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Chapter

Nonlinear Schrödinger Equation
Jing Huang

Abstract

Firstly, based on the small-signal analysis theory, the nonlinear Schrodinger
equation (NLSE) with fiber loss is solved. It is also adapted to the NLSE with the
high-order dispersion terms. Furthermore, a general theory on cross-phase modu-
lation (XPM) intensity fluctuation which adapted to all kinds of modulation for-
mats (continuous wave, non-return-to-zero wave, and return-zero pulse wave) is
presented. Secondly, by the Green function method, the NLSE is directly solved in
the time domain. It does not bring any spurious effect compared with the split-step
method in which the step size has to be carefully controlled. Additionally, the
fourth-order dispersion coefficient of fibers can be estimated by the Green function
solution of NLSE. The fourth-order dispersion coefficient varies with distance
slightly and is about 0.002 ps4/km, 0.003 ps4/nm, and 0.00032 ps4/nm for SMF,
NZDSF, and DCF, respectively. In the zero-dispersion regime, the higher-order
nonlinear effect (higher than self-steepening) has a strong impact on the short pulse
shape, but this effect degrades rapidly with the increase of β2. Finally, based on the
traveling wave solution of NLSE for ASE noise, the probability density function of
ASE by solving the Fokker-Planck equation including the dispersion effect is
presented.

Keywords: small-signal analysis, Green function, traveling wave solution,
Fokker-Planck equation, nonlinear Schrodinger equation

1. Introduction

The numerical simulation and analytical models of nonlinear Schrödinger equa-
tion (NLSE) play important roles in the design optimization of optical communica-
tion systems. They help to understand the underlying physics phenomena of the
ultrashort pulses in the nonlinear and dispersion medium.

The inverse scattering [1], variation, and perturbation methods [2] could obtain
the analytical solutions under some special conditions. These included the inverse
scattering method for classical solitons [3], the dam-break approximation for the
non-return-to-zero pulses with the extremely small chromatic dispersion [4], and
the perturbation theory for the multidimensional NLSE in the field of molecular
physics [5]. When a large nonlinear phase was accumulated, the Volterra series
approach was adopted [6]. With the assumption of the perturbations, the NLSE
with varying dispersion, nonlinearity, and gain or absorption parameters was solved
in [7]. In [8], the generalized Kantorovitch method was introduced in the extended
NLSE. By introducing Rayleigh’s dissipation function in Euler-Lagrange equation,
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the algebraic modification projected the extended NLSE as a frictional problem and
successfully solved the soliton transmission problems [9].

Since the numerical computation of solving NLSE is a huge time-consuming
process, the fast algorithms and efficient implementations, focusing on (i) an accu-
rate numerical integration scheme and (ii) an intelligent control of the longitudinal
spatial step size, are required.

The finite differential method [10] and the pseudo-spectral method [11] were
adopted to increase accuracy and efficiency and suppress numerically induced
spurious effects. The adaptive spatial step size-controlling method [12] and the
predictor-corrector method [13] were proposed to speed up the implementation of
split-step Fourier method (SSFM). The cubic (or higher order) B-splines were used
to handle nonuniformly sampled optical pulse profiles in the time domain [14]. The
Runge-Kutta method in the interaction picture was applied to calculate the effective
refractive index, effective area, dispersion, and nonlinear coefficients [15].

Recently, the generalized NLSE, taking into account the dispersion of the trans-
verse field distribution, is derived [16]. By an inhomogeneous quasi-linear first-
order hyperbolic system, the accurate simulations of the intensity and phase for the
Schrödinger-type pulse propagation were obtained [17]. It has been demonstrated
that modulation instability (MI) can exist in the normal GVD regime in the higher-
order NLSE in the presence of non-Kerr quintic nonlinearities [18].

In this chapter, several methods to solve the NLSE will be presented: (1) The
small-signal analysis theory and split-step Fourier method to solve the coupled
NLSE problem, the MI intensity fluctuation caused by SPM and XPM, can be
derived. Furthermore, this procedure is also adapted to NLSE with high-order
dispersion terms. The impacts of fiber loss on MI gain spectrum can be discussed.
The initial stage of MI can be described, and then the whole evolution of MI can also
be discussed in this way; (2) the Green function to solve NLSE in the time domain.
By this solution, the second-, third-, and fourth-order dispersion coefficients is
discussed; and (3) the traveling wave solution to solve NLSE for ASE noise and its
probability density function.

2. Small-signal analysis solution of NLSE for MI generation

2.1 Theory for continuous wave

The NLSE governing the field in nonlinear and dispersion medium is

∂u

∂z
þ β1

∂u

∂t
þ i

2
β2

∂
2u

∂t2
þ a

2
u ¼ iγ uj j2 þ 2 u0j j2

h i

u (1)

where β1 and β2 are the dispersions, γ is the nonlinear coefficient, and α is the
fiber loss. In the frequency domain, the solution is

u zþ dz;ωð Þ ¼ exp dzD̂
� �

exp dzN̂
� �

u z;ωð Þ (2)

where D̂ ¼ i
2ω

2β2 þ iωβ1 � a
2 and N̂ ¼ iγ uj j2 þ i2 u0j j2

h i

[19] (Figure 1).

Usually, the field amplitudes can be written as

u z;ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P z;ωð Þ
p

exp iϕ z;ωð Þ½ � (3)
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ϕ z;ωð Þ is caused by the nonlinear effect, and ϕ z;ωð Þ ¼
Ð z
0 γ P z;ωð Þ þ 2P0 z;ωð Þ½ �dz

[3].
u zþ dz;ωð Þ (is)

u zþ dz;ωð Þ ¼ exp dzD̂
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P z;ωð Þ
p

exp iφ z;ωð Þ þ iγ Pþ 2P0½ �dzf g

¼ e�adz=2 exp β1ωdzð Þ exp β2=2ω
2dz

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P z;ωð Þ
p

eiφ zþdz;ωð Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P zþ dz;ωð Þ
p

exp iφ zþ dz:ωð Þ½ �

(4)

Assuming: P z;ωð Þ ¼ P zð Þh i þ ΔP z;ωð Þ
P zð Þh i is the average signal intensity. ΔP z;ωð Þ is the noise or modulation term.

There is [20] P zð Þh iΔP z;ωð Þ
The amplitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P z;ωð Þ
p

can be regarded as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P z;ωð Þ
p

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffi

P zð Þh i
p

1þ ΔP z;ωð Þ
2P zð Þ

� �

(5)

The small-signal theory implies that the frequency modulation or noise
_φ zþ dz;ωð Þ ¼ d _φ zþdz;ωð Þ

dt is small enough. Finally ([21])

P zþ dz;ωð Þ ¼ P zð Þh i þ 2e�adz=2�

Re P zð Þh i exp iωβ1dzþ iω2β2dz
� � ΔP z;ωð Þ

2 P zð Þh i þ iφ zþ dz;ωð Þ
� �	 


(6)

The operation exp iωβ1dzþ iω2β2dzð Þ can be split into its real and imaginary
parts:

exp iωβ1dzþ iω2β2dz
� �

¼ cos ωβ1dzþ ω2β2dz
� �

þ i sin ωβ1dzþ ω2β2dz
� �

(7)

The modulation or noise ΔP zþ dz;ωð Þ is ΔP zþ dz;ωð Þ≈P zþ dz;ωð Þ � P zð Þh i
So

P zþ dz;ωð Þ ¼ e�adz=2�iωβ1dz

cos
1
2
β2ω

2dz

� �

ΔP z;ωð Þ þ sin
1
2
β2ω

2dz

� �

2 P zð Þh iφðzþ dz;ωÞ
� �

(8)

And

Figure 1.
Schematic illustration of medium. u(z, t) and u(z + dz, t) correspond to the field amplitudes at z and z + dz,
respectively.
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ΔP zþ dz;ωð Þ
2 P zð Þh i

φ zþ dz;ωð Þ

0

B
@

1

C
A ¼ e�adz=2�iωβ1dzeiγ P zð Þh iþ2 P0 zð Þh i½ �dz

cos
1
2
β2ω

2dz

� �

� sin
1
2
β2ω

2dz

� �

sin
1
2
β2ω

2dz

� �

cos
1
2
β2ω

2dz

� �

0

B
B
B
@

1

C
C
C
A

ΔP z;ωð Þ
2 P zð Þh i
φ z;ωð Þ

0

B
@

1

C
A

(9)

When only intensity modulation is present and no phase modulation exists, the
transfer function cos 1

2 β2ω
2dz

� �
is obtained. The 3 dB cutoff frequency corresponds

to 1
2 β2ω

2dz ¼ π=4 in [22, 23]. This treatment is also adaptable to the case that only
the nonlinear phase (frequency) modulation is present; then, the intensity modula-
tion ΔP zþ dz;ωð Þ due to FM-IM conversion is given as

ΔP zþ dz;ωð Þ ¼ 2 P zð Þh ie�adz=2�iωβ1dz sin
1
2
β2dzω

2
� �

φ zþ dz;ωð Þ (10)

This is in very good agreement with [24] for small-phase modulation index.
Even for large modulation index 1

2 β2ω
2dz ¼ π=2, the difference is within 0.5 dB.

Eq. (10) does not include a Bessel function, so it is simpler than that in [24].
Obviously, the above process can be used to treat NLSE with higher-order

dispersion (β3, β4) [25]. Similarly, the result in Eq. (10) will include ω3 and ω4.
The corresponding MI gain gMI in the side bands of ω0 (the frequency of signal) is

given by

gMI z;ωð Þ ¼ ΔP zþ dz;ωð Þ � ΔPðz;ωÞj j
P zð Þh idz

¼ 2e�adz=2�iωβ1dz sin
1
2
β2dzω

2
� �

γ

ðzþdz

z

P z;ωð Þ þ 2P0 z;ωð Þ½ �dz
	 
.

dz

(11)

Figure 2.
MI gain spectra. +++ result of small-signal analysis. –––– result of perturbation approach. The parameters are
P0 = 10 dBm, β2 = 15 ps2/km, λ = 1550 nm, a = 0.21 dB/km, γ = 0.015W�1/m, and z = 0 m.
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Figure 2 shows a comparison of the gain spectra between Eq. (11) and [6]
for the case P zð Þh i= P0 zð Þh i ¼ 1. The maximum frequency modulation index
caused by dispersion corresponds to 1

2 β2ω
2dz ¼ π [22, 23], and the maximum

value of the sideband is ωc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4γ P zð Þh i= β2j j
p

, so the choice of dz satisfies
1
2 β2ω

2dz ¼ π, which makes Eq. (11) have the same frequency regime as [26]. In
Figure 2, the curves are different but have the same maximum value of gMI. In
practice, researchers generally utilize the maximum value of gMI to estimate the
amplified noises and SNR [3]. The result of small-signal analysis in Figure 2
has a phase delay of around ω0. Compared with the experiment result of [27],
the reason is taking the fiber loss into account, the gain spectrum exhibits a
phase delay close to ω0, and the curve descends a little [27]. Fiber loss results
in the difference of gMI between the small-signal analysis method and the
perturbation approach.

2.2 The general theory on cross-phase modulation (XPM) intensity fluctuation

For the general case of two channels, the input optical powers are denoted by
P tð Þ, P0 tð Þ, respectively [28]. Only in the first walk-off length, the nonlinear inter-
action (XPM) is taken into account; in the remaining fibers, signals are propagated
linearly along the fibers, and dispersion acts on the phase-modulated signal
resulting in intensity fluctuation. According to [4], the whole length L is separated
into two parts 0 < z < Lwo and Lwo < z < L; Lwo is the walk-off length,
Lwo ¼ Δt= DΔλð Þ. Δt is the edge duration of the carrier wave, D is the dispersion
coefficient, and Δλ is the wavelength spacing between the channels. By the small-
signal analysis, the phase modulation in channel 1 originating in dz at z can be
expressed as

dϕXPM z; tð Þ ¼ γ2P0 z; t� zβ01
� �

e�azdz (12)

This phase shift is converted to an intensity fluctuation through the
group velocity dispersion (GVD) from z to the receiver. So, at the fiber
output, the intensity fluctuation originating in dz in the frequency domain is
given by [29].

dPXPM z;ωð Þ ¼ 2 eiωzβ1P z;ωð Þ
� �

⊗ e�a L�zð Þ � eiωβ1 L�zð Þ sin b L� zð Þ½ �dφXPM z;ωð Þ
n o

¼ 4γ eiωzβ1P z;ωð Þ
� �

⊗ e�a L�zð Þ � e�az � eiωβ01z � eiωβ1 L�zð ÞP0 z;ωð Þ sin b L� zð Þ½ �
n o

dz

(13)

⊗ representing the convolution operation b ¼ ω2Dλ2= 4πcð Þ, where c is the speed
of light. At the fiber output, the XPM-induced intensity fluctuation is the integral of
Eq. (13) with z ranging from 0 to L:

PXPM ¼
ðL

0
dPXPM z;ωð Þdz

¼
ðL

0
4γ eiωzβ1P z;ωð Þ

� �
⊗ e�a L�zð Þ � e�az � eiωβ01z � eiωβ1 L�zð ÞP0 z;ωð Þ sin b L� zð Þ½ �
n o

dz

(14)

The walk-off between co-propagating waves is regulated by the convolution
operation.
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3. Green function method for the time domain solution of NLSE

3.1 NLSE including the resonant and nonresonant cubic susceptibility tensors

From Maxwell’s equation, the field in fibers satisfies

∇2 E
!
� 1
c2

∂
2 E
!

∂t2
¼ �u0

∂
2PL

!

∂t2
� u0

∂
2PNL

!

∂t2
(15)

PL

!
r
!
; t

 �

¼ ε0

ðþ∞

�∞
χ 1ð Þ t� t0ð Þ E

!
r
!
; t0

 �

dt0

¼ ε0

ðþ∞

�∞
χ 1ð Þ ωð Þ E

!
r
!
;ω

 �

exp iωtð Þdω
(16)

χ 1ð Þ ωð Þ ¼
ðþ∞

�∞
dτχ 1ð Þ τð Þ exp �jωτð Þ (17)

where E
!
is the vector field and χ 1ð Þ is the linear susceptibility. PL

!
and PNL

!

represent the linear and nonlinear induced fields, respectively [30]. The cubic
susceptibility tensor including the resonant and nonresonant terms is

χ 3ð Þ ωð Þ ¼ χ
3ð Þ
NR þ χ

3ð Þ
R ωð Þ (18)

There are

P
!
NL,NR r

!
; t

 �

¼ ε0 ∭
∞

dt1dt2dt3χ
3ð Þ
NR t1; t2; t3ð Þ⋮ E

!
r
!
; t� t1

 �

� E
!

r
!
; t� t2

 �

� E
!

r
!
; t� t3

 �

¼ ε0 ∭
∞

dω1dω2dω3χ
3ð Þ
NR �ω1 � ω2 � ω3;ω1 þ ω2 þ ω3ð Þ

E
!

r
!
; t1

 �

� E
!

r
!
; t2

 �

� E
!

r
!
; t3

 �

exp jωtð Þδ ω� ω1 � ω2 � ω3ð Þ

(19)

χ
3ð Þ
NR �ω1 � ω2 � ω3;ω1 þ ω2 þ ω3ð Þ ¼ ∭

∞
dt1dt2dt3χ

3ð Þ
NR t1; t2; t3ð Þ

exp �jω1t1 � jω2t2 � jω3t3ð Þ
(20)

P
!

NL,R r
!
; t

 �

¼ ε0 ∭
∞

dt1dt2dt3χ
3ð Þ
R t; t1; t2; t3ð Þ⋮ E

!
r
!
; t� t1

 �

� E
!

r
!
; t� t2

 �

� E
!

r
!
; t� t3

 �

¼ ε0 ∭
∞

dω1dω2dω3χ
3ð Þ
R t;�ω1 � ω2 � ω3;ω1 þ ω2 þ ω3ð Þ

E
!

r
!
; t1

 �

� E
!

r
!
; t2

 �

� E
!

r
!
; t3

 �

exp jωtð Þδ ω� ω1 � ω2 � ω3ð Þ

(21)

χ
3ð Þ
R tð Þ ¼ 1

ffiffiffiffiffi

2π
p

ðþ∞

�∞

a

ω� ω1 þ ω2 þ ω3ð Þ þ iΓ
e�iωtdω

¼ �
ffiffiffi
π

2

r

a 1þ Γ

Γj j

� �

e� Γj jtþi ω1þω2þω3ð Þt�iπ2

(22)

Γ and a are the attenuation and absorption coefficients, respectively [31].
Repeating the process of [3]
E ¼ F x; yð ÞA z; tð Þ exp iβzð Þ, there is

6

Nonlinear Optics ‐ Novel Results in Theory and Applications



∂A

∂z
þ i

2
β2

∂
2A

∂t2
� 1
6
β3

∂
3A

∂t3
¼ � a

2
Aþ i

3k0
8nAeff

χ
3ð Þ
NR Aj j2Aþ ik0g ω0ð Þ 1� if ω0ð Þ½ �

2nAeff

A
Ð t
�∞ χ

3ð Þ
R t� τð Þ A τð Þj j2dτ

(23)

k0 ¼ ω0=c, where ω0 is the center frequency. Aeff is the effective core area. n is
the refractive index. The last term is responsible for the Raman scattering, self-
frequency shift, and self-steepening originating from the delayed response:

f ω1 þ ω2 þ ω3ð Þ ¼ 2 ω1 þ ω2 þ ω3ð Þ 1� Γj jð Þ
�2 ω1 þ ω2 þ ω3ð Þ2 � 2 Γj j þ Γj j2

(24)

g ω1 þ ω2 þ ω3ð Þ ¼ �2 ω1 þ ω2 þ ω3ð Þ2 � 2 Γj j þ Γj j2
h i

(25)

where g ω1 þ ω2 þ ω3ð Þ is the Raman gain and f ω1 þ ω2 þ ω3ð Þ is the Raman non-
gain coefficients.

3.2 The solution by Green function

The solution has the form

A z; tð Þ ¼ φ tð Þe�iEz (26)

Then, there is

1
2
β2

∂
2ϕ

∂t2
þ i

6
β3

∂
3ϕ

∂t3
� 3k0
8nAeff

χ
3ð Þ
NR ϕj j2ϕ� k0g ωsð Þ 1� if ωsð Þ½ �

2nAeff
ϕ

ðþ∞

�∞
χ

3ð Þ
R t� τð Þ ϕ τð Þj j2dτ ¼ Eϕ

(27)

Let

Ĥ0 tð Þ ¼ 1
2
β2

∂
2

∂t2
þ i

6
β3

∂
3

∂t3
(28)

V̂ tð Þ ¼ �3k0
8nAeff

χ
3ð Þ
NR ϕj j � k0g ωsð Þ 1� if ωsð Þ½ �

2nAeff

ðþ∞

�∞
χ

3ð Þ
R t� τð Þ ϕ τð Þj j2dτ (29)

and taking the operator V̂ tð Þ as a perturbation item, we first solve the eigen
equation �∑k

n¼2
in

n! βn
∂
nφ

∂Tn ¼ Eφ.

1
2
β2

∂
2ϕ

∂T2 þ
i

6
β3

∂
3ϕ

∂T3 ¼ Eϕ (30)

Assuming E ¼ 1, we get the corresponding characteristic equation:

� 1
2
β2r

2 þ β3

6
r3 ¼ E (31)

Its characteristic roots are r1, r2, r3. The solution can be represented as

ϕ ¼ c1ϕ1 þ c2ϕ2 þ c3ϕ3 (32)
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where ϕm ¼ exp irmtð Þ, m ¼ 1, 2, 3 and c1, c2, c3 are determined by the initial
pulse. The Green function of (30) is

E� Ĥ0 tð Þ
� �

G0 t; t0ð Þ ¼ δ t� t0ð Þ (33)

By the construction method, it is

G0 t; t0ð Þ ¼
a1φ1 þ a2φ2 þ a3φ3, t>t0

b1φ1 þ b2φ2 þ b3φ3, t < t0

	

(34)

At the point t ¼ t0, there are

a1ϕ1 t0ð Þ þ a2ϕ2 t0ð Þ þ a3ϕ3 t0ð Þ ¼ b1ϕ1 t0ð Þ þ b2ϕ2 t0ð Þ þ b3ϕ3 t0ð Þ (35)

a1ϕ
0
1 t0ð Þ þ a2ϕ

0
2 t0ð Þ þ a3ϕ

0
3 t0ð Þ ¼ b1ϕ

0
1 t0ð Þ þ b2ϕ

0
2 t0ð Þ þ b3ϕ

0
3 t0ð Þ (36)

a1ϕ
″

1 t0ð Þ þ a2ϕ
″

2 t0ð Þ þ a3ϕ
″

3 t0ð Þ � b1ϕ
″

1 t0ð Þ � b2ϕ
″

2 t0ð Þ � b3ϕ
″

3 t0ð Þ ¼ �6i=β3 (37)

Let b1 ¼ b2 ¼ b3 ¼ 0, then

a1 ¼
φ2 _φ3 � _φ2φ3

W t0ð Þ , a2 ¼
φ3 _φ1 � _φ3φ1

W t0ð Þ , a3 ¼
φ1 _φ2 � _φ1φ2

W t0ð Þ (38)

W t0ð Þ ¼
ϕ1 ϕ2 ϕ3

ϕ
1ð Þ
1 ϕ

1ð Þ
2 ϕ

1ð Þ
3

ϕ
2ð Þ
1 ϕ

2ð Þ
2 ϕ

2ð Þ
3

�
�
�
�
�
�
�

�
�
�
�
�
�
�

(39)

Finally, the solution of (27) can be written with the eigen function and Green
function:

φ tð Þ ¼ ϕ tð Þ þ
ð

G0 t; t0ð ÞV t0ð Þφ t0ð Þdt0

¼ ϕ tð Þ þ
ð

G0 t; t0;Eð ÞV t0ð Þϕ t0ð Þdt0 þ
ð

dt0G0 t; t0;Eð ÞV t0ð Þ
ð

G0 t0; t″;E
� �

V t″
� �

φ t″
� �

dt″

¼ ϕ tð Þ þ
ð

G0 t; t0;Eð ÞV t0ð Þϕ t0ð Þdt0 þ
ð

dt0G0 t; t0;Eð ÞV t0ð Þ
ð

G0 t0; t″;E
� �

V t″
� �

ϕ t″
� �

dt″ þ⋯

þ
ð

dt0G0 t; t0ð ÞV t0ð Þ
ð

G0 t0; t″
� �

V t″
� �

dt″⋯
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

times l

ð

G0 tl; tlþ1� �
V tlþ1� �

φ tlþ1� �
dtlþ1

(40)

The accuracy can be estimated by the last item of (40). The algorithm is plotted
in Figure 3.

3.3 Estimation of the fourth-order dispersion coefficient β4

The NLSE governing the wave’s transmission in fibers is

∂u

∂z
þ i

2
β2

∂
2u

∂t2
� 1
6
β3

∂
3u

∂t3
� iγ exp �2αzð Þ uj j2uþ is

∂ uj j2
∂t

uþ is uj j2 ∂u
∂t

" #

¼ 0 (41)

where s is the self-steepening parameter. In the frequency domain, its solution is
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u zþ dz;ωð Þ ¼ exp dzD̂
� �

exp dzN̂
� �

u z;ωð Þ (42)

where D̂ ¼ i
2ω

2β2 � i
6ω

3β3, N̂ ¼ Γ iγ exp �2αzð Þ uj j2 þ is ∂ uj j2
∂t þ is uj j2 ∂

∂t

h in o

, and Γ

represents the Fourier transform [32]. Let L̂ ¼ ∂

∂z � D̂ � N̂ and

L̂G z; z
0
;ω

� �
¼ δ z� z

0� �
; we obtain the Green function

G z; z
0
;ω

 �

¼ 1
2π

ðþ∞

�∞

exp �ik z� z
0� �� �

ik� D̂ � N̂
dk (43)

Constructing the iteration β3 ¼ β03 þ δβ3, u z;ωð Þ ¼ u0 z;ωð Þ þ δu z;ωð Þ, then
there is

δu z;ωð Þ ¼
ð

G z; z
0
;ω

 �

Z z
0
;ω; δβ3 z

0
 �

; u0 z
0
;ω

 � �

dz
0

(44)

where Z z
0
;ω; δβ3 z

0� �
; u0 z

0
;ω

� �� �
¼ � i

6 δβ3 z
0� �
ω3u0 z

0
;ω

� �
and u0 z

0
;ω; β03

� �
is

determined by (42).
Theminimumvalue of δu z;ωð Þ satisfies ∂δu z;ωð Þ=∂ω ¼ 0, R ∂

2δu z;ωð Þ=∂ω2
� �

>0, so

δβ3 ¼ exp
ðþ∞

�∞
� 1
G

∂G

∂ω
� 3
ω
� 1
u0

∂u0

∂ω

� �

dω

� �

(45)

Figure 3.
The Green algorithm for solving NLSE.
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Next, we take the higher-order nonlinear effect into account. Constructing
another iteration related to δγ : γ ¼ γ0 þ δγ, u z;ωð Þ ¼ u0 z;ωð Þ þ δu z;ωð Þ and
repeating the above process, we get

δγ≈ exp
ðþ∞

�∞
� 1
G

∂G

∂ω
� 3is
1� 3isω

� 1
u0

∂u0

∂ω

� �

dω

� �

(46)

Now, we can simulate the pulse shape affected by high-order dispersive and
nonlinear effects. Assume LD ¼ t20=∣β2∣ and
u 0; tð Þ ¼

Ðþ∞
�∞ u 0;ωð Þ exp �iωtð Þdω ¼ u0 exp �t2=t20=2

� �

.

Firstly, we see what will be induced by the above items δβ3 and δγ. To extrude
their impact, we choose the other parameters to be small values in Figures 4 and 5.
The deviation between the red and the black lines in Figure 4(a) indicates the
impact of δβ3 and δγ; that is, they induce the pulse’s symmetrical split. This split
does not belong to the SPM-induced broadening oscillation spectral or β3-induced
oscillation in the tailing edge of the pulse, because here γ is very small and β3 ¼ 0

[3]. The self-steepening effect attributing to is ∂ uj j2u
 �

=∂t is also shown explicitly in

the black line. When we reduce the s value to 0.0001 in (b), the split pulse’s
symmetry is improved.

Is the pulse split in Figure 4(a) caused by δβ3 or δγ? The red lines in Figure 5
describe the evolution of pulse affected by the very small second-order dispersion
and nonlinear (including self-steepening) coefficients. Here, δβ3 induces the pulse’s
symmetrical split, and the maximum peaks of split pulse alter and vary from the
spectral central to the edge and to the central again. Therefore, its effect is equal to
that of the fourth-order dispersion β4 [33, 34, 3].

From the deviation between the red and black lines in Figure 5, we can also
detect the impact of δγ. It only accelerates the pulse’s split when the self-steepening
effect is ignored (s = 0 in Figure 5(a)). This is similar to the self-phase modulation-
broadening spectral and oscillation. The high nonlinear γ accelerating pulse’s split is
validated in [35, 36]. If s 6¼ 0 (Figure 5(b)), δγ simultaneously leads to the split
pulse’s redshift.

Generally, we do not take δγ into account, so we should clarify in which case it
creates impact. Compared (c) with (b) in Figure 5, the red lines change little means
that δβ3 has a tiny relationship with γ. But with the increase of γ (Figure 5(c)), the

Figure 4.
The pulse shapes with and without δβ3 and δγ. The red line: without δβ3 and δγ; the black line: with δβ3 and
δγ. ν ¼ ω=2=π, β03 ¼ 0 ps3=kmð Þ, γ ¼ 1:3� 10�2 =km=Wð Þ, t0 ¼ 80 fsð Þ, z ¼ 3:7 � t20= β2j j,
β2 ¼ �21:7=150 ps2=kmð Þ, u0 ¼ β2j j=γ=t20. (a) s = 0.01 and (b) s = 0.0001.
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split pulse’s redshift is strengthened, so δγ has a relationship with γ. In Figure 6, the
pulse is not split until z = 9 LD, and the black line with δγ is completely overlapped
by the red line without δγ, so the high second-order dispersion β2 results in the
impact of δγ covered and the impact of δβ3 weakened. Therefore, only in the zero-
dispersion regime, δγ should be taken into account in the simulation of pulse shape.

So, we can utilize δβ3 to determine the fourth-order dispersion coefficient β4.
Fiber parameters are listed in Table 1. The process is shown in Figure 7, and the
dispersion operator including β4 is D̂ ¼ i

2ω
2β2 � i

6ω
3β3 þ i

24ω
4β4.

Table 2 is the average of β4. They are different from those determined by FWM
or MI where β4 is related to power and broadening frequency [35, 36]. By our
method, the fourth-order dispersion is also a function of distance, and every type of

Figure 5.
The evolutions of pulse. The red line: without δγ; the black line: with δβ3 and δγ. (a) s ¼ 0,
γ ¼ 1:3� 10�4 =km=Wð Þ; (b) s ¼ 0:01, γ ¼ 1:3� 10�4 =km=Wð Þ; (c) s ¼ 0:01, γ ¼ 1:3 =km=Wð Þ. Other
parameters are the same as Figure 4.
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Figure 6.
The pulse shapes with and without δγ. β2 ¼ �21:7 ps2=kmð Þ, s ¼ 0:01, γ ¼ 1:3 =km=Wð Þ. Other parameters
are the same as Figure 5.

a (dB/km) γ (/km/W) s β2 (ps
2/km) β3 (ps

3/km)

DCF 0.59 5.5 0.01 110 0.1381

NZDSF 0.21 2.2 0.01 �5.6 0.115

SMF 0.21 1.3 0.01 �21.7 �0.5

Table 1.
Fiber parameters.

Figure 7.
The process of calculating β4.

Z = 1.5LD Z = 5LD Z = 50LD

DCF 0.0003 0.00035 0.00032

NZDSF 0.0022 0.003 0.0032

SMF 0.0012 0.002 0.0025

Units (ps4/km).

Table 2.
The average.
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fibers has its special average β4 which reveals the characteristic of fibers. These
values are similar to those experiment results in highly nonlinear fibers [35, 36].
Although we take the higher-order nonlinear effect δγ into account which upgrades

the pulse’s symmetrical split and redshift, the items is ∂ uj j2u
 �

=∂t and

iδγ exp �2αzð Þ uj j2u have a very tiny contribution to β4, only 10�26 ps4/km quantity
order for the typical SMF. Here, the impact of δγ is hidden by the relative strong β2.

4. Traveling wave solution of NLSE for ASE noise

4.1 The in-phase and quadrature components of ASE noise

The field including the complex envelopes of signal and ASE noise is:

U z; tð Þ ¼ ∑
N

l¼1
ul z; tð Þ þ Al z; tð Þ½ � exp �iωltð Þ (47)

where ul z; tð Þ and Al z; tð Þ are the complex envelopes of signal and ASE noise,
respectively [37, 38].N is the channel number. ASE noise generated in erbium-doped
fiber amplifiers (EDFAs) is Al 0; tð Þ ¼ AlR 0; tð Þ þ iAlI 0; tð Þ, AlR 0; tð Þ and AlI 0; tð Þ are
statistically real independent stationary white Gaussian processes, and
AlR 0; tþ τð ÞA∗

lR 0; tð Þ
� �

¼ AlI 0; tþ τð ÞA∗
lI 0; tð Þ

� �
¼ nsphvl Gl � 1ð ÞΔvlδ τð Þ. In the com-

plete inversion case, nsp ¼ 1. h is the Planck constant. Gl is the gain for channel l.
Substituting Eq. (47) into (1), we can get the equation that Al z; tð Þ satisfies:

i
∂Al z; tð Þ

∂z
¼ β2

2
�ω2

l þ
∂
2

∂t2
� i2ωl

∂

∂t

� �

Al z; tð Þ�

γ zð Þ exp �2αzð Þ ∑
N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�
�
�
�
�

�
�
�
�
�

2

Al z; tð Þ
(48)

So, the in-phase and quadrature components of ASE noise obey:

∂AlR z; tð Þ
∂z

¼ �β2ωl
∂AlR z; tð Þ

∂t
þ 1
2
β2

∂
2AlI z; tð Þ

∂t2
�

1
2
β2ω

2
lAlI � γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�
�
�
�
�

�
�
�
�
�

2

AlI

(49)

∂AlI z; tð Þ
∂z

¼ �β2ωl
∂AlI z; tð Þ

∂t
� 1
2
β2

∂
2AlR z; tð Þ

∂t2
þ 1
2
β2ω

2
lAlR z; tð Þþ

γ exp �2αzð Þ ∑
N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�
�
�
�
�

�
�
�
�
�

2

AlR

(50)

We now seek their traveling wave solution by taking [37] AlR ¼ ϕ ξð Þ,
AlI ¼ φ ξð Þ, and ξ ¼ t� cz.

Then, (49) and (50) are converted into

ϕ0 β2ωl � cð Þ ¼ � 1
2
β2ω

2
l þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�
�
�
�
�

�
�
�
�
�

2
2

4

3

5φþ 1
2
β2φ

00 (51)

13

Nonlinear Schrödinger Equation
DOI: http://dx.doi.org/10.5772/intechopen.81093



φ0 β2ωl � cð Þ ¼ 1
2
β2ω

2
l þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�
�
�
�
�

�
�
�
�
�

2
2

4

3

5ϕ� 1
2
β2ϕ

00 (52)

(52) is differentiated to ξ

φ00 β2ωl � cð Þ ¼ 1
2
β2ω

2
l þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�
�
�
�
�

�
�
�
�
�

2
2

4

3

5ϕ0 � 1
2
β2ϕ

000 (53)

Replacing ϕ0 and ϕ000 in (53) with (51) and the differential of (51), there are

ϕ00 β2ωl � cð Þ2 ¼ � 1
2 β2ω

2
l þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�
�
�
�
�

�
�
�
�
�

2
2

4

3

5

2

ϕþ

β2
1
2
β2ω

2
l þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�
�
�
�
�

�
�
�
�
�

2
2

4

3

5ϕ″þ 1
4
β22ϕ

4ð Þ

(54)

From (51) and (54), we can easily obtain

φ ¼ B β2ω
2
l =2þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�
�
�
�
�

�
�
�
�
�

2
2

4

3

5 cos kξþ β2k
2=2 � cos kξ

8

<

:

9

=

;
= β2ωl � cð Þ=k

(55)

φ ¼ B sin kξ (56)

and

B ¼ AlR 0; tð Þ β2ωl � cð Þk=

β2ω
2
l =2þ γ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�
�
�
�
�

�
�
�
�
�

2
2

4

3

5 cos ktþ β2k
2=2 � cos kt

8

<

:

9

=

;

(57)

c ¼ � β22k
2=4þ β2ω

2
l =2þ γ exp �2αzð Þ2 ∑

N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�
�
�
�
�

�
�
�
�
�

2
2

4

3

5=k2 þ β22ω
2
l =2þ

8

<

:

γβ2 exp �2αzð Þ ∑
N

j¼1
uj z; tð Þ þ Aj z; tð Þ

�
�
�
�
�

�
�
�
�
�

2
9

=

;

1=2

þ β2ωl (58)

k ¼ arcsin AlI 0; tð Þ=Bð Þ=t (59)

In the above calculation process, B, c, and k should be regarded as constants, and
AlR, AlI are the functions of the solo variable ξ, respectively.

4.2 Probability density function of ASE noise

Because AlR and AlI have been solved, the time differentials of (49) and (50) can
be calculated. Thus, the stochastic differential equations (ITO forms) around AlR

and AlI are
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∂AlR z; tð Þ
∂z

¼ f AlR z; tð Þð Þ þ g AlR z; tð Þð ÞAlR,z¼0 (60)

∂AlI z; tð Þ
∂z

¼ f
0
AlI z; tð Þð Þ þ g

0
AlI z; tð Þð ÞAlI,z¼0 (61)

Here,

f AlR z; tð Þð Þ ¼ β2kωl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B

β2ω
2
l
=2þγ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�
�
�
�
�

�
�
�
�
�

2

þβ2k
2=2

β2ωl�cð Þk

2

6
6
6
6
4

3

7
7
7
7
5

2

� A2
lR z; tð Þ

v
u
u
u
u
u
u
u
t

(62)

g AlR z; tð Þð Þ ¼ � β2ωl � cð Þk
AlR,z¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B

β2ω
2
l
=2þγ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�
�
�
�
�

�
�
�
�
�

2

þβ2k
2=2

β2ωl�cð Þk

2

6
6
6
6
4

3

7
7
7
7
5

2

� A2
lR z; tð Þ

v
u
u
u
u
u
u
u
t

(63)

f
0
AlI z; tð Þð Þ ¼ �β2kωl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � A2
lI z; tð Þ

q

(64)

g0 AlI z; tð Þð Þ ¼ B

β2ω
2
l
=2þγ exp �2αzð Þ ∑

N

j¼1
uj z; tð Þ þ Ajðz; tÞ

�
�
�
�
�

�
�
�
�
�

2

þβ2k
2=2

β2ωl�cð Þk

2

6
6
6
6
4

3

7
7
7
7
5

2

β2ωl � cð Þk
BAlI,z¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � A2
lI z; tð Þ

q

(65)

Now, they can be regarded as the stationary equations, and we can gain their
probabilities according to Sections (7.3) and (7.4) in [39]. By solving the
corresponding Fokker-Planck equations of (60) and (61), the probabilities of ASE
noise are

plR ¼ C

g AlRð Þ½ �2
exp 2

ðAlR

�∞

f sð Þ
g sð Þ½ �2

ds

" #

(66)

plI ¼
C0

g0 AlIð Þ½ �2
exp 2

ðAlI

�∞

f 0 sð Þ
g0 sð Þ½ �2

ds

" #

(67)

C,C0 are determined by
Ðþ∞
�∞ pdp ¼ 1. Compared with [40], these probabilities of

ASE noise take dispersion effect into account. This is the first time that the p.d.f. of
ASE noise simultaneously including dispersion and nonlinear effects is presented.

(66) and (67) are efficient in the models of Gaussian and correlated non-
Gaussian processes as our (49) and (50). Obviously, the Gaussian distribution has
been distorted. They are no longer symmetrical distributions, and both have phase
shifts consistent with [40], and as its authors have expected that “if the dispersion

15

Nonlinear Schrödinger Equation
DOI: http://dx.doi.org/10.5772/intechopen.81093



effect was taken into account, the asymmetric modulation side bands occur.” The
reasons are that item �iβ2ωl

∂

∂tAl z; tð Þ in (48) brings the phase shift and item
β2
2

∂
2

∂t2 Al z; tð Þ brings the expansion and induces the side bands, the self-phase modu-
lation effects, and the cross-phase modulation effects. Their synthesis impact is
amplified by (66) and (67) and results in the complete non-Gaussian distributions.

5. Conclusion

NLSE is solved with small-signal analyses for the analyses of MI, and it can be
broadened to all signal formats. The equation can be solved by introducing the
Green function in the time domain, and it is used as the tool for the estimations of
high-order dispersion and nonlinear coefficients. For the conventional fibers, SMF,
NZDSF, and DCF, the higher-order nonlinear effect contribution to β4 can be
neglected. This can be deduced that each effect has less impact for another coeffi-
cient’s estimation. The Green function can also be used for the solving of 3 + 1
dimension NLSE.

By the traveling wave methods, the p.d.f. of ASE noise can be obtained, and it
provides a method for the calculation of ASE noise in WDM systems. So, the
properties of MI, pulse fission, coefficient value, and ASE noise’s probability density
function are also discussed for demonstrations of the theories.
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