ̂LTE k; dð Þð Þ �MSEM γ̂MJLTE k; dð Þ
� �

is nonnegative definite matrix if

and if the inequality

γ0 L�1 σ2H þ F∗ k; dð Þγγ0F∗ k; dð Þ0
� �

L�10
h i�1

γ ≤ 1 (26)

is satisfied with L ¼ F∗ k; dð ÞW, F∗ k; dð Þ ¼ F k; dð Þ � I and W ¼ I þ F k; dð Þ

�F k; dð Þ2

Proof.
We consider the difference from (21, 25) we have

Δ1 ¼ MSEM γ̂LTE k; dð Þð Þ �MSEM γ̂MJLTE k; dð Þ
� �

¼ σ2H þ F∗ k; dð Þγγ0F∗ k; dð Þ0 � Lγγ0L0
(27)

where

H ¼ I þ kþ dð Þ Λþ k Ið Þ�1
h i

Λ�1 I þ kþ dð Þ Λþ k Ið Þ�1
h i0

�ΦΛ�1Φ0

¼ I � F k; dð Þð Þ Λ�1 � I � F k; dð Þ2Λ�1ðI � Fðk; dÞ2
0

� 	h i

I � F k; dð Þð Þ

W ¼ I þ F k; dð Þ � F k; dð Þ2 is a positive definite matrix. We have seen H is a
positive definite matrix from Theorem 2. Therefore, the difference Δ1 is a nonneg-

ative definite, if and only if L�1Δ1L
�10 is a nonnegative definite. The matrix

L�1Δ1L
�10 can be written as

L�1Δ1L
�10 ¼ L�1 σ2H þ F∗ k; dð Þγγ0F∗ k; dð Þ0

� �

L�10 � γγ0 (28)

Since the matrix σ2H þ F∗ k; dð Þγγ0F∗ k; dð Þ0 is symmetric and positive definite,

using Lemma 4.1, we may conclude that L�1Δ1L
�10 is a nonnegative definite, if and

only if the inequality

γ0 L�1 σ2H þ F∗ k; dð Þγγ0F∗ k; dð Þ0
� �

L�10
h i�1

γ ≤ 1

is satisfied.

4.1 Comparison between the JLTE and the MJLTE

Here, we show that the MJLTE outperforms the JLTE in terms of the sampling
variance.

Theorem 4.4. The variance of MJLTE has a smaller variance than that of the
JLTE for d.0 and k. d

8
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Proof. From (19, 24) it can be written as

Cov γ̂ JLTE k; dð Þ
� �

¼ σ2 2I � F k; dð Þð ÞF k; dð ÞΛ�1F k; dð Þ0 2I � F k; dð Þð Þ0

¼ σ2VUΛ�1U0V 0
(29)

and

Cov γ̂MJLTE k; dð Þ
� �

¼ σ2ΦΛ�1Φ0 ¼ σ2VUVΛ�1V 0U0V 0 (30)

where V ¼ I � F k; dð Þ and U ¼ I þ F k; dð Þ, respectively. It can be shown that

Cov γ̂ JLTE k; dð Þ
� �

� Cov γ̂MJLTE k; dð Þ
� �

¼ σ2Σ (31)

where Σ ¼ VU Λ�1 � VΛ�1V 0
� �

U0V 0, Σ is a diagonal matrix. Then ith the diago-

nal element of Cov γ̂ JLTE k; dð Þ
� �

� Cov γ̂MJLTE k; dð Þ
� �

is

σ2 λi þ kþ 2dið Þ2 λi � dið Þ2 kþ dið Þ 2λi þ kþ dið Þ

λi þ λi þ kið Þ6

Hence of Cov γ̂ JLTE k; dð Þ
� �

� Cov γ̂MJLTE k; dð Þ
� �

.0 which completes the proof.

In the following theorem, we have obtained a necessary and sufficient condition
for the MJLTE to outperform the JLTE in terms of matrix mean square error. The
proof of the theorem is similar to that of Theorem 4.3.

Theorem 4.5.
Δ2 ¼ MSEM γ̂ JLTE k; dð Þ

� �

�MSEM γ̂MJLTE k; dð Þ
� �

is a nonnegative definite matrix,

if and if the inequality

γ0 L�1 σ2Σþ F∗ k; dð Þ2γγ0F∗ k; dð Þ2
0

� 	

L�10
h i�1

γ ≤ 1 (32)

is satisfied.
Proof. From (20, 25) we have

Δ2 ¼ MSEM γ̂ JLTE k; dð Þ
� �

�MSEM γ̂MJLTE k; dð Þ
� �

¼ σ2Σþ F∗ k; dð Þ2γγ0F∗ k; dð Þ2
0

� F∗ k; dð ÞWγγ0W 0F∗ k; dð Þ0

We have seen from Theorem 4.4 that Σ is a positive definite matrix. Therefore,

the difference Δ2 is a nonnegative definite, if and only if L�1Δ2L
�10 is a nonnegative

definite. The matrix L�1Δ2L
�10can be written as

L�1Δ2L
�10 ¼ L�1 σ2Σþ F∗ k; dð Þ2γγ0F∗ k; dð Þ2

0
� 	

L�10 � γγ0

The difference Δ2 is a nonnegative definite matrix, if and only if L�1Δ2L
�10 is a

nonnegative definite matrix. Since the matrix σ2Σþ F∗ k; dð Þ2γγ0F∗ k; dð Þ2
0

� 	

is sym-

metric and positive definite, using Lemma 4.1, we may conclude that L�1Δ2L
�10 is

nonnegative definite, if and only if the inequality

γ0 L�1 σ2Σþ F∗ k; dð Þ2γγ0F∗ k; dð Þ2
0

� 	

L�10
h i�1

γ ≤ 1
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is satisfied. This confirms our validation. Theorems 4–6 showed that the estima-
tor we proposed was superior to the LTE estimator and JLTE estimator. Accord-
ingly, we can easily say that the MJLTE estimator is better than other estimators
LTE, JLTE.

5. Numerical example

To motivate the problem of estimation in the linear regression model, we con-
sider the hedonic prices of housing attributes. The data consists of 92 detached
homes in the Ottawa area sold during 1987 (see Yatchew [17]).

Let y be the sale price (sp) of the house, X be a 92 � 9 observation matrix
consisting of the variables: frplc: dummy for fireplace(s), grge: dummy for garage, lux:
dummy for luxury appointment, avginc: average neighborhood income, dhwy: dis-
tance to highway, lot area: area of lot, nrbed: number of bedrooms, usespc: usable
space. The data are given in Table 1.

The eigenvalues of the matrix X0X: 9 � 9 are given by λ1 ¼ 1:47, λ2 ¼ 3:77,
λ3 ¼ 4:52, λ4 ¼ 15:33, λ5 ¼ 18:57, λ6 ¼ 20:97, λ7 ¼ 41:79, λ8 ¼ 271:15 and
λ9 ¼ 239153:68.

If we use the spectral norm, then the corresponding measure of conditioning of

X is the number κ Xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λmax X0Xð Þ=λmin X0Xð Þ
p

whereκ :ð Þ∈ 1;∞½ Þ. We obtained
κ Xð Þ ¼ 403:27, which is large and so X may be considered as being ill-conditioned.

In this case, the regression coefficients become insignificant and therefore, it is
hard to make a valid inference or prediction using OLS method. To overcome many

of the difficulties associated with the OLS estimates, the LTE. When β̂ ¼ X0Xð Þ
�1
X0y

and k and d are biasing parameters the use of β̂LTE ¼ X0X þ kIð Þ
�1

X0yþ dβ̂
� �

, k.0,
�∞, d, þ∞ has become conventional. The LTE estimator will be used for the
following example. The original model was used to reconstruct a canonical form as
shown in (6) y ¼ Zγ þ ε. Estimators γ̂LTE,γ̂ JLTE and γ̂MJLTE used data

d ¼ 0:10,0:30,0:70, 1 and k ¼ 0:30,0:50,0:70, 1. Then, the original variable scale
was obtained by using the coefficients estimated by these estimators. The individual
values of d and k for the scalar MSE (SMSE = trace (MSEM)) of the estimators are
shown in Tables 2–5. The effects of different values of d on MSE can be seen in
Figures 5–8 that clearly show that the proposed estimator (MJLTE) has smaller
estimated MSE values compared to those of the LTE, JLTE.

We observed that for all values of d SMSE(MJLTE) assumed smaller values
compared to both SMSE(JLTE) and SMSE(LTE). The estimators’ SMSE values are
affected by increasing values of k, however the estimator that is affected the least by
these changes is our proposed MJLTE estimator. When compared to the other two
estimators, the SMSE values of MJLTE gave the best results for both the small and
large values of k and d.

6. A simulation study

We want to illustrate the behavior of the proposed parameter estimator by a
Monte Carlo simulation. The main purpose of this article is to demonstrate the
construction and the details of the simulation which is designed to evaluate the
performances of the estimators LTE, JLTE and MJLTE when the regressors are
highly intercorrelated. According to Liu [8] and Kibria [18] the explanatory vari-
ables and response variable are generated by using the following equations
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sellprix fireplac garage luxbath avginc crowdist ncrosdst disthwy lotarea nrbed usespace south west nsouth nwest

180 0 1 0 32.3163 0.93428 0 0.63807 3.63297 3 1.23309 0.84 0.409 0 0

135 0 1 0 31.5016 2.18624 0.13942 0.66452 6.5 3 0.84592 1.44 1.645 0.087171 0.16962

165.9 0 1 0 32.0654 2.31148 0.15337 0.43422 5.72 3 0.87508 1.673 1.595 0.12102 0.16276

101 0 0 0 37.8348 2.54381 0.17924 0.26872 3.136 2 0.71445 2.252 1.183 0.20514 0.10622

127 0 0 0 37.8348 2.5458 0.17947 0.16621 2.7 3 0.73789 2.193 1.293 0.19657 0.12131

235 1 0 1 67.0056 2.77147 0.2046 0.22935 6.695 4 1.3518 2.352 1.466 0.21967 0.14505

195 1 1 0 65.8278 3.08747 0.23979 0.30295 4.23 3 1.16829 2.564 1.72 0.25047 0.17991

184.5 1 0 0 62.3053 3.4844 0.28399 0.33009 4.224 3 0.98228 2.785 2.094 0.28258 0.23123

106 1 1 0 38.4946 3.83086 0.32258 0.87056 3.234 2 0.79507 2.148 3.172 0.19003 0.37917

156 1 1 0 52.3552 3.85306 0.32505 0.39006 5 3 0.90239 2.563 2.877 0.25033 0.33869

195 1 0 0 52.3552 3.88283 0.32836 0.67211 4.8 4 1.29465 2.363 3.081 0.22127 0.36668

206 1 1 0 52.3552 3.92493 0.33305 0.69495 4.75 4 1.7111 2.38 3.121 0.22374 0.37217

157 0 1 0 52.3552 3.95888 0.33683 0.43005 5 3 0.901 2.621 2.967 0.25875 0.35104

180 1 0 0 79.4583 3.96236 0.33722 0.12078 4 3 0.95527 3.015 2.571 0.316 0.29669

193 1 1 0 79.4583 3.9626 0.33725 0.19503 6.35545 3 1.50436 3.063 2.514 0.32297 0.28887

230 1 1 0 52.3552 3.97284 0.33839 0.39307 5 3 1.08421 2.661 2.95 0.26456 0.3487

212 0 1 1 53.8647 4.04329 0.34623 0.22395 5 4 1.08724 2.845 2.873 0.2913 0.33814

102 1 0 0 59.5774 4.11494 0.35421 1.18386 4 2 1.24813 2.113 3.531 0.18495 0.42843

137 1 1 0 59.5774 4.13141 0.35605 1.01187 2.4 3 0.753 2.285 3.442 0.20994 0.41622

187 0 1 0 59.5774 4.13723 0.35669 1.00413 6.10686 3 0.91936 2.297 3.441 0.21168 0.41608

103 0 0 0 59.5774 4.16338 0.35961 1.14419 4 2 0.68893 2.193 3.539 0.19657 0.42953

100 0 0 0 59.5774 4.22521 0.36649 1.22908 4 3 1.07483 2.169 3.626 0.19308 0.44147
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sellprix fireplac garage luxbath avginc crowdist ncrosdst disthwy lotarea nrbed usespace south west nsouth nwest

152 1 1 0 39.7652 4.29688 0.37447 1.02071 9.9 4 1.01668 3.793 2.019 0.42903 0.22094

127 1 1 0 39.5229 4.52879 0.4003 0.6903 5.16 4 1.64743 2.897 3.481 0.29885 0.42157

119.5 0 1 0 35.6 4.59649 0.40784 1.39392 4.9 2 0.9768 4.206 1.854 0.48903 0.1983

103 0 0 0 39.5229 4.63841 0.41251 0.64774 4.6158 2 1.14358 3.023 3.518 0.31716 0.42665

99 0 1 0 30.6514 4.69599 0.41892 1.00164 5 4 0.8655 4.112 2.268 0.47537 0.25511

75 0 0 0 39.5 4.69941 0.4193 0.49382 1.891 3 1.1436 3.192 3.449 0.34171 0.41718

128 1 1 0 39.5229 4.73353 0.4231 0.7881 5 3 1.03911 2.992 3.668 0.31265 0.44723

132 1 0 0 35.6 4.75938 0.42598 1.23504 5.0892 3 1.32579 4.273 2.096 0.49877 0.23151

132 0 0 0 38.1216 4.80701 0.43128 0.35373 6.5415 4 1.25312 3.851 2.877 0.43745 0.33869

134 0 0 0 39.5 5.04763 0.45808 0.27429 4.725 3 0.80536 3.64 3.497 0.4068 0.42377

120 1 1 0 39.8732 5.08006 0.46169 0.58519 5 3 1.2452 4.208 2.846 0.48932 0.33443

125 0 1 0 39.8732 5.21855 0.47712 0.7121 6.96 2 0.62472 4.391 2.82 0.51591 0.33086

135 1 1 0 25.9545 5.23599 0.47906 1.01716 5.4 3 0.88273 4.563 2.568 0.5409 0.29628

139 1 1 0 38.24 5.26572 0.48237 0.92231 4.08 4 1.44414 3.335 4.075 0.36249 0.50309

151 0 1 0 34.4049 5.34316 0.49099 0.96285 6.6 3 1.03205 3.368 4.148 0.36728 0.51311

116.5 0 1 0 38.1216 5.53704 0.51258 0.51961 5.3 3 0.99325 4.544 3.164 0.53814 0.37807

137 1 1 0 50.0548 5.56767 0.516 0.70637 6.6 3 0.8773 3.757 4.109 0.4238 0.50775

149 1 1 0 55.8667 5.75411 0.53676 1.38296 5.6 3 1.19255 3.37 4.664 0.36757 0.58392

167 1 1 0 58.4763 5.8055 0.54248 1.20341 6.4152 4 1.48624 3.565 4.582 0.3959 0.57266

163 1 1 0 58.4763 5.8213 0.54424 1.03375 4.92 4 1.60065 3.716 4.481 0.41784 0.5588

147.5 0 1 0 58.4763 6.0749 0.57248 0.73326 5.1825 3 0.972 4.16 4.427 0.48235 0.55139

237.7 1 1 0 58.4763 6.0752 0.57252 0.62363 5.4495 4 1.99967 4.241 4.35 0.49412 0.54083
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sellprix fireplac garage luxbath avginc crowdist ncrosdst disthwy lotarea nrbed usespace south west nsouth nwest

168 1 1 0 44.2475 6.2599 0.59309 1.49998 5 3 1.30275 3.706 5.045 0.41639 0.6362

180 1 1 0 58.4763 6.3173 0.59948 1.03263 5.3014 4 1.59782 4.135 4.776 0.47872 0.59929

156 1 0 0 57.7446 6.6398 0.63539 1.09965 5 3 1.41006 4.354 5.013 0.51053 0.63181

145 1 1 0 44.2475 6.6469 0.63618 1.67399 6.572 4 1.22169 3.891 5.389 0.44327 0.68341

144 1 1 0 57.6861 6.6854 0.64047 0.76067 6.825 4 1.689 5.616 3.627 0.69388 0.44161

140 1 1 0 57.6861 6.69752 0.64182 0.63376 6.3 3 1.14778 5.556 3.74 0.68517 0.45712

236 1 1 1 44.2475 6.7398 0.64653 1.59621 4.725 4 1.63184 4.037 5.397 0.46448 0.68451

172 1 1 0 53.5907 6.8231 0.65581 0.98439 5 4 1.22956 4.596 5.043 0.54569 0.63593

148 1 0 0 71.0269 7.1147 0.68828 1.42051 6 3 1.14276 4.501 5.51 0.53189 0.70001

153.5 1 1 0 71.0269 7.1224 0.68914 1.54559 7.3832 4 1.433 4.406 5.596 0.51809 0.71182

154 1 1 0 71.0269 7.157 0.69299 1.21892 5.292 3 1.44025 4.696 5.401 0.56022 0.68506

145.5 1 1 0 50.7101 7.3023 0.70917 0.6233 6.735 4 1.49297 6.044 4.098 0.75607 0.50624

149 1 0 0 50.7101 7.35272 0.71479 0.4738 6.0888 4 1.26687 6 4.25 0.74967 0.5271

138 1 0 0 50.7101 7.3538 0.71491 0.58063 5.3352 4 1.50339 6.062 4.163 0.75868 0.51516

141.5 1 0 0 52.6378 7.44672 0.72525 1.07227 6.54 4 1.03462 6.403 3.802 0.80822 0.46562

125 1 0 0 52.6378 7.46892 0.72773 0.9696 7.02 4 1.16772 6.368 3.903 0.80314 0.47948

130 0 1 0 52.6378 7.52266 0.73371 0.93924 6.5 4 1.09757 6.396 3.96 0.80721 0.48731

132 0 1 0 52.6378 7.55757 0.7376 0.91361 5.1 4 1.20377 6.411 4.002 0.80939 0.49307

132.9 1 1 0 52.6378 7.58783 0.74097 0.88591 6 3 1.06059 6.421 4.043 0.81084 0.4987

122 1 1 0 52.6378 7.6221 0.74479 0.85984 5 3 0.80494 6.435 4.085 0.81287 0.50446

162 1 1 0 51.5087 7.63628 0.74637 0.35916 4.992 4 1.4318 5.705 5.076 0.70681 0.64046

127.5 1 0 0 73.4464 7.6503 0.74793 0.68757 6.785 3 0.84692 5.488 5.33 0.67529 0.67531
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sellprix fireplac garage luxbath avginc crowdist ncrosdst disthwy lotarea nrbed usespace south west nsouth nwest

87 0 0 0 42.3138 7.6785 0.75107 1.67919 4.6 4 0.74017 4.769 6.018 0.57083 0.76973

139.9 1 1 0 40.9246 7.90353 0.77613 0.40138 5.5 3 1.19235 6.366 4.684 0.80285 0.58666

240 1 1 1 41.95 7.9194 0.77789 1.16065 5.004 4 1.3972 5.316 5.87 0.6503 0.74942

134 1 1 0 52.6378 7.92504 0.77852 1.08098 4.2581 3 1.2298 6.776 4.11 0.86241 0.50789

136.5 1 0 0 42.3138 7.9381 0.77998 1.58184 4.625 3 1.06694 5.008 6.159 0.60555 0.78908

143.5 1 1 0 51.5087 7.98552 0.78526 0.19433 5 4 1.44972 6.038 5.226 0.75519 0.66104

140 1 1 0 57.5706 7.99308 0.7861 0.94096 7.856 3 1.03167 6.743 4.292 0.85762 0.53287

123 1 0 0 51.5087 8.02072 0.78918 0.7685 6.757 4 1.28782 5.665 5.678 0.701 0.72307

147 1 1 0 57.5706 8.06875 0.79453 0.5518 5.04 3 0.96054 6.565 4.691 0.83176 0.58762

134.9 1 1 0 57.5706 8.16678 0.80544 0.77684 5.185 4 1.35781 6.763 4.578 0.86053 0.57211

154 1 1 0 57.5706 8.23868 0.81345 0.85344 5.27 4 1.60938 6.855 4.57 0.87389 0.57102

143.9 1 0 0 40.9246 8.56769 0.85009 0.53129 5 3 0.91112 6.877 5.11 0.87709 0.64512

126 1 1 0 53.8029 8.62504 0.85648 0.48411 5 4 0.88838 6.885 5.195 0.87825 0.65679

118.5 1 0 0 40.0618 8.9486 0.89251 0.10317 5.1 3 1.05885 6.85 5.758 0.87317 0.73405

158 1 1 1 39.5262 8.9552 0.89325 1.86432 5.035 3 1.1192 5.425 7.125 0.66613 0.92164

118 0 0 0 37.1457 9.2964 0.93124 0.18611 5.035 3 0.93595 7.127 5.969 0.91341 0.763

109.25 0 0 0 30.9704 9.4572 0.94915 0.70329 5.4 3 0.67449 7.56 5.682 0.97632 0.72362

124 0 0 0 49.0297 9.5445 0.95887 0.43645 6 3 1.46683 6.863 6.633 0.87505 0.85412

137 1 0 0 35.5188 9.5795 0.96277 1.7827 5 3 0.97388 5.882 7.561 0.73253 0.98147

142 1 1 0 30.5844 9.6273 0.96809 1.59895 5 4 1.4761 6.056 7.484 0.75781 0.97091

120.5 0 0 0 26.9947 9.6483 0.97043 1.51784 5 3 0.69971 6.132 7.449 0.76885 0.9661

123 0 1 0 51.1569 9.7401 0.98066 1.79905 5 2 0.68574 5.97 7.696 0.74531 1
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sellprix fireplac garage luxbath avginc crowdist ncrosdst disthwy lotarea nrbed usespace south west nsouth nwest

157.5 1 0 0 51.1569 9.744 0.98109 1.71459 5 4 1.07226 6.039 7.647 0.75534 0.99328

115 1 0 0 47.8688 9.7586 0.98272 0.92055 5 3 0.90163 6.651 7.141 0.84425 0.92384

126.5 1 1 0 55.2901 9.8628 0.99432 0.412 5 3 0.902 7.637 6.241 0.98751 0.80033

155 1 1 0 55.2901 9.9138 1 0.49461 5 3 1.41319 7.723 6.216 1 0.7969

Table 1.
Data set.
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d = 0.10 d = 0.30 d = 0.70 d = 1

MSE(LTE) 810.4511 1037.6454 1900.68971 2905.5467

MSE(JLTE) 733.5563 729.5050 977.1382 1688.9649

MSE(MJLTE) 631.2267 669.0754 967.7905 1289.1137

Table 2.
The estimated MSE values of LTE, JLTE and MJLTE k = 0.30.

d = 0.10 d = 0.30 d = 0.70 d = 1

MSE(LTE) 957.6623 1245.7243 2157.4693 3134.9466

MSE(JLTE) 725.6311 752.2125 1102.8970 1872.6471

MSE(MJLTE) 608.2459 656.6023 892.2214 1115.3394

Table 3
The estimated MSE values of LTE, JLTE and MJLTE k = 0.50.

d = 0.10 d = 0.30 d = 0.70 d = 1

MSE(LTE) 1133.2567 1459.7360 2393.9079 2042.7127

MSE(JLTE) 734.5155 795.8311 1234.9720 3340.5986

MSE(MJLTE) 587.0096 633.9972 815.8143 973.5845

Table 4.
The estimated MSE values of LTE, JLTE and MJLTE k = 0.70.

d = 0.10 d = 0.30 d = 0.70 d = 1

MSE(LTE) 1415.148 1774.1222 1774.1222 3613.8006

MSE(JLTE) 779.0405 891.0250 891.0250 2274.5162

MSE(MJLTE) 551.0494 588.8484 588.8484 807.4456

Table 5.
The estimated MSE values of LTE, JLTE and MJLTE k = 1.

Figure 5.
Various MSE of the proposed estimator compared to others for different values of d when k ¼ 0.30.
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xij ¼ 1� γ2
� �1=2

zij þ γzip, yi ¼ 1� γ2
� �1=2

zi þ γzip i ¼ 1, 2,…, n, j ¼ 1, 2,…, p

where zij is an independent standard normal pseudo-random number and p is

specified so that correlation between any two explanatory variables is given by γ2.
In this study, we used γ ¼ 0:90,0:95,0:99 to investigate the effects of different
degrees of collinearity with sample sizes n ¼ 20, 50 and 100, while four different
combinations for k; dð Þ are taken as (0.8, 0.5), (1, 0.7), (1.5, 0.9), (2, 1). The
standard deviations considered in the simulation study are σ ¼ 0:1; 1:0; 10. For each
choice of γ, σ2 and n, the experiment was replicated 1000 times by generating new
error terms. The average SMSE was computed using the following formula

SMSE β̂
� �

¼
1

1000
∑
1000

j¼1
βj � β

� 	0
βj � β

� 	

Let us consider the LTE, JLTE and MJLTE and compute their respective esti-
mated MSE values with the different levels of multicollinearity. According to the

Figure 6.
Various MSE of the proposed estimator compared to others for different values of d when k ¼ 0.50.

Figure 7.
Various MSE of the proposed estimator compared to others for different values of d when k ¼ 0.70.
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simulation results shown in Tables 4 and 5 for LTE, JLTE and MJLTE with increas-
ing levels of multicollinearity there was a general increase in the estimated MSE
values Moreover, increasing level of multicollinearity also lead to the increase in the
MSE estimators for fixed d and k.

In Table 4, the MSE values of the estimators corresponding to different values
of d are given for k = 0.70. For all values of d, the smallest MSE value appears to
belong to the MJLTE estimator. The least affected by multicollinearity is MJLTE
according to MSE criteria.

In Table 5, the MSE values of the estimators corresponding to different values of
d are given for k = 1.

For all values of d, the smallest MSE value appears to belong to the MJLTE
estimator. The least affected by multicollinearity is MJLTE according to MSE
criteria.

We can see that MJLTE is much better than the competing estimator when the
explanatory variables are severely collinear. Moreover, we can see that for all cases
of LTE, JLTE and MJLTE in MSE criterion the MJLTE has smaller estimated MSE
values than those of the LTE and JLTE.

7. Conclusion

In this paper, we combined the LTE and JLTE estimators to introduce a new
estimator, which we called MJLTE. Combining the underlying criteria of LTE
and JLTE estimators enabled us to create a new estimator for regression coeffi-
cients of a linear regression model that is affected by multicollinearity. More-
over, the use of jackknife procedure enabled as to produce an estimator with
a smaller bias. We compared our MJLTE to its originators LTE and JLTE in
terms of MSEM and found that MJLTE has a smaller variance compared to both
LTE and JLTE. Thus, MJLTE is superior to both LTE and JLTE under certain
conditions.

Figure 8.
Various MSE of the proposed estimator compared to others for different values of d when k ¼ 1.
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