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1. Introduction

In this section, the historical development of the “elasticity theory” was pre-
sented briefly, and recent studies performed about the elasticity concept were 
categorized and listed according to their basic engineering problem groups. The 
mentioned literature survey has been performed by searching the keywords 
“elasticity,” “analytic,” and “solution” between the years 2014 and 2018. The most 
important general aspects of the “elasticity theory” were described in four groups 
as “the unknowns,” “the used equations,” “the modeling procedures,” and “solu-
tion methods.” In the future, in the consideration of these explained theoretical, 
numerical, and experimental properties, the researchers can be concentrating on 
the origin of the problem and new solution methods in deciding the exact nature of 
the material.

The elasticity concept of solid materials is the deformation with the external 
force application and recovery to its original shape after the forces removed. In the 
strength measurement of the material, stress (force per area) and strain (deforma-
tion per unit length) criteria have been used. The elasticity theory was presented in 
order to explain the basic theoretical concepts and their analytical solution methods, 
the deformations that were assumed to be very small and corresponding stress 
distributions. The classical elasticity theory was explained by theorems of “unique-
ness of solution” and “existence of solution” as they have been declared in the basic 
mathematical concepts. The “uniqueness of solution” theorem was restricted to a 
single solution space by satisfying the related boundary or the initial conditions. If 
there were no any boundary or initial conditions, the solution space would have to be 
infinity. The “existence of solution” theorem was created by explaining the default 
displacement functions, checking the equilibrium equations for stress definitions, 
and satisfying the partial differential equations with the infrastructure of the default 
solutions. The purpose of the elasticity theory was the determination of this unique 
and exact solution in elastic region of the material. In linear elastic region, superpo-
sition method and combined loading applications are widely used in engineering.

2. Historical development in elasticity

The historical development of the concept of “elasticity” by considering math-
ematics, physics, and engineering mechanics was summarized in Figure 1 [1, 2]. 
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The scientific studies performed on engineering problems have been grouped as 
analytical, numerical, and experimental. The main solution techniques listed below 
form the first step aspects in performing the experiments and obtaining the numeri-
cal solutions by considering innovations: (i) characteristics of the solution methods, 
(ii) learning the mathematical theories, (iii) the physics of the problem, and (iv) 
learning the problem-solving methodologies. The second step aspects have been 
listed as “solving problems by mathematical techniques” and “obtaining new for-
mulas.” The scientific progress has been continued thanks to the studies done since 
the sixteenth century. The development in scientific area occurred in the elasticity 
concept has been summarized and visualized in the consideration of the scientists 
who have lived between the sixteenth and twentieth centuries and their studies 
[1, 2]. These famous scientists were Galilei (1564–1642), Mariotte (1620–1684), 
Hooke (1635–1703), Leibniz (1646–1716), Bernoulli (1700–1782), Baumgarten 
(1706–1757), Euler (1707–1783), Coulomb (1736–1806), Young (1773–1829), Poisson 
(1781–1840), Navier (1785–1836), Cauchy (1789–1857), Saint-Venant (1797–1886), 
Borchardt (1817–1880), Rankine (1820–1872), Kirchhoff (1824–1887), Maxwell 
(1831–1879), Clebsch (1833–1872), Kohlrausch (1840–1910), Amagat (1841–1915), 
Voigt (1850–1919), Mallock (1851–1933), Lamme (1864–1924), Röntgen (1872,1919), 
Synge (1897–1995), and Everett (1930–1982) (Figure 1).

3. Classification of engineering problems in the context of elasticity

In this section, the results of the literature review on elasticity were evaluated 
by referring to the articles (total number of articles, 157) between 2014 and 2018. 
Important information has gained from the literature survey about the elasticity 

Figure 1. 
Development of elasticity between the sixteenth and twentieth centuries.
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theory and its related recent engineering solutions, as well as information about 
the theoretical, numerical, and experimental scientific researches and scientific 
innovations. The brief classification of the main engineering problems was sum-
marized in Figure 2.

The studies evaluated in the literature review were listed below in 10 main head-
ings. The distribution of articles corresponding to research concepts is presented 
in Figure 3. These are (1) historical development, (2) analytical and experimental 
studies related to the finite element method (FEM), (3) experimental studies, 
(4) analytical studies and finite element analysis (FEA), (5) analytical studies, 

Figure 2. 
Classification of the basic elasticity problems and their solution techniques.
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(6) analytical and FEA studies related to the specified boundary conditions, (7) 
continuum mechanics problems and solutions, (8) analytical and numerical 
analysis solutions, (9) typical engineering application problems, and (10) solution 
techniques. The types of elasticity problems have been grouped according to the sci-
ence innovations and related industrial applications. The numerical problems have 
been solved in three basic steps. The first step was to check the basic differential 
equations in terms of satisfaction with the placement of the estimated displacement 
functions. The second step was to check the “initial values” or the “boundary condi-
tions” of the problem [3–5]. Values were substituted into the differential equations 
in order to satisfy the conditions at these defined coordinates or at time domains. 
The boundary conditions have been classified in two groups as “the essential” 
(displacement) and “the natural” (force) boundary conditions. The initial condi-
tions were the first-stage variations named initiative and time-dependent variables. 
The third step was the satisfaction of the continuity conditions on the compat-
ibility equations by means of assumed displacement functions. The basic elasticity 
problems were grouped into 26 subtitles as described in Figure 2. In this figure, the 
number of generally used proposed solution techniques analytically and numeri-
cally was equal to eight.

4. General principles in the elasticity theory

Elasticity concept is explainable by the natural elastic behavior of the materials. 
In elastic region, material deformed in a nonpermanent form up to the elastic limit 
was reached. The relationship between stress (σ) and strain (ε) under loading and 
unloading cases was explained by the linear and nonlinear equations. The slopes of 
the linear curves developed in linear elastic region were known as Young’s modulus 
E, and shear modulus G, of the materials under tensile/compression and torsion 
tests. During these tests, total calculated area under the linear curves was defined as 
the total potential energy stored in the material. Proportionally, stress development 

Figure 3. 
The results of the literature review on elasticity were evaluated by referring to the 157 articles between 2014 and 
2018.
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and strains occurred in the structure according to the applied load. Principally, 
application of the stress distributions should be very slowly; on the other hand, at 
each incremental loading step, the equilibrium state and its equilibrium equations 
of the specimen should be satisfied. This controlled operation and action-reaction 
principle have worked under the control mechanism of the testing machine. The 
total work done by incremental external forces “dW” was equal to total potential 
energy stored incrementally “dU” in the structure of linear elastic region. Using 
this principle, the governing equations were satisfied by  dW − dU = 0 . Otherwise, 
in the case which used high strain rates   ε   ̇  , the material behavior would have been 
examined in the material nonlinearity concept. In the nonlinear elastic material 
experimental tests, the resulting stress-strain curves represented the combination 
of the behavior of nonlinear continuous or multiple nonlinear continuous forms. 
In nonlinear curves, the stored potential energy “U” developed in the elastic limit 
range was calculated in the consideration of two areas: the first area under the  
σ − ε  nonlinear curve described as the stored potential energy by strain increments  
ε + d𝜀  and the second area above the curve, known as the complementary potential 
energy by stress increments  σ + d𝜎  stored in the material. Both linear and nonlinear 
elasticity equations were derived according to the assumption that during loading 
and unloading stages of the experiments, the material stores its potential energy 
within the molecules and there was no loss of energy. As known in the molecular 
concept, the binding energy keeps the molecules together at any instant of time, 
and in the lack of energy loss such as heat or light, there will be no loss in the total 
mass of the molecular system. This phenomenon shows us that the system, which 
has no energy loss, does not combine (no binding status) with another solid object 
or with atoms that oscillates at short distances. Otherwise, in the case of the material 
decreases in amount as losing its mass as energy in the form of heat or light during 
the binding process, the removed energy corresponding to the removed mass can 
be explained by Einstein’s equation E = mc2. Here, E is the binding energy, m is the 
mass change in the system, and c is the speed of light, respectively. The elasticity 
solutions were grouped in terms of a variety of the material, geometry, and load-
ing types. Generally, the used geometries were selected as bar-, beam-, plate-, and 
shell-type isotropic or composite-type structures. In order to obtain analytical and 
numerical solutions, the three-dimensional elasticity problems can be reduced into 
two-dimensional problems in the consideration of the plane stress and plane strain 
concepts of the elasticity. By these methods the total number of unknowns will be 
equal to total numbers of equations. Otherwise, some unknown values will stay in 
unsolvable or undefined forms. Geometrical, material, and loading symmetries 
reduce problem-solving difficulties in the analytical and numerical models. On the 
other hand, continuity conditions in geometries automatically satisfies the continu-
ity conditions in the analytical and numerical solutions of elasticity. For example, 
the existence of the fourth-order partial derivatives of the assumed solution approxi-
mation functions is checking the continuity and compatibility equations. Singularity 
problems may be discarded by omitting the very small holes, empty spaces, gaps in 
macroscale, or dislocations and beside these the distances between small particles 
in microscale. In the case of a three-dimensional problem in elasticity, 15 unknowns 
were defined as mentioned below. These were six stress components, six strain 
components, and three displacement components. These unknown values were to be 
calculated by using 15 elasticity equations, three equilibrium equations, six stress-
strain relationships, and six strain-displacement relationships. Continuity conditions 
were satisfied by considering the six compatibility equations which were derived 
from 15 elasticity equations in three-dimensional problems. Boundary conditions 
and the initial conditions were both defined on the boundaries and at the starting 
time domains, respectively, in order to obtain the solutions under the limitation of 
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approximate and true percentage minimum error calculations. In the case of three-
dimensional elasticity problem, 15 unknown values have to be solved by 15 govern-
ing equations (the list of the unknowns were six stress components  
  [ σ  x    σ  y    σ  z    τ  xy    τ  yz    τ  xz  ]   and six strain components   [  ε  x     ε  y     ε  z     γ  xy     γ  yz     γ  xz   ]  , and additionally 
the three displacement components [u v w]) [3, 4]. In solid mechanics and elasticity 
theory, the governing partial differential equations, the constitutive and kinematics 
equations, and the initial and boundary conditions have been all defined. However, 
if at least one of the above conditions has remained partially or entirely unknown, 
then one has a so-called inverse problem (Figure 2) [5]. On the other hand, the 
elasticity “inverse problem” has been defined for the problems in which they consist 
of recovering the missing displacements to the solution space corresponding to the 
applied force data by using the iterative calculation steps. Obviously, lost or uncalcu-
lated data developing on one part of a whole domain boundary have directly affected 
the final configuration of the stress-strain and displacement components and their 
resultant solution spaces at the other part of this boundary. The proposed solutions 
were both numerical and analytical (Figure 2). Inverse problem of elasticity in other 
words Cauchy problem (Cauchy-Navier equations of elasticity) has been defined 
on the accessible outer boundary of the structure. The Cauchy stress tensor compo-
nents were related with the infinitesimal (incremental calculations) strain tensor 
components which have been identified in deformed configuration with successive 
iterations.

The stress-strain relationship in terms of indicial notation is given below:

   σ  ij   = 2  𝜇𝜀  ij   +  𝜆𝛿  ij    ε  kk    (1)

Here,  μ, λ  are the Lamé constants. The Cauchy strain components represent the 
geometrical nonlinearity of the material according to the deformed configuration.

The inverse problem solution depends on the stepwise calculated and so 
updated Cauchy stress and strain distributions, over the whole boundary of the 
geometry. Experimentally, tractions and displacements have been measured by 
nondestructive tests. In isotropic, fiber, and particulate composite material con-
cepts, the stress-strain distributions  σ − ε  have been examined according to the 
defined total number of elastic constants in stiffness [C] matrix. The inverse of 
the stiffness matrix named as the compliance matrix   [S]  =   [C]    

−1
   includes the elastic 

constants in  ε − σ  strain versus stress equations. In the generalized Hook’s law, 
anisotropic crystalline materials have been defined with 36 constants. Strain energy 
function has to be used to show that the number of independent material constants 
can be reduced from 36 to 21. The solution techniques as iterative methods, inverse 
method, semi-inverse method, variational formulation, finite element method, 
finite volume method, and meshless method have been listed in Figure 2. The 
experimental solution techniques have been explained by tensile, compression, 
torsion, impact, and bending mechanical tests. Nondestructive tests (NDT) have 
been used to obtain informational data from the surfaces of the materials (nanoin-
dentation-hardness testing).

5. Conclusion

In this introduction chapter, the historical development of the elasticity concept 
and its engineering properties were presented briefly. According to Newton’s action 
and reaction principle, the materials behave linear or nonlinear elastically under 
typical loading. Elasticity theory provides necessarily required equations and solu-
tion techniques. The action-response principle defined between the work done by 
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the forces and the potential energy stored has been explained by the material elastic 
constants. The mechanical response of a homogeneous isotropic linearly elastic 
material can be explained by two physical constants, Young’s modulus and Poisson’s 
ratio. The elastic properties of particle composites, consisting in a dispersion of 
nonlinear (spherical or cylindrical) nonhomogeneities into a linear solid matrix, 
were explained by homogenization procedure. The linear elastic constants of fiber 
composite materials have been defined according to their three principle directions 
[6]. These principle directions coincided with the fiber orientations located in each 
layer. By contrast, the physical-mechanical properties of nonlinear elastic materials 
have generally been described by parameters which have formations as the scalar 
functions of the deformation, and their material properties have been determined 
by selecting the suitable solution techniques.
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