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1. Introduction 

Porous structures such as seawalls, detached breakwaters, or submerged breakwaters are 

frequently used to protect shorelines from the effects of waves. The effectiveness of these 

structures is due to the fact that they are able to reflect, absorb, and dissipate wave energy. 

Wave energy reduction on the leeside of porous structures increases so that only a small 

part of the wave energy is transmitted to the nearshore. Consequently, the wave field on the 

leeside of such structures becomes quiet and the intensity of the wave action on the 

shoreline decreases; as a result, coastal erosion and the corresponding coastal disasters are 

mitigated. Wave transformation over porous structures must be understood in order to 

determine the stability of these porous structures and to evaluate their usefulness with 

regard to wave energy reduction. 

Several numerical models have been developed to study the wave transformation over 

porous structures. Based on the mild-slope assumption, Rojanakamthorn et al. (1989) 

adopted Sollitt and Cross’s (1972) theory to derive a modified mild-slope equation (MSE) for 

describing non-breaking waves traveling over a general finite porous bed. Later 

Rojanakamthorn et al. (1990) extended their model to the case of wave breaking on a 

submerged permeable breakwater. The validity of this model has been verified by 

comparing its numerical results with those of experiments and an analytical solution of a 

rectangular submerged breakwater.  

The MSE is suitable for explaining the wave deformation of an unsteady flow in a porous 
structure that is linearized using an approximation of the nonlinear friction forces. The wave 
energy dissipation due to resistance in the porous structure is considered in the model and 
the depth-averaged equation yields an elliptic-type MSE on a permeable bed. Losada et al. 
(1996) presented the results of studies similar to that of Rojanakamthorn et al. (1990) for the 
kinematics and dynamics of wave interaction with permeable breakwaters that encounter 
non-breaking obliquely incident regular waves and directional random waves. The 
influence of structural geometry, properties of porous materials, and wave characteristics 
over and inside the breakwaters was also investigated. Following Rojanakamthorn et al. 
(1990) and Losada et al. (1996), Mèndez et al. (2001) derived a theory to analyze the 
influence of wave reflection and energy dissipation in wave breaking and porous flow, as 
induced by a porous submerged structure. The analytical expressions for the second-order 
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mean quantities mass flux, energy flux, radiation stress, and mean water level are given in 
terms of the shape functions of the structure. 
With increases in the number of available design possibilities, engineers want to work with 
increasingly larger coastal regions; however, it is still necessary for a simpler model to be 
applied in these situations—one that can provide reliable results to the practical questions 
posed. An evolution equation of mild slope equation (EEMSE) usually selected to simulate 
the combined wave refraction-diffraction in the vicinity of porous structures. The main 
reason for developing such a model is that it can predict coastal processes on a regional 
scale so that coastal changes resulting from driving forces and man-made structures can be 
determined. This wave information can be used as forcing functions to drive models that 
calculate alongshore and on-offshore sediment transports. Numerical wave models such as 
RCPWAVE (Ebersole et al., 1986), REF/DIF-1 (Kirby and Dalrymple, 1991), and the 
Parabolic Wave Model (Mordane et al., 2004), all of which neglect the wave reflection, are 
frequently used as tool for predicting coastal erosion and deposition. 
The main purpose of this paper is to extend the EEMSE addressed by Hsu and Wen (2001) 
and Hsu et al. (2008b) for waves propagating over submerged permeable structures in the 
surf zone. The governing equation is a parabolic formulation of the EEMSE including the 
breaking and energy dissipation effect of porous structures. The approximate MSE enables a 
more accurate description of combined wave refraction, diffraction and reflection in the 
computational domain. Following Rojanakamthorn et al. (1990), wave breaking and energy 
dissipation of porous structures are accounted for in a relatively straightforward manner by 
adding an energy dissipation coefficient to the EEMSE. An implicit finite-difference 
approximation scheme is implemented in the numerical solution. Several numerical cases 
were computed and compared through experiments to examine the validity of the present 
model. This model was also applied to practical cases of wave-height evolution in the 
vicinity of the submerged permeable structures over a complicated bathymetry. 

2. Theoretical formulation 

2.1 Governing equation 

The definition sketch for linear periodic waves propagating over a submerged permeable 

structure in the surf zone is shown in Fig. 1, where h  is the local water depth of the pure 

water region and ph , the thickness of the porous layer. Following Rojanakamthorn et al. 

(1989), the MSE for describing the wave deformation over porous structures is derived by 

multiplying the Laplace equation using corresponding vertical eigenfunctions solved by 

Sollitt and Cross (1972). In this paper, wave breaking, energy dissipation, and large-angle 

incidence are included in the MSE. Based on Rojanakamthorn et al. (1989), the MSE is 

formulated to consider the wave transformation over porous structures, as given by 

 ( ) ( )α φ α φ∇ ⋅ ∇ + + =2
0 1 0h p h p dk if   (1) 

where ( )φ ,x y  is the complex velocity potential; ( )∇ = ∂ ∂ ∂ ∂/ , /h x y , is the horizontal 

gradient operator; 0k , is the complex wavenumber; df , is the energy dissipation factor in 

the surf zone after wave- breaking; and αp , is a parameter expressed by 

 ( )α α α= + −1 0 2p pn S if  (2) 
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Fig. 1. Waves propagating over a submerged permeable structure. 

where α1  and α2  are respectively given by 
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 β δ −= 0
3

1

2
k h

pe  (7) 

 ( ) ( ) ( )δ = − −0 0 0sinh coshp p p pn k h S if k h  (8) 

in which 0n  is the porosity of the permeable material; ( )= + −0 01 MS n n C , the inertial 

coefficient; MC , the virtual mass coefficient; pf , a linear friction coefficient; and 1i = − , a 

unit complex number. Following Radder (1979), a scale factor 

 pϕ α φ=  (9) 

is introduced into Eq. (1) and the mathematical manipulation yields the Helmholtz equation 

 2 2 0h ckϕ ϕ∇ + =  (10) 
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where ck  is a pseudo-wavenumber written in the form 

 ( )
2

2 2
0 1

h p

c d
p

k k if
α

α

∇
= + −  (11) 

The complex wavenumber can be determined through the following dispersion relation: 

 
( ) ( )
( ) ( )

0
0 0 02

0
0

0 0 0

sinh sinh

sinh cosh

k h
p p

k h
p p

n e k h k h
gk

n e k h k h

δ
ω

δ

−
=

−
 (12) 

where ω  is the angular frequency and g , the gravitational acceleration. The wave motion is 

assumed to be purely harmonic in time. Equation (10) is easily split into two equations by 

using the commuting operators / x∂ ∂  and ( )2 2 21 / ck y∂ ∂ : 

 1 1 0c cik X ik X
x x

φ∂ ∂⎛ ⎞⎛ ⎞− + + + =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (13) 

where X  is the orthogonal operator given by 

 
2

2 2

1

c

X
k y

∂
=

∂
 (14) 

In Eq. (13), it is noted that the wave field is split into forward- and backward-scattering 

fields. As mentioned, solving the MSE incurs a significant computational cost whenever 

large coastal areas are considered. In these circumstances, a simpler method can provide an 

efficient and reliable tool to solve practical problems. The combined effect of wave refraction 

and diffraction in the vicinity of shoals, islands, and coastal structures can be simulated by a 

parabolic approximation in which the wave reflection is neglected. Although the wave 

reflection might be important for submerged structures, it is usually ignored in the model 

for solving practical coastal engineering problems such as nearshore current, sediment 

transport, and ocean environment pollution. The inference of reflection will be considered in 

section 6.  

Eq. (13) is thus simplified as 

 1 0cik X
x

φ∂⎛ ⎞− + =⎜ ⎟∂⎝ ⎠
 (15) 

According to Sollitt and Cross (1972), the linear friction factor pf  is evaluated from 

Lorentz’s condition of equivalent work, and this relation can be expressed as 

 

32
2 300

0

2
0

0

1

T
p

s s
p p

p T

s

n Cn
u u dtd
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f
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∀
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∀

∫ ∫

∫ ∫

f f

f
 (16) 
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where ∀  is the volume of the flow field; T  the wave period; υ  the kinematic viscosity; pk  

the intrinsic permeability; pC  the turbulent friction coefficient; and s hu φ= −∇
f

 the seepage 

velocity vector. The value of pf  is obtained through an iterative technique suggested by 

Sollitt and Cross (1972). The detailed procedure will be briefly presented in the following 

section. The values of pk  and pC  are usually determined through laboratory tests; however, 

it is difficult to estimate their proper values in practical applications without experiments. 

Some empirical formulae may be applicable in the computation. Following Furukawa and 

McDougal (1991), the value of the intrinsic permeability pk  is determined by the empirical 

formula: 

 
( )

1.57 3
7 50 0

2
0

1.643 10
10 1

p

d n
k

n

− ⎛ ⎞= × ⎜ ⎟
⎝ ⎠ −

 (17) 

where 50d  is the grain or gravel diameter in millimeters. If the porous materials are stones 

or armor units, it is plausible that one could calculate the diameter using the equivalent 

volume of the sphere. The coefficient pC  that describes the resistance properties of porous 

media is generally estimated from experiments under steady flow conditions. 

Arbhabhiramar and Dinoy (1973) conducted laboratory tests and proposed a formula 

through experimental data:  

 

1.50

6 0
503.162 10p

p

n
C d

k

−
⎡ ⎤
⎢ ⎥= ×
⎢ ⎥⎣ ⎦

 (18) 

It is noted that Eqs. (11) and (12) are reduced to the expressions of the pseudo-wavenumber 
2 2 2

0c h g gk k CC CC= −∇  and the dispersion relation 2
0 0tanhgk k hω =  for the case of 

impermeable structures without wave breaking and energy dissipation, respectively. These 

results are identical to those of Mordane et al.’s (2004) theoretical formulations. 

2.2 Wave energy dissipation 
In order to describe the wave breaking and energy dissipation of waves propagating over a 
porous structure, many empirical formulae can be used in the MSE. For energy dissipation 
after wave breaking over an impermeable bed, Dally et al. (1985) used the hydraulic jump 
model to account for the energy dissipation. Battjes and Janssen (1978) estimated the energy 
dissipation by means of periodic bores. Isobe (1987) adopted a turbulence model to 
represent the energy losses of breaking waves; this model was later modified by Watanabe 
and Dibajnia (1988) from comparisons of model calculations and experimental data. In order 
to define the region of the surf zone, many criteria have been utilized to determine the 
breaking point; these include criteria based on theoretical formulations and empirical 
relationships such as those of Miche (1951), Goda (1970), and Isobe (1987) and others. 
It is desirable to find a more suitably coupled formula for describing the wave breaking and 
energy dissipation for porous structures in MSE. When studying the possible combinations 
of these empirical formulae, experimental data from permeable beds are rare. 
Rojanakamthorn et al. (1990) adopted Watanabe and Dibajnia’s (1988) model to derive a 
new equation for describing the processes of wave decay and recovery due to porosity and 
wave breaking; therein, a similar mechanism of energy loss between impermeable and 
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permeable beds is assumed. Based on their equation, the energy dissipation formulae 
mentioned above are selected to account for wave deformation on the porous structures 
across the surf zone. The energy dissipation coefficients related to wave breaking and 
porosity are finally expressed as 

 
2

2 1
2

1r
d

g r

k K K
f

C k h γ

⎛ ⎞
= −⎜ ⎟⎜ ⎟′ ⎝ ⎠

 (19a) 

 

2

maxr b
d

g rms

k Q H
f

C n H

α
π

⎛ ⎞′
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⎝ ⎠
 (19b) 

 tanr r
d D

g s r

gk
f

C h

γ γα β
γ γ
−

=
′ −

 (19c) 

where 1K , 2K , α ′ , and Dα  are calibrated parameters; rk  the real part of the progressive 

complex wavenumber 0k ; H hγ ′=  the ratio of wave height to the effective water depth h′ ; 

( )0.4 /r b
H hγ ′=  the critical value of a recovery wave on h′ ； ( )0.8 0.57 5.3tansγ β= +  a ratio 

of wave height to h′ ; ( ) ( )max 00.88 tanh 0.88rH k khγ=  the maximum wave height; rmsH =  

the root mean square value of wave height; ( ) ( )2
maxexp 1 /b b rmsQ Q H H⎡ ⎤= −⎢ ⎥⎣ ⎦

; 

( )0 0 00.5 0.4 tanh 33H Lγ = + ; and tanβ  the average bottom slope calculated from the 

breaking point to an offshore distance 5 bh′ . The subscript “b” denotes the value at the 

breaking point. For regular waves, the value of bQ  equals 1 and rmsH  is replaced by 0H . 

Based on Losada et al. (1997), the effective water depth h′  is used to be instead of h  in the 

energy dissipation model in order to consider the porosity of the structure which is given by 

 
2

11
tanh

r r

h
k gk

ω− ⎛ ⎞
′ = ⎜ ⎟⎜ ⎟

⎝ ⎠
 (20) 

A breaking index is used as a criterion to define the incipient breaking point of breaking 
waves traveling over a permeable structure. The following breaking criteria of an 
impermeable bed as presented by Miche (1951), Goda (1970), and Isobe (1987), respectively 
are modified in the wave calculations for porous structures: 

 
2

0.142 tanhb b
b

b b

L h

h L

πγ
′

=
′

 (21a) 

 ( )( )4/3

0

0.17 1 exp 1.5 1 15 tanb
b

h

L

πγ β
⎧ ⎫⎡ ⎤′⎪ ⎪= − − +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

 (21b) 

 ( ) ( ) ( )23/2
0 01.06 0.6exp 3 / 10 tan exp 45 / 0.1b b bh L h Lγ β ⎡ ⎤′ ′= − − + ⋅ − −⎢ ⎥⎣ ⎦

 (21c) 

where bγ  is the wave breaking index defined by /b b bH Lγ =  and bH  and bL , are the 

breaking wave height and wavelength, respectively. Eqs. (19) and (21) are respectively 
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selected to form a coupled equation to solve the energy dissipation due to porosity and 

wave breaking. 

In practical applications, the parameters Dα , 1K , 2K , and γ ′  are determined 

experimentally. According to the analysis of Mèndez et al. (2001), 1.0Dα = , 1 0.4K = , 

2 0.35K = , and 1.0α ′ =  were suggested in the numerical simulation. Nine sets of coupled 

equations were examined in the computation. In order to find a more suitable coupled 

equation for solving the wave breaking and energy dissipation on a porous structure, two 

sets of experimental data (Cruz et al. 1997; Lara et al. 2006) were used by Hsu et al. (2008a) 

to examine the applicability of the nine coupled equations. A comparison of the model 

results and experimental data is presented in Table 1. It is observed that the combination of 

Eqs. (19c) and (21b) achieves the best agreement with observations in which a higher 

correlation coefficient RC  is obtained, where RC  is defined by 

 
( ) ( )

( )

2

2
1

1
1

N
m ci i

R

i m i

H H
C

N H=

⎡ ⎤−⎣ ⎦= −
⎡ ⎤⎣ ⎦

∑  (22) 

where N  is the total number of observed data points; mH  the value measured from 

laboratory experiments; and cH  the value calculated from the model. As a result, this 

coupled equation is used in the study to calculate wave breaking and energy dissipation on 

permeable structures. 
 

                                                          Eq.(21) 
Eq.(19) 

Miche(1951) 
(Eq.(21a)) 

Goda(1970) 
(Eq.(21b)) 

Isobe(1987) 
(Eq.(21c)) 

Dally et al.(1985) (Eq.(19a)) 0.845 0.831 0.853 

Battjes and Janssen (1978) (Eq.(19b)) 0.799 0.818 0.788 

Watanabe and Dibajnia (1988) (Eq.(19c)) 0.859 0.871 0.846 

Table 1. Comparisons of the correlation coefficients RC  using different coupled equations of 

breaking criteria and energy dissipation formulae. 

2.3 Parabolic approximations 

In Eq. (15), it should be noted that different approximations of the function 1 X+  will lead 

to different orders of the parabolic equations. The most classical approximation is an 

expansion of the Taylor series, wherein a series with a greater number of terms could lead to 

a better approximation of the incident wave angle. However, this is a time-consuming 

process due to the large matrix dimension inherent in a large coastal environment; this 

would results in a disadvantage of the numerical calculation. An alternative to the rational 

function approximation permits us to improve the angular capacity of the incident angle as 

well as the computational effort by summing a relatively fewer number of terms related to 

the Taylor series. In this investigation, following Mordane et al. (2004), we selected a 

quadratic rational function of the Padé [2,2] approximation, given by 

 ( )
2

50 1 2
2

0 1 2

1
P P X P X

X O X
Q Q X Q X

+ +
+ = +

+ +
 (23) 
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where iP  and iQ  ( )0, 1, 2i =  are Padé coefficients. Several methods can be used to obtain 

the Padé coefficients. According to St. Mary (1985), these coefficients are determined using 

an ad-hoc technique of Chebychev referred to as Pkni = { 0 1.628909P = , 1 2.428289P = , 

2 0.8308198P = , 0 1Q = , 1 1.615038Q = , 2 0.235499Q = }. In the present model, Pkni is used 

to model a wave traveling in very large coastal areas of several wavelengths. Mordane et al. 

(2004) showed that the maximal propagation wave angle of Pkni coefficients is around 77c
. 

Substituting Eq. (23) into Eq. (15) yields the following expression: 

 ( ) ( )2 2
0 1 2 0 1 2cQ Q X Q X ik P P X P X

x

ϕ ϕ∂
+ + = + +

∂
 (24) 

Eq. (24) can be further derived using the expressions ( )2 2 21 cX k y= ∂ ∂  and 

( ) 2
2 2 2 21 cX k y⎡ ⎤= ∂ ∂⎣ ⎦ ; the resulting equation is 

 
2 3 4 2 3 4

1 2 3 4 1 2 3 42 3 4 2 3 4cik
xy y y y y y

ϕλ λ λ λ ϑ ϑ ϑ ϑ ϕ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (25) 

where the corresponding coefficients are given by ( )2
1 0 2 1, cQ Q kλ λ= =  

( ) ( )( ) ( )25 2 2
22 3 ,c c c cQ k k k y k y⎡ ⎤+ ∂ ∂ − ∂ ∂⎢ ⎥⎣ ⎦ ( )( )5

3 24 ,c cQ k k yλ = − ∂ ∂ 4
4 2 ,cQ kλ =  

1 0 ,Pϑ = ( ) ( ) ( )( ) ( )22 5 2 2
2 1 22 3 ,c c c c cP k P k k k y k yϑ ⎡ ⎤= + ∂ ∂ − ∂ ∂⎢ ⎥⎣ ⎦ ( )( )5

3 24 c cP k k yϑ = − ∂ ∂  and 

4
4 2 cP kϑ = . Equation (25) is a fifth-order partial differential equation, and it can be applied 

to simulate wave transformation over porous structures, including wave breaking and 
energy dissipation. We notice that the finite difference equations can be obtained by making 
the governing equation discrete; they are solved by a standard Crank-Nicholson scheme for 
traditional partial differential equations. The details of the numerical scheme are provided 
in the paper of Mordane et al. (2004). 

It follows that by differentiating the Helmholtz equation with respect to y  and using the 

rigid boundary condition, the boundary conditions of Eq. (25) are thus given by 

 ( )0, 0x y
y

φ∂
=

∂
, ( ), 0mx y

y

φ∂
=

∂
  (26) 

 ( )
3

03
, 0x y

y

φ∂
=

∂
, ( )

3

3
, 0mx y

y

φ∂
=

∂
 (27) 

for all x , where 0y  and my  are the initial and terminal points of the lateral boundary, 

respectively. By using a central finite difference to discretize the boundary conditions of Eqs. 

(26) and (27) and by introducing the fictitious points , 1iϕ − , , 2iϕ − , , 1i mϕ + , and , 2i mϕ + , the 

boundary conditions in this model can be reduced to , 1 ,1i iφ φ− = , , 1 , 1i m i mφ φ+ −= , , 2 ,2i iφ φ− = , 

and , 2 , 2i m i mφ φ+ −= . 
For a large wave angle incidence, the radiation boundary condition is also specified by Eq. 
(15) and approximated by Eq. (25). However, it is too complicated to achieve the matrix 
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formulation by using Eq. (25) as the boundary conditions in the numerical solution. An 
alternative method is to rotate the computational domain, in order to ensure that the given 
boundary is always normal to the incident wave direction. This method enables us to 
change the radiation boundary conditions as the rigid boundary conditions at the lateral 
boundary. 

3. Model verifications 

The applicability and validity of the present model were verified through experiments in 

which waves propagated over impermeable composite uniform slope, submerged 

permeable breakwaters and sloping beaches. In the first case, Nagayama (1983) measured 

wave deformation on a bar-type beach profile. It consists of three sections of slope 1/20 and 

the wave deformation includes shoaling, first breaking, wave decay, wave recovery and the 

of second breaking. The experimental conditions are =0 0.07H m and = 0.94T s, 

respectively. Fig. 2. shows the comparison of wave height between the numerical simulation 

of the present model and experimental data. It can be seen from the figure that the 

numerical results follow the experimental data fairly well. 
 

0

0.05

0.1

0.15

0.2

H
 (

m
)

experiments (Nagayama, 1983)

present model

0 1 2 3 4 5 6 7
X (m)

1/20
1/20

1/20

-0.3

Hsu et al. (2008)Hsu et al. (2008a)

 

Fig. 2. Comparison of calculated wave height and experimental results for waves passing 
over a composite slope. 

The experimental data were obtained from Rojanakamthorn et al. (1989) for a wave flume 
with a length, width, and depth of 23 m, 0.8 m, and 1 m, respectively. The breakwater 
comprises gravel with an average diameter of 26 mm that was placed on an impermeable 
and uniform slope of 1/20, approximately 2 m from the toe of the slope. The front slope of 
the breakwater is approximately 1/3. The experimental conditions are summarized in Table 

2, where 0H  is the incident wave height; sD , the water depth above the structure; and B , 

the width of the structure (Fig. 1).  

According to Hsu et al. (2008a) the key parameters 0 0.39n = , 73.77 10pk −= × m 2 , and 

0.332pC =  were used in the computation; these are identical to those used by 

Rojanakamthorn et al. (1989). The added mass coefficient arose due to the unsteady 

convergence and divergence of streamlines around a solid body. Since the unsteady flow 

around a body with a complicated shape has not been fully clarified, the coefficient MC  is 
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not readily determined for randomly and densely packed solid materials. Therefore, based 

on to Sollitt and Cross (1972) and Madsen (1974), the inertial coefficient S  is approximately 

regarded as unity for this computation. 

The numerical calculation in the Hsu et al.’s (2008a) model includes an iteration procedure 

for pf . Following Rojanakamthorn et al. (1989) and for convenience, the initial value of pf  

is first estimated as unity. For a given incident wave condition, the local complex 

wavenumber 0k  is estimated from Eq. (12) through the iteration technique. The coefficient 

pα  is next computed from Eqs. (2) to (8); the scale factor ϕ  and the seepage velocity vector 

su
f

 are then determined at every grid point. The value of pf  is again estimated from Eq. 

(16). The iteration procedure is repeated until the change in pf  is less than a tolerance of the 

relative error 210ε −= . Details of the numerical scheme are referred to Hsu et al. (2008a). 

A comparison of the model results with those of the laboratory experiments is shown in Fig. 

3; these results are found to be in good agreement. It is observed from Fig. 3 that the wave 

amplitude rapidly decreases while waves propagate over the submerged permeable 

breakwater due to energy decay on the porous structures. We note that in the free surface of 

the experiments, the model results were unable to catch the modulations. On the other hand, 

the values of pf  are different from those given in Rojanakamthorn et al. (1989) (see Table 2). 

The difference in values may be caused by neglecting certain physical processes such as 

wave reflection or different numerical schemes (parabolic or elliptic type of MSE) in the model. 

 
                  Items  
 
Authors 

slopes 0H  

(m) 

50d  

(mm)

T  
(sec)

h  

(m) 

B  
(cm)

sD  

(cm)
0n pk (

2m ) pC  pf  

 

Rojanakamthorn 
et al. (1989) 
 

1/20
1/20
1/20 

0.0471
0.0321
0.0472

20-35
20-35
20-35

0.93 
0.93 
1.08 

0.375 
0.375 
0.375 

10 
30 

235

6.5 
6.5 
8.0 

0.39
0.39
0.39

3.77E-7 
3.77E-7 
3.77E-7 

0.332 
0.332 
0.332 

(1.155)0.412 
(1.039)0.384 
(1.507)0.871 

Cruz et al. (1997) 1/20*; 
1/6.67

+ 
1/20*; 
1/6.67

+ 

0.0220
 

0.0430

6.7 
 

6.7 

1.02 
 

1.00 

0.176 
 

0.1748

−  
 

−  

−  
 

−  

0.44
 

0.44

2.5E-8 
 

2.5E-8 

0.40 
 

0.40 

(2.576) 
 

(2.557) 

Lara et al. (2006) 
 

1/20
1/20
1/20
1/20
1/20
1/20 

0.15 
0.15 
0.15 
0.15 
0.15 
0.15 

−  
19 
39 

−  
19 
39 

2.0 
2.0 
2.0 
3.0 
3.0 
3.0 

0.4 
0.4 
0.4 
0.4 
0.4 
0.4 

−  
−  
−  
−  
−  
−  

−  
−  
−  
−  
−  
−  

−
0.49
0.49

−
0.49
0.49

−  
(2.036E-7)
(6.296E-7)

−  
(2.036E-7)
(6.296E-7)

−  
(0.624) 
(0.495) 

−  
(0.624) 
(0.495) 

−  
(5.726) 
(2.495) 

−  
(6.520) 
(1.829) 

Table 2. Experimental conditions for wave propagating over submerged permeable 
breakwaters (* : the front slope; + : the rear slope. Values in brackets were calculated by the 
present model.)  

The model is also applied to simulate wave transformation on a porous sloping bottom. 

Experiments were performed by Cruz et al. (1997) in a 0.30 ×  0.20 ×  11.0 m wave flume at 

the University of Tokyo, Japan. The bathymetry of the sloping bottom is shown in Fig 3. The 

triangular porous bar side slopes of are 1:20 and 1:6.67, respectively. The key parameters 

0 0.44n = , 82.5 10pk −= × m 2 , and 0.4pC =  were used in the computation, as suggested by 

Cruz et al. (1997). The experimental conditions are listed in Table 2. A comparison of the 
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numerical results and experiments for the two cases (Table 2) is shown in Fig. 4. Fig 4(a) 

shows the measured and computed wave heights for an incident wave with small damping 

without breaking. It is evident that the general trend of the damped wave height is 

approximated quite well by the model. In Fig 4(b), the propagating wave breaks at around 

5.8x =  m. The computed and observed wave heights are in good agreement. 
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Fig. 3. Distribution of root mean square value of water surface elevations. (a) 10B =  cm; (b) 

30B =  cm; and (c) 235B =  cm. 
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Fig. 4. Wave transformation on plane porous slope. (a) 0H  = 0.022 m; T  = 1.02 s and (b) 0H  

= 0.043 m, T = 1.00 s. 

Numerical simulations of the wave breaking processes over a gravel sloping bottom were 

also performed by Hsu et al. (2008a) and compared with the experimental data provided by 

Lara et al. (2006). Experiments were conducted in a wave flume with a length, width, and 

depth of 24 m, 0.6 m, and 0.8 m, respectively. Two sloping layers with a porosity of 

0 0.49n =  were constructed with different mean gravel diameters— 50 19d =  mm and 30 

mm, respectively. These key parameters were used to estimate the values of pk  and pC  by 

Eqs. (17) and (18); pf  is obtained through an iteration procedure. Two different incident 

wave conditions 0H = 0.15 m, T = 2.0 s and 0H = 0.15 m, T = 3.0 s (Table 2) were selected to 

verify the capability of the present model. The types of wave breaking in these two cases are 

spilling breaker ( T = 2.0 s) and plunging breaker ( T = 3.0 s), respectively. The experimental 

conditions are summarized in Table 2. Fig. 5 shows the spatial variations of the wave 

heights from a shoaling zone to the still water level. The numerical results of Hsu et al. 

(2008a) model can reproduce the wave transformation over a permeable sloping bottom. 

Notably, under incident wave conditions, the breaking wave height, location of the breaking 

point, and wave decay caused by energy dissipation against breaking and porous gravel 

slopes were accurately predicted. 
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Fig. 5. Wave height evolution on permeable gravel slopes predicted by Hsu et al.’s  (2008a) 

model. (a) impermeable layer; (b) permeable layer ( 50d =19 mm); and (c) permeable layer 

( 50d =39 mm). The thickness of the porous layer is 11 cm. The experiments were carried out 

by Lara et al. (2006). 

4. Experimental verification 

In order to examine the validity of the present model, a large-scale experiment was 

conducted by Hsu et al. (2008a) in a three-dimensional wave basin to create waves 

propagating over a permeable submerged circular pile that is rested on a gravel sloping 

bottom with normal incidence. This model test was carried out in a laboratory of the 

National Cheng Kung University, Taiwan. As show in Fig. 6, the wave basin has a length, 

width, and depth of 40 m, 40 m, and 1.2 m. Waves were generated by two piston-type 

wavemakers, and a wave absorption system was installed on all the boundaries. The sloping 

bottom was carefully constructed in concrete with straight and parallel contours that made 

an angle of 15c  with the wave generator; the bottom slope was 1 / 29 . The porous circular 

pile was constructed with gravel with 50 35.5d =  mm, a diameter of 3 m, 0.1sD =  m, and 

0 0.419n = ; it is located at the center of the test area, which has a water depth varying from 

0.175 m to 0.275 m. 
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Fig. 6. Laboratory experiment in a wave basin with a submerged permeable circular pile 
placed on a sloping bottom. (a) plane view; (b) section view; and (c) measuring points of 
wave gauges. 

The still water level in the constant-depth region was maintained at 0.52 m for all 

experiments. The free surface elevation was measured by 233 capacity-type wave gauges 

installed at different locations (Fig. 6). The values of intrinsic permeability and turbulent 

drag coefficient for the circular pile were obtained from water-head experiments, and the 

results were 71.9 10pk −= × 2m  and pC = 0.1048, respectively. The incident wave conditions 

at deep water depth were 0H = 0.04 m, 0.9T = s with normal incident waves. 
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The porous submerged circular pile acts as a lens and focuses the incoming wave energy 

into a strong convergence zone. This experiment provides a comprehensive data set that can 

be used to verify the capability of Hsu et al.’s (2008a) model to predict accurate wave 

transformation including refraction, diffraction, and energy dissipation due to porous 

structures on a plane beach. Wave height data were analyzed and collected at many 

locations within the test zone, along 21 transections (see Fig. 6). The simulated wave heights 

were compared with the observed data at six selected sections. 
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Fig. 7. A comparison of wave patterns around a submerged permeable cylinder. 0H = 0.04 

m, T = 0.9 s. (a) experimental results; (b) numerical results; and (c) relative error 

( )m c mH H Hε = −  between the experimental and numerical results. 
 

Fig. 7(a) and Fig. 7(b) shows the results of relative wave heights of experimental data and 

numerical data in a planar wave pattern. The comparison between experimental data and 

numerical data demonstrates that the model is capable of describing the combined effect of 

wave refraction, diffraction, and porosity. Note that the model predicts a favorable focusing 

wave pattern. The difference between the numerical calculations and experiments as shown 

in Fig. 7(c) may be caused by wave reflection from the side walls in the wave basin. Fig. 8 

presents comparisons of the wave height variations for all six profiles; it is interesting to 

note that the numerical results are in good agreement with the experimental observations. 
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Fig. 8. Comparisons of wave heights at different transactions for waves passing over a 
submerged circular pile. 

5. Model applications 

In addition to the laboratory verification, the proposed by Hsu et al.’s (2008a) model was 
also verified using two typical real cases. The first case simulates wave transformation over 
a porous elliptical shoal superimposed on a plane beach. The second case tested waves 
propagating over a permeable submerged breakwater using field data obtained during a 
field experiment at the CERC Field Research Facility (FRF) in Duck, North Carolina, U.S.A. 
In coastal engineering, a porous shoal is generally constructed with gravel or stones for 
ecological recovery and coastal protection at offshore regions. In the numerical run, the 
shoal was placed on a sloping bottom with a slope of 1:20, which was rotated clockwise at 
an angle of 20° from a straight wave paddle and had major and minor radii of 4.0 m and 3.0 
m, respectively. The experiment for an impermeable elliptical shoal was conducted by 
Berkhoff et al. (1982) in a wave basin where the deep mean water depth was h=0.45 m and 
the incident wave height and period were H0 = 0.0464 m and T = 1s, respectively. Since the 
water depth near the wave board was constant, the wave crests generated by the wave 
paddle traveled in uniform wave trains. According to Eqs. (17) and (18), the typical key 
parameters of kp and Cp used in the numerical computation for the porous shoal constructed 
with gravel of d50 = 50 mm and n0 = 0.20, n0= 0.39 are summarized in Table 3. For the 
parabolic MSE model, wave rays and wave height contours for both impermeable (n0= 0) 
and permeable shoals (n0 = 0.20, n0= 0.39) are shown in Fig. 8. Based on Eqs. (17) and (18), it 
is noted that different values of the porosity n0 and different gravel sizes (d50 = 50 mm) could 
yield different values for kp, Cp, and fp in the calculation, as listed in Table 3. The numerical 
result indicates that the wave height continues to increase behind the shoal and decay as the 
waves reach to the shoreline. The focus of wave trajectories (caustics) is clearer for the 
impermeable shoal due to the focal phenomenon of wave refraction-diffraction. The 
comparison in Fig. 9 implies that the combined wave refraction-diffraction effects are rapidly 
reduced to some extent by the porous structures. A higher porosity of a shoal with a constant 
grain, gravel or stone diameter would produce a higher attenuation of transmitted waves. 
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Fig. 9. Calculated wave fields for (a) impermeable ( 0 0.0n = ), (b) permeable ( 0 0.20n = , 

50 50d =  mm), and (c) permeable ( 0 0.39n = , 50 50d =  mm) elliptical shoal on a sloping 

bottom. The thin solid lines indicate bathymetric contours. The bold solid lines labeled with 

numbers are transections 1~4 of the wave height distribution, provided for the purpose of 

comparison. (Hsu et al., 2008a) 

When verifying the proposed by Hsu et al.’s (2008a) model, the wave heights are compared 
at four selected sections, labeled as transections 1~4. A comparison of the computational 
results with the observations is shown in Fig. 10. It is observed from all the figures that the 
present model results are in much closer agreement with the experimental data than those 
of the linear model (Dalrymple et al., 1989) for an impermeable shoal. For any case that 
involves wave refraction, diffraction, and energy dissipation, it is evident that the present 
model is capable of accomplishing this job. Notably, Fig. 10 shows that the focus is clearly 
reduced by the porosity of the shoal. 

www.intechopen.com



 Wave Propagation in Materials for Modern Applications 

 

284 

5 6 7 8 9 10 11 12 13 14 15
y(m)

0

0.5

1

1.5

2

2.5

3

H
/H

0

experiments (Berkhoff, 1982)

Dalrymple et al., 1989

present model (impermeable)

present model (n0=0.2, d50 = 50mm)

present model (n0=0.39, d50 = 50mm)

Section 1

5 6 7 8 9 10 11 12 13 14 15
y(m)

0

0.5

1

1.5

2

2.5

3

H
/H

0

Section 2

5 6 7 8 9 10 11 12 13 14 15
y(m)

0

0.5

1

1.5

2

2.5

3

H
/H

0

Section 3

10 11 12 13 14 15 16 17 18 19 20 21
y(m)

0

0.5

1

1.5

2

2.5

3

H
/H

0

Section 4

Mordane et al., 2004 

Hsu et al. (2008a)

Hsu et al. (2008a)

Hsu et al. (2008a)

 

Fig. 10. Comparison of the model results ( =0n 0, 0.2, 0.39) against experimental data by 

Berkhoff et al. (1982) along sections 1~4, respectively (see Fig. 9). 
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0n  50d (mm) pk (m 2 ) pC  pf  

0.20 50 2.6E-8 0.06 0.372 

0.39 50 6.0E-7 0.15 0.565 

Table 3. Key parameters used in the computation of elliptical shoal 

The bathymetry in the FRF coastal area is generally straight and parallel to the coastline, 

except in the vicinity of the research pier, as shown in Fig. 11. The pier was built in order to 

collect field data. Two cases with and without a submerged breakwater were designed for 

simulating a wave field using the available wave data in the numerical calculation. The 

submerged breakwater hass a length, width, and length of 200 m, 30 m, and 2.5 m, 

respectively, and it comprised large stones; it was placed at a water depth of =h 4 m. For a 

practical engineering design, the porosity and stone size of the submerged breakwater were 

taken as 0 0.49n =  and 50d =  1,000 mm. The values of 41.025 10pk −= × m 2  and pC = 0.173 

were then obtained from Eqs. (17) and (18). The input monochromatic wave conditions are 

0H = 1.56 m, T = 6.87 s, and 0 43θ = c , based on field observations. 
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Fig. 11. Application of model for a complicated bathymetry constructed using a permeable 
submerged breakwater in the FRF pier, Duck, North Carolina, U.S.A. 

From Fig. 12(a), we notice that the scouring hole causes the wave energy to diverge, 
inducing a reduction in the wave height along the pier without a structure. For the 
construction of the submerged breakwater, Fig. 12(b) demonstrates that the model 
reproduces the general wave height variation due to wave refraction, diffraction, wave 
breaking, and energy dissipation. Comparisons between the model results and observed 
data for field verification without a structure are presented in Fig. 13. The results show that 
the proposed model accurately predicts wave propagation for these types of wave 
conditions over a complicated bathymetry. It is also noted that the model does decay the 
wave height on account of refraction, diffraction, wave breaking, and porosity behind the 
submerged detached breakwater. 
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Fig. 12. Planar wave patterns (a) with and (b) without a permeable submerged breakwater 
on a complicated bathymetry at FRF coastal area, Duck, North Carolina, U.S.A. The line at 
the center represents the FRF pier. 

6. Evolution Equation of Mild-Slope Equation (EEMSE) 

To further consider the effect of wave reflection, the EEMSE was developed by Hsu et al. 
(2008b) to simulate waves propagation over a porous structure. Following Hsu et al. (2008b) 
a numerical model which includes wave-porous media interaction, wave reflection, wave 
breaking and dissipation was presented. Eq.(10) can be  expressed  as 

 ( ) 2 22 /
p t h c

i kω α ϕ ϕ ϕ⎡ ⎤− = ∇ +⎣ ⎦  (28) 

The radiation boundary condition (RBC) in the model is specified so that waves are forced 
to go out radically along the bounder of a computational domain. There are two types of 
RBC: a full or partial reflection radiation boundary condition and a given boundary 
condition which are specified along the boundary of x and y directions as follows, 
respectively. 

 ( )1 cos 2 cos
m

x ii k i kφ αφ θ φ θ= ± − +  (29) 

 ( )1 sin
m

y i kφ αφ θ= ± −  (30) 

where (1 ) /(1 )R Rα = − +  is an absorption coefficient; R  is a reflection coefficient, θ  is the 

approaching wave angle to the boundary; and iφ  denotes a given velocity potential at the 

boundary of incident waves. For full reflection, 0iφ = , 0m = , and 0α = ; for partial 

reflection, 0iφ = , 0m = , and 0 1α< ≤ ; and for a given boundary condition, 1m =  and 

1α = . For this case, the velocity potential is assumed in the form  
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 ( ) ( cos sin ), i kx ky tA x y e θ θ ωφ + −=  (31) 

where ( ),A x y  is the amplitude of the velocity potential. From Eq. (31), we have 

 
2

2
2 2

1
sin

k y

φ φ θ∂
=

∂
 (32) 

For full transmitted waves along the boundary, Eq. (30) is reduced to Eq.(15). In this model 
wave diffraction, refraction, reflection and breaking from porous structures were considered. 

The model is validated for wave propagating over a single cylindrical impermeable pile rest 

on a protecting cylindrical impermeable or permeable step. A typical case was performed by 

Hsu et al., (2009). Fig. 13 presents the bathymetry of a single cylindrical pile rest on a 

protecting cylindrical step. The impermeable cylinder has a radius  of / 4ar L=  and the 

radius of the cylindrical protection is / 2br L= , where L  is the wavelength. The wave 

incidence is equal to 45c . The incident wave height is 0 0.03 mH = . The results of analytical 

solutions presented by Silva et al. (2003) and predicted dimensionless wave amplitude fields 

are shown in Fig. 14. Fig. 15 shows the result of wave propagation over a single cylindrical 

impermeable pile on a protecting cylindrical permeable step  ( = =0 0.4, 1.0pn f ). 
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Fig. 13. Bathymetry of a single cylindrical pile on a protecting cylindrical step 

In this two figures, the compared profile is along the x/L= 0 and y/L= 0 axes. Comparing 
with theoretical results and present model, it is clear that the numerical prediction is in good 
agreement with the analytical solution.  
The model is also applied to simulate wave transformation on a group of five vertical 
porous cylinders. Each cylinder has a radius = L/4. In Fig. 16, the four cylinders are located 
at the vertices of a square of side dimension which is equal to 2L and the fifth one is located 
at the centre. The incident wave condition is the same with Fig.15. Fig. 17 shows the wave 
pattern for waves propagating over a group of five vertical permeable cylinders. The results 
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of analytical and numerical dimensionless wave amplitude fields are compared with in Fig. 
17 and good agreement is found. 
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Fig. 14. Wave propagation over a single cylindrical impermeable pile on a protecting 

cylindrical impermeable step ( = =0 0, 0pn f ) 

7. Conclusions 

A numerical wave model has been developed by Hsu et al. (2008a; 2008b; 2009) for wave 

propagation over porous structures on the basis of an evolution equation of mild-slope 

equation (EEMSE), including wave breaking and energy dissipation. The model is simple 

and it incurs a lower computational cost even when modeling large coastal areas. For 

progressive waves, the validity of the present model is verified through comparisons with 

the experimental data and analytical solutions for waves propagating over porous 

structures. The model is further applied to the practical cases of a permeable elliptical shoal 

and a submerged permeable breakwater on a complicated bathymetry. Since a higher-order 

quadratic rational function of the Padé [2,2] approximation is employed in the finite 

difference discretization, the accuracy of model prediction can be improved.  

The wave reflection is also considered in the present parabolic approximation. The MSE 

developed for describing wave transformation over porous structures is initially well suited  
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Fig. 15. Wave propagation over a single cylindrical impermeable pile on a protecting 

cylindrical permeable step ( = =0 0.4, 1.0pn f ) 

for examining wave interaction with submerged structures. In some cases, reflection might 

be important for submerged porous structures or waves traveling on a steep sloping beach. 

However, the combined effect of wave refraction and diffraction for simulating coastal 

processes is the focus of the parabolic model. For this reason, the parabolic MSE of Mordane 

et al. (2004) is extended to account for wave propagation over submerged permeable 

structures. A further development of the parabolic MSE for porous structures including 

reflection is also carried out by Hsu et al. (2008b).  

The other restriction of the parabolic MSE is that it is applicable only to regular waves. In 
real situations, the sea state is random; therefore, it would be more realistic if the present 
model could be used to describe wave transformation of porous structures for irregular 
waves. Following Panchang et al. (1990) and Suh et al. (1997), the present MSE can be 
modified to derive a wave spectral calculation.  
Furthermore, the model can be applied to submerged structures with multiple permeable 
layers. The concept of equivalent work may be utilized to set a monoporous layer to 
represent a single layer. The validity of this approach should be examined through 
experimental data. 
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Fig. 17. Wave propagation over a group of five vertical permeable cylinders (n0 = 0.4, fp = 1.0) 
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