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Chapter

Some Topological Properties of
Intuitionistic Fuzzy Normed
Spaces
Vakeel Ahmad Khan, Hira Fatima and Mobeen Ahmad

Abstract

In 1986, Atanassov introduced the concept of intuitionistic fuzzy set theory
which is based on the extensions of definitions of fuzzy set theory given by Zadeh.
This theory provides a variable model to elaborate uncertainty and vagueness
involved in decision making problems. In this chapter, we concentrate our study on
the ideal convergence of sequence spaces with respect to intuitionistic fuzzy norm
and discussed their topological and algebraic properties.

Keywords: ideal, intuitionistic fuzzy normed spaces, Orlicz function
compact operator, I-convergence

1. Introduction

In recent years, the fuzzy theory has emerged as the most active area of research
in many branches of mathematics, computer and engineering [1]. After the excel-
lent work of Zadeh [2], a large number of research work have been done on fuzzy
set theory and its applications as well as fuzzy analogues of the classical theories. It
has a wide number of applications in various fields such as population dynamics [3],
nonlinear dynamical system [4], chaos control [5], computer programming [6], etc.
In 2006, Saadati and Park [7] introduced the concept of intuitionistic fuzzy normed
spaces after that the concept of statistical convergence in intuitionistic fuzzy
normed space was studied for single sequence in [8]. The study of intuitionistic
fuzzy topological spaces [9], intuitionistic fuzzy 2-normed space [10] and
intuitionistic fuzzy Zweier ideal convergent sequence spaces [11] are the latest
developments in fuzzy topology.

First, let us recall some notions, basic definitions and concepts which are used in
sequel.

Definition 1.1. (See Ref. [7]). The five-tuple X; μ; ν; ∗; ⋄ð Þ is said to be an
intuitionistic fuzzy normed space (for short, IFNS) if X is a vector space, ∗ is a
continuous t-norm, ⋄ is a continuous t-conorm, and μ and ν are fuzzy sets on
X � 0;∞ð Þ satisfying the following conditions for every x, y∈X and s, t >0 :

(a) μ x; tð Þ þ ν x; tð Þ≤ 1,

(b) μ x; tð Þ >0,

(c) μ x; tð Þ ¼ 1 if and only if x ¼ 0,

(d) μ αx; tð Þ ¼ μ x; t
∣α∣

� �

for each α 6¼ 0,
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(e) μ x; tð Þ ∗ μ y; sð Þ≤ μ xþ y; tþ sð Þ,
(f) μ x; :ð Þ : 0;∞ð Þ ! 0; 1½ � is continuous,
(g) limt!∞ μ x; tð Þ ¼ 1 and limt!0 μ x; tð Þ ¼ 0,
(h) ν x; tð Þ < 1,
(i) ν x; tð Þ ¼ 0 if and only if x ¼ 0,

(j) ν αx; tð Þ ¼ ν x; t
∣α∣

� �

for each α 6¼ 0,

(k) ν x; tð Þ ⋄ ν y; sð Þ≥ ν xþ y; tþ sð Þ,
(l) ν x; :ð Þ : 0;∞ð Þ ! 0; 1½ � is continuous,
(m) limt!∞ ν x; tð Þ ¼ 0 and limt!0 ν x; tð Þ ¼ 1:

In this case μ; νð Þ is called an intuitionistic fuzzy norm.
Example 1.1. Let X; ∥:∥ð Þ be a normed space. Denote a ∗ b ¼ ab and

a ⋄ b ¼ min aþ b; 1ð Þ for all a, b∈ 0; 1½ � and let μ0 and ν0 be fuzzy sets on X � 0;∞ð Þ
defined as follows:

μ0 x; tð Þ ¼
t

tþ ∥x∥
, and ν0 x; tð Þ ¼

∥x∥

tþ ∥x∥

for all t∈ℝ
þ. Then X; μ; ν; ∗; ⋄ð Þ is an intuitionistic fuzzy normed space.

Definition 1.2. Let X; μ; ν; ∗; ⋄ð Þ be an IFNS. Then a sequence x ¼ xkð Þ is said to
be convergent to L∈X with respect to the intuitionistic fuzzy norm μ; νð Þ if, for
every ε >0 and t >0, there exists k0 ∈ℕ such that μ xk � L; tð Þ>1� ε and
ν xk � L; tð Þ < ε for all k≥ k0. In this case we write μ; νð Þ-limx ¼ L.

In 1951, the concept of statistical convergence was introduced by Steinhaus [12]
and Fast [13] in their papers “Sur la convergence ordinaire et la convergence
asymptotique” and “Sur la convergence statistique,” respectively. Later on, in 1959,
Schoenberg [14] reintroduced this concept. It is a very useful functional tool for
studying the convergence of numerical problems through the concept of density.
The concept of ideal convergence, which is a generalization of statistical conver-
gence, was introduced by Kostyrko et al. [15] and it is based on the ideal I as a
subsets of the set of positive integers and further studied in [16–20].

Let X be a non-empty set then a family I⊂ 2X is said to be an ideal in X if ∅∈I, I
is additive, i.e., for all A, B∈I ) A∪B∈I and I is hereditary, i.e., for all

A∈I, B⊆A ) B∈I. A non empty family of sets F⊂2X is said to be a filter on X if for

all A, B∈F implies A∩B∈F and for all A∈F with A⊆B implies B∈F . An ideal I⊂2X is

said to be nontrivial if I 6¼ 2X, this non trivial ideal is said to be admissible if
I⊇ xf g : x∈Xf g and is said to be maximal if there cannot exist any nontrivial ideal
J 6¼ I containing I as a subset. For each ideal I, there is a filter F Ið Þ called as filter
associate with ideal I, that is (see [15]),

F Ið Þ ¼ K⊆X : Kc∈If g, where Kc ¼ X\K: (1)

A sequence x ¼ xkð Þ∈ω is said to be I-convergent [21, 22] to a number L if for
every ε>0, we have k∈ℕ : jxk � Lj≥εf g∈I: In this case, we write I � lim xk ¼ L:

2. IF-ideal convergent sequence spaces using compact operator

This section consists of some double sequence spaces with respect to
intuitionistic fuzzy normed space and study the fuzzy topology on the said spaces.
First we recall some basic definitions on compact operator.

Definition 2.1. (See [23]). Let X and Y be two normed linear spaces and
T : D Tð Þ ! Y be a linear operator, where D⊂X: Then, the operator T is said to be
bounded, if there exists a positive real k such that
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∥Tx∥≤k∥x∥, for all x∈D Tð Þ:

The set of all bounded linear operators B X;Yð Þ [24] is a normed linear spaces
normed by

∥T∥ ¼ sup
x∈X, ∥x∥¼1

∥Tx∥

and B X;Yð Þ is a Banach space if Y is a Banach space.
Definition 2.2. (See [23]). Let X and Y be two normed linear spaces. An opera-

tor T : X ! Y is said to be a compact linear operator (or completely continuous
linear operator), if

(i) T is linear,

(ii) T maps every bounded sequence xkð Þ in X on to a sequence T xkð Þð Þ in Y
which has a convergent subsequence.

The set of all compact linear operators C X;Yð Þ is a closed subspace of B X;Yð Þ
and C X;Yð Þ is Banach space, if Y is a Banach space.

In 2015, Khan et al. [11] introduced the following sequence spaces:

Z
I
μ;νð Þ ¼ xkð Þ∈ω : k : μ x

=
k � L; t

� �

≤1� ε or ν x
=
k � L; t

� �

≥ε
n o

∈I
n o

,

Z
I
0 μ;νð Þ ¼ xkð Þ∈ω : k : μ x

=
k; t

� �

≤1� ε or ν x
=
k; t

� �

≥ε
n o

∈I
n o

:

Motivated by this, we introduce the following sequence spaces with the help of
compact operator in intuitionistic fuzzy normed spaces:

M
I
μ;νð Þ Tð Þ ¼ xkð Þ∈ℓ∞ : {k : μ T xkð Þ � L; tð Þ≤1� ε

or ν T xkð Þ � L; tð Þ≥ε∈I} (2)

M
I
0 μ;νð Þ Tð Þ ¼ xkð Þ∈ℓ∞ : {k : μ T xkð Þ; tð Þ≤1� ε

or ν T xkð Þ; tð Þ≥ε∈I}: (3)

Here, we also define an open ball with center x and radius r with respect to t as
follows:

Bx r; tð Þ Tð Þ ¼ yk
� �

∈ℓ∞ : {k : μ T xkð Þ � T yk
� �

; t
� �

≤1� ε

or ν T xkð Þ � T yk
� �

; t
� �

≥ε∈I}: (4)

Now, we are ready to state and prove our main results. This theorem is based on
the linearity of new define sequence spaces which is stated as follows.

Theorem 2.1. The sequence spaces MI
μ;νð Þ Tð Þ and M

I
0 μ;νð Þ Tð Þ are linear spaces.

Proof. Let x ¼ xkð Þ, y ¼ yk
� �

∈MI
μ;νð Þ Tð Þ and α, β be scalars. Then for a given ε>0,

we have the sets:

P1 ¼ k : μ T xkð Þ � L1;
t

2∣α∣

� �

≤1� ε or ν T xkð Þ � L1;
t

2∣α∣

� �

≥ε

� 	

∈I;

P2 ¼ k : μ T yk
� �

� L2;
t

2∣β∣

� �

≤1� ε or ν T yk
� �

� L2;
t

2∣β∣

� �

≥ε

� 	

∈I:

This implies

Pc
1 ¼ k : μ T xkð Þ � L1;

t

2∣α∣

� �

>1� ε or ν T xkð Þ � L1;
t

2∣α∣

� �

< ε

� 	

∈F Ið Þ;
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Pc
2 ¼ k : μ T yk

� �

� L2;
t

2∣β∣

� �

>1� ε or ν T yk

� �

� L2;
t

2∣β∣

� �

< ε

� 	

∈F Ið Þ:

�

Now, we define the set P3 ¼ P1 ∪P2, so that P3∈I. It shows that Pc
3 is a non-

empty set in F Ið Þ. We shall show that for each xkð Þ, yk
� �

∈MI
μ;νð Þ Tð Þ:

Pc
3⊂{k : μ αT xkð Þ þ βT yk

� �� �

� αL1 þ βL2ð Þ; t
� �

>1� ε

or ν αT xkð Þ þ βT yk
� �� �

� αL1 þ βL2ð Þ; t
� �

< ε}:

Let m∈Pc
3, in this case

μ T xmð Þ � L1;
t

2∣α∣

� �

>1� ε or ν T xmð Þ � L1;
t

2∣α∣

� �

< ε

and

μ T ym
� �

� L2;
t

2∣β∣

� �

>1� ε or ν T ym
� �

� L2;
t

2∣β∣

� �

< ε:

Thus, we have

μ αT xmð Þ þ βT ym
� �� �

� αL1 þ βL2ð Þ; t
� �

≥μ αT xmð Þ � αL1;
t

2

� �

∗μ βT xmð Þ � βL2;
t

2

� �

¼ μ T xmð Þ � L1;
t

2∣α∣

� �

∗μ T xmð Þ � L2;
t

2∣β∣

� �

> 1� εð Þ∗ 1� εð Þ ¼ 1� ε:

and

ν αT xmð Þ þ βT ym
� �� �

� αL1 þ βL2ð Þ; t
� �

≤ν αT xmð Þ � αL1;
t

2

� �

⋄ν βT xmð Þ � βL2;
t

2

� �

¼ μ T xmð Þ � L1;
t

2∣α∣

� �

⋄μ T xmð Þ � L2;
t

2∣β∣

� �

< ε⋄ε ¼ ε:

This implies that

Pc
3⊂{k : μ αT xkð Þ þ βT yk

� �� �

� αL1 þ βL2ð Þ; t
� �

>1� ε

or ν αT xkð Þ þ βT yk
� �� �

� αL1 þ βL2ð Þ; t
� �

< ε:

Therefore, the sequence space MI
μ;νð Þ Tð Þ is a linear space.

Similarly, we can proof for the other space. □

In the following theorems, we discussed the convergence problem in the said
sequence spaces. For this, firstly we have to discuss about the topology of this space.
Define

τI
μ;νð Þ Tð Þ ¼ A⊂MI

μ;νð Þ Tð Þ : for each x∈A there exists t>0

and r∈ 0; 1ð Þ such that Bx r; tð Þ Tð Þ⊂A:

Then τI
μ;νð Þ Tð Þ is a topology on M

I
μ;νð Þ Tð Þ.
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Theorem 2.2. Let MI
μ;νð Þ Tð Þ is an IFNS and τI

μ;νð Þ Tð Þ is a topology on M
I
μ;νð Þ Tð Þ.

Then a sequence xkð Þ∈MI
μ;νð Þ Tð Þ, xk ! x if and only if μ T xkð Þ � T xð Þ; tð Þ ! 1 and

ν T xkð Þ � T xð Þ; tð Þ ! 0 as k ! ∞.
Proof. Fix t0>0. Suppose xk ! x. Then for r∈ 0; 1ð Þ, there exists n0∈ℕ such that

xkð Þ∈Bx r; tð Þ Tð Þ for all k≥n0. So, we have

Bx r; t0ð Þ Tð Þ ¼ k : μ T xkð Þ � T xð Þ; tð Þ≤1� r or ν T xkð Þ � T xð Þ; t0ð Þ≥rf g∈I,

such that Bc
x r; t0ð Þ Tð Þ∈F Ið Þ. Then 1� μ T xkð Þ � T xð Þ; t0ð Þ < r and

ν T xkð Þ � T xð Þ; t0ð Þ < r. Hence μ T xkð Þ � T xð Þ; t0ð Þ ! 1 and ν T xkð Þ � T xð Þ; t0ð Þ ! 0
as k ! ∞.

Conversely, if for each t>0, μ T xkð Þ � T xð Þ; tð Þ ! 1 and ν T xkð Þ � T xð Þ; tð Þ ! 0 as
k ! ∞, then for r∈ 0; 1ð Þ, there exists n0∈ℕ, such that 1� μ T xkð Þ � T xð Þ; tð Þ < r and
ν T xkð Þ � T xð Þ; tð Þ < r, for all k≥n0. It shows that μ T xkð Þ � T xð Þ; tð Þ>1� r and
ν T xkð Þ � T xð Þ; tð Þ < r for all k≥n0: Therefore xkð Þ∈Bc

x r; tð Þ Tð Þ for all k≥n0 and hence
xk ! x.

There are some facts that arise in connection with the convergence of sequences
in these spaces. Let us proceed to the next theorem on Ideal convergence of
sequences in these new define spaces.

Theorem 2.3. A sequence x ¼ xkð Þ∈MI
μ;νð Þ Tð Þ is I-convergent if and only if for

every ε>0 and t>0 there exists a number N ¼ N x; ε; tð Þ such that

N : μ T xNð Þ � L;
t

2

� �

>1� ε or ν T xNð Þ � L;
t

2

� �

< ε
n o

∈F Ið Þ:

Proof. Suppose that I μ;νð Þ � lim x ¼ L and let t>0. For a given ε>0, choose s>0

such that 1� εð Þ∗ 1� εð Þ>1� s and ε⋄ε < s: Then for each x∈MI
μ;νð Þ Tð Þ,

R ¼ k : μ T xkð Þ � L;
t

2

� �

≤1� ε or ν T xkð Þ � L;
t

2

� �

≥ε
n o

∈I,

which implies that

Rc ¼ k : μ T xkð Þ � L;
t

2

� �

>1� ε or ν T xkð Þ � L;
t

2

� �

< ε
n o

∈F Ið Þ:

Conversely, let us choose N∈Rc. Then

μ T xNð Þ � L;
t

2

� �

>1� ε or ν T xNð Þ � L;
t

2

� �

< ε:

Now, we want to show that there exists a number N ¼ N x; ε; tð Þ such that

k : μ T xkð Þ � T xNð Þ; tð Þ≤1� s or ν T xkð Þ � T xNð Þ; tð Þ≥sf g∈I:

For this, we define for each x∈MI
μ;νð Þ Tð Þ

S ¼ k : μ T xkð Þ � T xNð Þ; tð Þ≤1� s or ν T xkð Þ � T xNð Þ; tð Þ≥sf g∈I:

So, we have to show that S⊂R. Let us suppose that S⊊R, then there exists n∈S
and n∉R. Therefore, we have

μ T xnð Þ � T xNð Þ; tð Þ≤1� s or μ T xnð Þ � L;
t

2

� �

>1� ε:
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In particular μ T xNð Þ � L; t2
� �

>1� ε: Therefore, we have

1� s≥μ T xnð Þ � T xNð Þ; tð Þ≥μ T xnð Þ � L;
t

2

� �

∗μ T xNð Þ � L;
t

2

� �

≥ 1� εð Þ∗ 1� εð Þ>1� s,

which is not possible. On the other hand

ν T xnð Þ � T xNð Þ; tð Þ≥s or ν T xnð Þ � L;
t

2

� �

< ε:

In particular ν T xNð Þ � L; t2
� �

< ε: So, we have

s≤ν T xnð Þ � T xNð Þ; tð Þ≤ν T xnð Þ � L;
t

2

� �

⋄ν T xNð Þ � L;
t

2

� �

≤ε⋄ε < s,

which is not possible. Hence S⊂R. R∈I which implies S∈I. □

3. IF-ideal convergent sequence spaces using Orlicz function

In this section, we have discussed the ideal convergence of sequences in
Intuitionistic fuzzy I-convergent sequence spaces defined by compact operator and
Orlicz function. We shall now define the concept of Orlicz function, which is basic
definition in our work.

Definition 3.1. An Orlicz function is a function F : 0;∞½ Þ ! 0;∞½ Þ, which is
continuous, non-decreasing and convex with F 0ð Þ ¼ 0, F xð Þ>0 for x>0 and
F xð Þ ! ∞ as x ! ∞. If the convexity of Orlicz function F is replaced by
F xþ yð Þ≤F xð Þ þ F yð Þ, then this function is called modulus function.

Remark 3.1. If F is an Orlicz function, then F λxð Þ≤λF xð Þ for all λ with 0 < λ < 1:
In 2009, Mohiuddine and Lohani [18] introduced the concept of statistical

convergence in intuitionistic fuzzy normed spaces in their paper published in
Chaos, Solitons and Fractals. This motivated us to introduced some sequence spaces
defined by compact operator and Orlicz function which are as follows:

M
I
μ;νð Þ T;Fð Þ ¼ xkð Þ∈ℓ∞ : {k : F

μ T xkð Þ � L; tð Þ

ρ

� �

≤1� ε

�

or F
ν T xkð Þ � L; tð Þ

ρ

� �

≥ε}∈I

	

; (5)

M
I
0 μ;νð Þ T;Fð Þ ¼ xkð Þ∈ℓ∞ : {k : F

μ T xkð Þ; tð Þ

ρ

� �

≤1� ε

�

or F
ν T xkð Þ; tð Þ

ρ

� �

≥ε}∈I

	

: (6)

We also define an open ball with center x and radius r with respect to t as follows:

Bx r; tð Þ T;Fð Þ ¼ yk
� �

∈ℓ∞ : k : F
μ T xkð Þ � T yk

� �

; t
� �

ρ

� �

≤1� ε

�

or F
ν T xkð Þ � T yk

� �

; t
� �

ρ

� �

≥ε∈I

	

: (7)

We shall now consider some theorems of these sequence spaces and invite the
reader to verify the linearity of these sequence spaces.

Theorem 3.1. Every open ball Bx r; tð Þ T;Fð Þ is an open set in M
I
μ;νð Þ T;Fð Þ.

6

Fuzzy Logic



Proof. Let Bx r; tð Þ T;Fð Þ be an open ball with center x and radius r with respect to
t. That is

Bx r; tð Þ T;Fð Þ ¼ y ¼ yk
� �

∈ℓ∞ : k : F
μ T xkð Þ � T yk

� �

; t
� �

ρ

� �

≤1� r

��

or F
ν T xkð Þ � T yk

� �

; t
� �

ρ

� �

≥r

	

∈I

	

:

Let y∈Bc
x r; tð Þ T;Fð Þ, then F

μ T xkð Þ�T ykð Þ;tð Þ
ρ

� �

>1� r and

F
ν T xkð Þ�T ykð Þ;tð Þ

ρ

� �

< r: Since F
μ T xkð Þ�T ykð Þ;tð Þ

ρ

� �

>1� r, there exists t0∈ 0; tð Þ such

that F
μ T xkð Þ�T ykð Þ;t0ð Þ

ρ

� �

>1� r and F
ν T xkð Þ�T ykð Þ;t0ð Þ

ρ

� �

< r.

Putting r0 ¼ F
μ T xkð Þ�T ykð Þ;t0ð Þ

ρ

� �

, so we have r0>1� r, there exists s∈ 0; 1ð Þ such

that r0>1� s>1� r. For r0>1� s, we have r1, r2∈ 0; 1ð Þ such that r0∗r1>1� s and
1� r0ð Þ⋄ 1� r0ð Þ≤s: Putting r3 ¼ max r1; r2f g. Now we consider a ball
B
c
y 1� r3; t� t0ð Þ T;Fð Þ. And we prove that

B
c
y 1� r3; t� t0ð Þ T;Fð Þ⊂Bc

x r; tð Þ T;Fð Þ:

Let z ¼ zkð Þ∈Bc
y 1� r3; t� t0ð Þ T;Fð Þ, then F

μ T ykð Þ�T zkð Þ;t�t0ð Þ
ρ

� �

>r3 and

F
ν T ykð Þ�T zkð Þ;t�t0ð Þ

ρ

� �

< 1� r3. Therefore, we have

F
μ T xkð Þ � T zkð Þ; tð Þ

ρ

� �

≥F
μ T xkð Þ � T yk

� �

; t0
� �

ρ

� �

∗F
μ T yk

� �

� T zkð Þ; t� t0
� �

ρ

� �

≥ r0∗r3ð Þ≥ r0∗r1ð Þ≥ 1� sð Þ≥ 1� rð Þ

and

F
ν T xkð Þ � T zkð Þ; tð Þ

ρ

� �

≤F
ν T xkð Þ � T yk

� �

; t0
� �

ρ

� �

⋄F
ν T yk

� �

� T zkð Þ; t� t0
� �

ρ

� �

≤ 1� r0ð Þ⋄ 1� r3ð Þ≤ 1� r0ð Þ⋄ 1� r2ð Þ≤s≤r:

Thus z∈Bc
x r; tð Þ T;Fð Þ and hence, we get

B
c
y 1� r3; t� t0ð Þ T;Fð Þ⊂Bc

x r; tð Þ T;Fð Þ:

Remark 3.2. MI
μ;νð Þ T;Fð Þ is an IFNS.

Define

τI
μ;νð Þ T;Fð Þ ¼ A⊂MI

μ;νð Þ T;Fð Þ : for each x∈A there exists t>0

and r∈ 0; 1ð Þ such that Bx r; tð Þ T;Fð Þ⊂A:

Then τI
μ;νð Þ T;Fð Þ is a topology on M

I
μ;νð Þ T;Fð Þ.

In the above result we can easily verify that the open sets in these spaces are
open ball in the same spaces. This theorem itself will have various applications in
our future work.

Theorem 3.2. The topology τI
μ;νð Þ T;Fð Þ on M

I
0 μ;νð Þ T;Fð Þ is first countable.
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Proof. Bx
1
n ;

1
n

� �

T;Fð Þ : n ¼ 1; 2; 3;…

 �

is a local base at x, the topology τI
μ;νð Þ T;Fð Þ

on M
I
0 μ;νð Þ T;Fð Þ is first countable. □

Theorem 3.3. MI
μ;νð Þ T;Fð Þ and M

I
0 μ;νð Þ T;Fð Þ are Hausdorff spaces.

Proof. Let x, y∈MI
μ;νð Þ T;Fð Þ such that x 6¼ y. Then 0 <F μ T xð Þ�T yð Þ;tð Þ

ρ

� �

< 1 and

0 <F ν T xð Þ�T yð Þ;tð Þ
ρ

� �

< 1:

Putting r1 ¼ F μ T xð Þ�T yð Þ;tð Þ
ρ

� �

, r2 ¼ F ν T xð Þ�T yð Þ;tð Þ
ρ

� �

and r ¼ max r1; 1� r2f g: For

each r0∈ r; 1ð Þ there exists r3 and r4 such that r3∗r4≥r0 and
1� r3ð Þ⋄ 1� r4ð Þ≤ 1� r0ð Þ.

Putting r5 ¼ max r3; 1� r4f g and consider the open balls Bx 1� r5;
t
2

� �

and

By 1� r5;
t
2

� �

. Then clearly B
c
x 1� r5;

t
2

� �

∩Bc
y 1� r5;

t
2

� �

¼ ϕ. For if there exists

z∈Bc
x 1� r5;

t
2

� �

∩Bc
y 1� r5;

t
2

� �

, then

r1 ¼ F
μ T xð Þ � T yð Þ; tð Þ

ρ

� �

≥
μ T xð Þ � T zð Þ;

t

2

� �

ρ

0

B

@

1

C

A
∗F

μ T zð Þ � T yð Þ;
t

2

� �

ρ

0

B

@

1

C

A

≥r5∗r5≥r3∗r3≥r0>r1

and

r2 ¼ F
ν T xð Þ � T yð Þ; tð Þ

ρ

� �

≤F
ν T xð Þ � T zð Þ;

t

2

� �

ρ

0

B

@

1

C

A
⋄F

ν T zð Þ � T yð Þ;
t

2

� �

ρ

0

B

@

1

C

A

≤ 1� r5ð Þ⋄ 1� r5ð Þ≤ 1� r4ð Þ⋄ 1� r4ð Þ≤ 1� r0ð Þ < r2

which is a contradiction. Hence, MI
μ;νð Þ T;Fð Þ is Hausdorff. Similarly the proof

follows for MI
0 μ;νð Þ T;Fð Þ. □

4. Conclusion

The concept of defining intuitionistic fuzzy ideal convergent sequence spaces as
it generalized the fuzzy set theory and give quite useful and interesting applications
in many areas of mathematics and engineering. This chapter give brief introduction
to intuitionistic fuzzy normed spaces with some basic definitions of convergence
applicable on it. We have also summarized different types of sequence spaces with
the help of ideal, Orlicz function and compact operator. At the end of this chapter
some theorems and remarks based on these new defined sequence spaces are
discussed for proper understanding.
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