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1. Introduction 

The analysis of elastic wave propagation and scattering is an important issue in fields such 
as earthquake engineering, nondestructive testing, and exploration for energy resources. 
Since the 1980s, the boundary integral equation method has played an important role in the 
analysis of both forward and inverse scattering problems. For example, Colton and Kress 
(1998) presented a survey of a vast number of articles on forward and inverse scattering 
analyses. They also presented integral equation methods for acoustic and electromagnetic 
wave propagation, based on the theory of operators (1983 and 1998). Recently, Guzina, Fata 
and Bonnet (2003), Fata and Guzina (2004), and Guzina and Chikichev (2007) have dealt 
with inverse scattering problems in elastodynamics. 
The type of volume integral equation known as the Lippmann–Schwinger equation (Colton 
& Kress, 1998) has been an efficient tool for theoretical investigation in the field of quantum 
mechanics (see, for example, Ikebe, 1960). Several applications of the volume integral 
equation to scattering analysis for classical mechanics have also appeared. For example, 
Hudson and Heritage (1981) used the Born approximation of the solution of the volume 
integral equation obtained from the background structure of the wave field for the seismic 
scattering problem. Recently, Zaeytijd, Bogaert, and Franchois (2008) presented the 
MLFMA-FFT method for analyzing electro-magnetic waves, and Yang, Abubaker, van den 
Berg et al. (2008) used a CG-FFT approach to solve elastic scattering problems. These 
methods were used to establish a fast algorithm to solve the volume integral equation via a 
Fast Fourier transform, which is used for efficient calculation of the convolution integral. 
In this chapter, another method for the volume integral equation is presented for the direct 
forward and inverse elastic wave scattering problems for 3-D elastic full space. The starting 
point of the analysis is the volume integral equation in the wavenumber domain, which 
includes the operators of the Fourier integral and its inverse transforms. This starting point 
yields a different method from previous approaches (for example, Yang et al., 2008). By 
replacing these operators with discrete Fourier transforms, the volume integral equation in 
the wavenumber domain can be treated as a Fredholm equation of the 2nd kind with a non-
Hermitian operator on a finite dimensional vector space, which is to be solved by the Krylov 
subspace iterative scheme (Touhei et al, 2009). As a result, the derivation of the coefficient 
matrix for the volume integral equation is not necessary. Furthermore, by means of the Fast 
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Fourier transform, a fast method for the volume integral equation can be established. The 
method itself can be extended to the scattering problem for a 3-D elastic half space (Touhei, 
2009). This chapter also presents the possibility of the volume integral equation method for 
3-D elastic half space by constructing a generalized Fourier transform for the half space. 
An important property of the volume integral equation in the wavenumber domain is that it 
separates the scattered wave field from the fluctuation of the medium. This property yields 
the possibility of inverse scattering analysis. There are several methods for inverse scattering 
analysis that make use of the volume integral equation (for example, Kleinman and van den 
Berg (1992); Colton & Kress (1998)). These methods can be used to investigate the 
relationship between the far field patterns and the fluctuation of the medium in the volume 
integral equation in the space domain. Under these circumstances, for the inverse scattering 
analysis, the possibility of solving the volume integral equation in the wavenumber domain 
should also be investigated. 
In this chapter, basic equations for elastic wave propagation are first presented in order to 
prepare the formulation. After clarifying the properties of the volume integral equation in 
the wavenumber domain, a method for solving the volume integral equation is developed. 

2. Basic equations for elastic wave propagation 

Figures 1(a) and (b) show the concept of the problem discussed in this chapter. Figure 1(a) 

shows a 3-D elastic full space, in which a plane incident wave is propagating along the x3 

axis towards an inhomogeneous region where material properties fluctuate with respect to 
their reference values. Figure 1(b) is a 3-D elastic half space. Here, waves from a point 
source propagate towards an inhomogeneous region. Scattered waves are generated by the 
interactions between the incident waves and the fluctuating areas. This chapter considers a 
volume integral equation method for solving the scattering problem for both a 3-D elastic 
full space and a half space. At this stage, basic equations are presented as the starting point 
of the formulation. 

 

(a) Scattering problem in a 3-D elastic full  
space 

(b) Scattering problem in a 3-D elastic half 
space 

Fig. 1. Concept of the analyzed model. 

A Cartesian coordinate system is used for the wave field. A spatial point in the wave field is 
expressed as: 
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 (1)

where the subscript index indicates the component of the vector. For the case in which an 

elastic half space is considered, x 

3 denotes the vertical coordinate with the positive direction 

downward, where the free surface boundary is denoted by x 

3 = 0. 
The fluctuation of the medium is expressed by the Lamé constants so that: 

 

 
(2)

where λ0 and μ0 are the background Lamé constants of the wave field, and #λ  and #μ  are 

their fluctuations. The back ground Lamé constants are positive and bounded. The 

magnitudes of the fluctuations are assumed to satisfy 

 (3)

Let the time factor of the wave field be exp(−iωt), where ω is the circular frequency and t is 

the time. Then, the equilibrium equation of the wave field taking into account the effects of a 

point source is expressed as: 

 (4)

where σij is the stress tensor, ∂j is the partial differential operator, ρ is the mass density, ui is 

the total displacement field, qi is the amplitude of the point source, xs is the position at 

which the point source is applied, and δ(· ) is the Dirac delta function. The subscript indices i 

and j in Eq. (4) are the components of the Cartesian coordinate system to which the 

summation convention is applied. The constitutive equation showing the relationship 

between the stress and strain tensors is as follows: 

 (5)

where δij is the Kronecker delta, and εij is the strain tensor given by 

 
(6)

Substituting Eqs. (6) and (5) into Eq. (4) yields the following governing equation for the 

current problem: 

 
(7)

where Lij (∂1, ∂2, ∂3) and Nij (∂1, ∂2, ∂3, x) are the differential operators constructed by the 

background Lamé constants and their fluctuations, respectively. The explicit forms of the 

operators Lij and Nij are given by 

 (8)
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(9)

For the case in which an elastic half space is considered, the free boundary conditions are 

necessary and are expressed by 

 (10)

where Pij is the operator describing the free boundary condition having the following 

components: 

 

(11)

3. Method for forward and inverse scattering analysis in the elastic full space 
based on the volume integral equation 

3.1 Definition of the forward and inverse scattering problem 
Now, we deal with the concept of the problem shown in Fig. 1(a). The forward and inverse 

problem for a 3-D elastic full space will be discussed based on the volume integral equation. 

The forward and inverse scattering problems considered in this section can be described as 

follows: 

Definition 1 The forward scattering problem is to determine the scattered wave field from 

information about the regions of fluctuation, the background structure of the wave field, and the plane 

incident wave. 

Definition 2 The inverse scattering problem involves reconstructing the fluctuating areas from 

information about the scattered waves, the background structure of the wave field, and the plane 

incident wave. 

To clarify the above problems mathematically, the volume integral equation is obtained 

from Eq. (7). Assume that the right-hand side of Eq. (7) is the inhomogeneous term. Since 

there is no point source in the wave field shown in Fig. 1(a), the solution of Eq. (7) is 

expressed by the following volume integral equation: 

 
(12)

where Fi and Gij are the plane incident wave and the Green’s function, respectively, which 

satisfy the following equations: 

 
(13)

 
(14)
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It is convenient to express the volume integral equation in terms of the scattered wave field 

 (15)

which becomes: 

 

 
 

(16)

By means of Eq. (16), the forward and inverse scattering problems considered in this section 

can be stated mathematically. The forward scattering problem is to determine vi after Gij, 

Njk, and Fk have been obtained. The inverse scattering problem determines #λ  and #μ  in Njk 

in Eq. (16) after Gij, vi, and Fk have been obtained. In the remainder of this section, a method 

for dealing with Eq. (16) is described. 

3.2 The Fourier transform and its application to the volume integral equation 
The following Fourier integral and its inverse transforms: 

 

 
 
 

(17)

play an important role in the formulation, where ξ = (ξ1, ξ2, ξ3) ∈ R3 is a point in the 

wavenumber space, x · ξ is the scalar product defined by 

 (18)

and  and −1 are the operators for the Fourier transform and the inverse Fourier 

transform, respectively. In the following formulation, the symbol ˆ attached to a function is 

used to express the Fourier transform of the function. For example,  denotes the Fourier 

transform of ui. The domain of the operators for  and −1 defined in Eq. (17) is assumed to 

be L2(R3), so that the convergence of the integrals should be understood in the sense of the 

limit in the mean. In the following formulation, the domain of  and −1 for the Green’s 

function is assumed to be extended from L2(R3) to the distribution (Hörmander, 1983). 
The Fourier transform of the equation for the Green’s function defined by Eq. (14) becomes 

 
(19)

Equation (19) yields 

 
(20)

where (ξ) is expressed by 
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(21)

In Eq. (21), ν0 is the Poisson ratio obtained from the back ground Lamé constants λ0 and μ0, 

kL, and kT are the wavenumber of the P and S waves obtained from 

 

 
 

(22)

|ξ|2 is given by 

 (23)

and ε is an infinitesimally small positive number. Note that cT and cL in Eq. (22) are the S 

and P wave velocities, respectively, for the background structure of the wave field defined 

by 

 
(24)

and 

 

(25)

respectively. 

Next, let us investigate the Fourier transform of function wi in the following form: 

 
(26)

to obtain the Fourier transform of the volume integral equation. Note that fj(y) is in (R3), 

i.e., the space of rapidly decreasing functions (Reed & Simon, 1975), then changing the order 

of integration yields 

 

 
 

(27)

In particular, the Fourier transform of wi can be separated into the product of  and . As 

reported in a previous study (Hörmander, 1983), fj can be extended to distributions with 

compact support. According to Eq. (27), the Fourier transform of the volume integral 

equation shown in Eq. (16) becomes: 
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(28)

For the case in which an explicit form of the plane incident wave is obtained, NjkFk on the 

right-hand side of Eq. (28) can be simplified. As an example, a plane incident pressure (P) 

wave propagating along the x 

3 axis has the following form: 

 (29)

where a is the amplitude of the P wave potential. In this case, NjkFk can be expressed as 

 (30)

where 

 

 
 
 

(31)

Note that ξp is the wavenumber vector of the plane incident wave having the following 

components: 

 (32)

As a result, Eq. (28) can be rewritten as 

 
(33)

A method for forward and inverse scattering analysis is developed in the following based 
on Eq. (33). 

3.3 Method for forward scattering analysis 
Let us rewrite Eq. (33) in the following form: 

 (34)

where  is given by 

 (35)

which can be treated as a given function and Aik is the linear operator such that 

 (36)

Equation (34) clearly shows a Fredholm integral equation of the second kind, in which the 

linear operator is constructed by the multiplication operator , the Fourier transform and 

the inverse Fourier transform, and the differential operator Njk. For the actual numerical 
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calculations in this chapter, the Fourier transform and its inverse Fourier transform are dealt 

with by means of the discrete Fourier transform. Naturally, the discrete Fourier transform is 

evaluated by means of an FFT. Let us denote the operators for the discrete Fourier 

transforms as D and . For the operators D and , the subsets in R3 below are 

defined as follows: 

 
(37)

 
(38)

These subsets define a finite number of grid points, where Δxj , (j = 1, 2, 3) is the interval of 

the grid in the space domain, Δξj , (j = 1, 2, 3) is the interval of the grid in the wavenumber 

space, and N1, N2, and N3 are sets of integers defined by 

 

 
 

(39)

where (N1,N2,N3) defines the number of grid points in R3. For the discrete Fourier transform, 

note that there is a relationship between Δxj and Δξj such that 

 
(40)

The explicit form of the discrete Fourier transform and the inverse Fourier transform are 
expressed as 

 

 
 
 

(41)

where Δx and Δξ are denoted by 

 (42)

and x(k ) and ξ(l ) expressed by 

 (43)

are the points in Dx of the k-th grid and in Dξ of the l-th grid, respectively. In addition, uD 

and  are the discrete functions defined on the grids Dx and Dξ. 

Based on the discrete Fourier transform, the derivative of a function can be calculated. For 

example, ∂jf(x) is expressed by 

 
(44)
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Therefore, treatments for the operator Njk are also made possible by the discrete Fourier 

transform. Let N(D)jk be the discretization of the operator for Njk by means of the discrete 

Fourier transform. Then, the discretization for the operator ij is defined by 

 (45)

As a result of the discretization, Eq. (34) becomes 

 (46)

The domain and range of the linear operator in Eq. (45) are in the set of functions defined on 

a finite number of grids in the wavenumber space Dξ. Namely, the domain and range for the 

operator are finite dimensional vector spaces. Note that the operator N(D)jk included in (D)ij 

is bounded because the differential operators are approximated by the discrete Fourier 

transform. For the case in which the domain and range of the operator are finite dimensional 

vector spaces, the operator has matrix representations (Kato, 1980). Therefore, a technique 

for the linear algebraic equation, such as the Krylov subspace iteration method (Barrett et al., 

1994), is applicable to Eq. (46). Krylov subspace iteration methods have been developed for 

systems of algebraic equations in matrix form: 

 (47)

where A is the matrix, and x and b are unknown and given vectors, respectively. The 

Krylov subspace is defined by 

 (48)

where m is the number of iterations. The Krylov subspace iteration method determines the 

coefficients of the recurrence formula to approximate the solution from the orthonormal 

basis of Km during the iterative procedure. Note that matrix A can be regarded as the linear 

transform on a finite dimensional vector space. In this way, the construction of the Krylov 

subspace is possible, even if the linear transform is obtained using discrete Fourier 

transforms. Namely, it is possible to solve Eq. (46) by the Krylov subspace iteration method, 

where the Krylov subspace is constructed by FFT. As a result, a fast method for the volume 

integral equation without the derivation of the matrix is expected to be established. The 

current method is also expected to use less computer memory for numerical analysis. Since 

the operator A(D)ij is non-Hermitian due to the presence of N(D)jk, the Bi-CGSTAB method 

(Barrett et al., 1994) is selected for the solution of Eq. (46). 

3.4 Method for inverse scattering analysis 

According to Eq. (31) the explicit form of  (ξ − ξp) shown as the first term on the right-hand 

side of Eq. (33) becomes: 

 

 
 
 

(49)
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Based on Eq. (49),  is found to be the function describing the fluctuation of the medium. 
Therefore, the inverse scattering analysis becomes possible if  is obtained from Eq. (33) 
after the scattered wave field  and the background structure of the wave field represented 

by  have been provided. We introduce the vector Qi, such that 

 (50)

to obtain the equation for the inverse scattering analysis in dimensionless form. Let us 

multiply both sides of Eq. (33) by
  

, which yields 

 
(51)

where   is defined by 

 (52)

Next, let the second term of Eq. (51) be modified to obtain the following: 

 
(53)

where Mjk is the differential operator determined by the scattered wave field. The remainder 

of this section describes how to obtain an explicit form of Mjk, so that Eq. (51) can be used to 

obtain , which makes the estimation of the fluctuation of the medium possible. In order to 

obtain the explicit form of Mjk, ┙j, which is defined as being equal to Njkvk, can be expressed 

as follows: 

 (54)

where Δv and ηj are defined by 

 

 
(55)

and εjk is the strain tensor due to the scattered wave field defined by Eq. (6). Let the 

separation of the fluctuation of the medium and the scattered wave field for αj be denoted by 

 (56)

where pk is the state vector for the fluctuation of the medium, the components of which are 

 (57)

and mjk is the differential operator that includes the effects of the scattered wave field, so that 

 

(58)
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Likewise, let the separation of the fluctuation of the medium and the scattered wave field for 

Qj defined by Eq. (50 ) be denoted as follows: 

 (59)

where κjk is the operator that includes the effects of the scattered wave field, so that: 

 

(60)

According to Eqs. (59) and (60), the formal representation of the relationship between pj and 

Qj becomes 

 (61)

where sjk is the inverse of κjk, the components of which are 

 

(62)

Based on Eqs. (56) and (59), the following relationship can be derived: 

 (63)

As a result, the operator Mjk defined by Eq. (53) can be constructed as follows: 

 
(64)

By means of the operator, Eq. (51) is modified to obtain 

 
(65)

At this point, we have two tasks involving Eq. (65). One is to modify Eq. (65) to obtain a 

Fredholm equation of the second kind. The other task is to clarify the treatment of the 

operator sjk, which includes  and (∂3 + ikL)− 1. To modify Eq. (65) to obtain a Fredholm 

equation of a second kind, the shift operator S(ξp) defined by 

 (66)

is introduced. An explicit form of the shift operator can be obtained in terms of the Fourier 
transform, so that 

 (67)

Application of the shift operator to both sides of Eq. (65) yields 
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(68)

which clearly has the form of a Fredholm equation of the second kind. 

To clarify the treatments of  in sjk, consider the following equation: 

 (69)

Formally, it is possible to write the solution of the equation as 

 
(70)

where H is the unit step function. The Fourier transform of H can be expressed as 

 
(71)

where p.v. denotes Cauchy’s principal value. 
Equation (71) can also be expressed as (Friedlander & Joshin, 1998), 

 
(72)

and, therefore, the Fourier transform for u(x) in Eq. (70) becomes 

 
(73)

The treatment of  is resolved by means of Eq. (73), which is represented by 

 
(74)

Likewise, we obtain 

 
(75)

which yields 

 
(76)

As can be seen from Eqs. (74) and (76),  and (∂3+ikL)−1
 in the operator sij can be dealt with 

and resolved in terms of the Fourier transform. As a result of the above procedure, the 

treatment of the differential operator Mij defined by Eq. (53) can also be handled by the 

Fourier transform. After all, as in the formulation of the forward scattering problem, Eq. (68) 

can be discretized into the following form: 

 (77)

www.intechopen.com



A Volume Integral Equation Method for the Direct/Inverse Problem  
in Elastic Wave Scattering Phenomena  

 

13 

where B(D)ij is the operator expressed by 

 (78)

The Krylov subspace iteration technique is also applied to Eq. (77) in the analysis. As a 
result of the above procedure, a fast method for the analysis of the inverse scattering is 
expected to be established. 

3.5 Numerical example 

A numerical example for a multiple scattering problem in a 3-D elastic full space is 

presented. The fluctuations in the x1−x2 and x1−x3 planes are shown in Figs. 2(a) and 2(b), 

respectively, where the maximum amplitudes of #λ  and #μ  are 0.18 GPa. These fluctuations 

are smooth, so that they have continuous spatial derivatives. The background structure of 

the wave field for the Lamé constants is set such that ┣0 = 4 GPa and μ0 = 2 GPa, and the 

mass density is set to ρ = 2 g/cm3. The background velocity of the P and S waves are 2 and 1 

km/s, respectively. The analyzed frequency is f = 1 Hz, and the amplitude of the potential 

for the incident P wave is a = 1.0 × 105
 cm2. The intervals of the grids in the space domain for 

the discrete Fourier transform are set by Δxj = 0.25(km), (j = 1, 2, 3), and the number of 

intervals of the grids in the space domain for the discrete Fourier transform are set by  

Nj = 256, (j = 1, 2, 3). As a result, the intervals of the grid in the wavenumber space become 

Δξj = 2π/(Nj ×Δxj) ≈ 0.098 km−1. In addition, ε for the Green’s function in the wavenumber 

domain shown in Eq. (21) is set to 0.2. 

Figures 3(a) and 3(b) show the amplitudes of the scattered waves in the x 

1 − x 

2 and x 

1 − x 

3 

planes, respectively. According to Fig. 3(a), the scattered waves are prominent in the regions 

in which fluctuations of the medium are present. The regions for the high amplitudes of the 

scattered waves are found to be separated due to the locations of the fluctuations of the 

medium. Therefore, the effects of multiple scattering are not very significant here. The 

reflection of the waves due to the incident wave is found to be small because of the smooth 

fluctuations. According to Fig. 3(b), forward scattering is noticeable with the narrow 

directionality in the x 

3 direction. Interference of the scattered waves can be observed in the 

far field range of regions of the fluctuation. 
 

  
(a) Fluctuations of Lamé constants #λ  and #μ  

in the x
 
1 – x

 
2 plane. 

(b) Fluctuations of Lamé constants #λ  and #μ  

in the x
 
1 – x

 
3 plane. 

Fig. 2. Analyzed model of smooth fluctuations. 
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(a) Amplitudes of scattered waves in the  

x
 
1 – x

 
2 plane. 

(b) Amplitudes of the scattered waves in the  

x 

1 – x 

3 plane. 

Fig. 3. Results of the forward scattering analysis due to smooth fluctuations. 

 

  

(a) Reconstruction of #λ  in the x
 
1 – x 

2 plane. (b) Reconstruction of #μ  in the x
 
1 – x 

2 plane. 

  

(c) Reconstruction of #λ  in the x
 
1 – x 

3 plane. (d) Reconstruction of #μ  in the x
 
1 – x 

3 plane. 

Fig. 4. Results of the inverse scattering analysis due to smooth fluctuations. 

The results of the inverse scattering analysis in the x 

1−x 

2 and x 

1−x 

3 planes are shown in Figs. 

4(a) through 4(d). For the analysis, ε for expressing  and (∂3 + ikL)−1
 in the operator Mjk 

was set to 0.01. Figures 4(a) through 4(d) show that the amplitudes and locations for the 

fluctuations were successfully reconstructed from the scattered wave field. Namely, Eq. (77) 

is effective and available for the inverse scattering analysis for the case in which the entire 

scattered wave field is provided. 
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For an AMD Opteron 2.4 GHz processor, and using the ACML library for the FFT and Bi-

CGSTAB method for the Krylov subspace iteration technique, the required CPU time was 

only two minutes, where two iterations of the Bi-CGSTAB method were needed to obtain 

the solutions. 

4. Volume integral equation method for an elastic half space 

In this section, we deal with the concept of the analyzed model shown in Fig. 1(b), which is 

the scattering problem in an elastic half space. As shown in Eq. (16), the volume integral 

equation for the problem in terms of the scattered wave field can be expressed by 

 
(79)

where G is the Green’s function in an elastic half space, and Fi is the wave from the point 

source, expressed as 

 (80)

Equation (79) can be solved by means of the Fourier transform constructed for elastic wave 

propagation for a half space. This section explains this transform for the integral equation 

for an elastic half space and its application to the volume integral equation. 

4.1 Transforms for the elastic wave equation in a half space for horizontal 
components 
First, in order to determine an appropriate transform for the elastic wave equation in a half 
space, the following equation: 

 
(81)

together with the following boundary condition: 

 
(82)

are investigated, where  is the operator describing the free boundary condition, the 

components of which are 

 

(83)

The force density fi and the displacement field ui are assumed to be in L2 . The scalar 

product of the function in L2  is defined as 

 
(84)
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The following Fourier integral transform for the displacement field for the horizontal 
components is introduced for Eq. (81): 

 

 
 
 

(85)

where ξ1 and ξ2 are the horizontal coordinates of the wavenumber space. Note that the 

convergence of the integrals shown in Eq. (85) should be understood in the sense of the limit 

in the mean. According to the Fourier transform given by Eq. (85), Eq. (81) is transformed 

into the following: 

 (86)

where  and  in this section are define by 

 (87)

respectively, and  is given by 

 (88)

The Stokes-Helmholtz decomposition (Aki & Richards, 1980) is introduced in order to make 

the treatments for Eq. (86) more comprehensive. In general, the Stokes-Helmholtz 

decomposition of the displacement field ui is expressed as: 

 (89)

where φ, ψ, and χ are the scalar potentials for the P, SV, and SH waves, respectively, and εijk 
is the Eddington epsilon. The Fourier transform of Eq. (89) is as follows: 

 

 
 

(90)

where ej, (j = 1, 2, 3) are the base vectors for the 3-D displacement field,  = ej, and 

 From Eq. (90), the wave field can be decomposed into the P-SV and SH 

waves by introducing the new base vectors  defined by  = Tijej , where Tij is expressed 

as 

 

(91)

where c = ξ1/ξr and s = ξ2/ξr for the case in which ξr ≠ 0 and c = 1 and s = 0 for the case ξr = 

0. Note that it is possible to impose arbitrary values on c and s when ξr = 0, because, based 

on Eq. (90),  
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The linear transform Tij defined by Eq. (91) is unitary and has the property whereby 

 Equations (81) and (82) are transformed as follows by means of Tij and the 

Fourier transform shown in Eq. (85): 

 
(92)

 (93)

where the operators  are obtained from: 

 

 
(94)

The relationship between  and  is as follows: 

 (95)

The components of the operators  are 

 

(96)

 

(97)

In Eqs. (96) and (97), the matrices are separated into 2×2 and 1×1 minor matrices, which 
makes the procedures for the operator much easier. Note that the 2 × 2 minor matrix is for 
the P-SV wave components and that the 1 × 1 minor matrix is for the SH wave component. 

4.2 Self-adjointness of the operator   
In this section, we discuss the self-adjointness of the operator  and its spectral 
representation. The domain of the operator  is set by 

 (98)

with the scalar product 

 
(99)

for ui, vi ∈ D( ). The operation for the differentiation in  is carried out in the sense of 

the distribution. It is not difficult to show the following: 
Lemma 1 The operator  is symmetric and non-negative. 
[Proof] 

Let ui, vi ∈ D( ). Then, 
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(100)

 

 
 
 
 
 
 
 
 
 
 

(101)

□ 
Next, the following function is defined: 

 
(102)

together with the boundary condition 

 (103)

where C is a set of complex numbers. The solution of Eq. (102) for for η ∈ C \ B has the 

following properties: 

 

 
 

(104)

where B is defined by 

 (105)

in which 

 

 
(106)
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Note that FR in Eq. (106) is the Rayleigh function given by 

 (107)

where 

 

 
(108)

Lemma 2 For fi ∈ L2(R+) and η ∈ C \ B 

 
(109)

[Proof] 

First, fix i and j and define 

 
(110)

Then, the following is obtained by means of the Schwarz inequality: 

 

 
 
 

(111)

where 

 
(112)

As a result, the following is obtained: 

 

 
 

(113)

where 

 
(114)

Equation (113) concludes the proof.                                                                                                  □ 

Theorem 1 The operator  with the domain D( ) is self-adjoint. 
[Proof] 

It is sufficient to prove that ∀fi ∈ L2(R+), there exist ∈ D( ) satisfying 
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(115)

 
(116)

where p is a positive real number. This fact is based on the results of a previous study 

(Theorem 3.1, Berthier, 1982). 

For the construction of , define 

 
(117)

where η is chosen such that η2 = ip. Note that η ∈ C \ B. The following equation: 

 

 
 
 
 
 
 
 
 
 
 

(118)

yields Eq. (115), where (R+) is the Schwartz space. During the derivation of Eq. (118), the 

following equation: 

 
(119)

is based on the following properties of gij(x 

3, y3, ξr, η) at x 

3 = y3 

 

(120)

In addition, the following is obtained: 

 

(121)

The order of the integral and differential operators of the properties of function gij are 

changed such that 
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(122)

for an arbitrary positive integer n. According to Eq. (121), we have 

 (123)

It has been shown that uj ∈ L2(R+) from Lemma 2, so that  ∈ D( ). The construction of 

∈ D( ) is also possible. As a result, the following conclusion is obtained.                       □ 

4.3 Generalized Fourier transform for an elastic wave field in a half space 
The operator  has been found to be self-adjoint and non-negative, which yields the 
following spectral representation: 

 
(124)

where Eij is the spectral family. The spectral family is connected with the resolvent by 

means of the Stone theorem (Wilcox, 1976): 

 

 
 
 

(125)

for ui, vi ∈ L2(R+). Note that Rij is the resolvent of the operator  and Rij(ζ)uj is defined by 

 
(126)

Let  and . Then, the right-hand side of Eq. (125) for the integral 

becomes 

 

 
 
 
 
 
 

(127)

where ζ = μ0η2 and ηR is defined by FR(ξr, ηR) = 0. The path of integration in the complex η 
plane shown in Fig. 5 is used for the evaluation of the integral. 

In the following, the relationship between the right-hand side of Eq. (127) and the 

eigenfunctions is presented. Let vi(x 

3, ξr, η) ∈ D( ) satisfy 

 (128)
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Fig. 5. Path of the integral. 

and define the scalar function W(η) such that 

 

(129)

It is easy to derive the following properties of W(η) by means of the boundary conditions for 

vi: 

 

 
(130)

Note that vi(x 

3, ξr, ηR) becomes the eigenfunction (Rayleigh wave mode) satisfying the free 

boundary conditions. Otherwise, vi(x, ξr, η), (η ≠ ηR) cannot satisfy the free boundary 

conditions. As a result, Eq. (130) is established. Integration by parts of Eq. (129) yields 

 (131)

where 

 

 
 
 
 

(132)

The following lemma can then be obtained: 

Lemma 3 The residue of gij at η = ηR can be expressed in terms of the eigenfunction such that 

 
(133)

where ξ = (ξ1, ξ2, ηR) and ψim(x3, ξ) is the eigenfunction defined by 

 (134)
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[Proof] 

Based on a previous study (Aki & Richards, 1980), the function gij can be constructed by 

 (135)

where wij is defined by 

 

 
(136)

In addition, Δj is defined such that gij satisfies the free boundary condition: 

 (137)

The definition of W(η) shown in Eq. (129) implies that the expression is valid: 

 (138)

Equations (137) and (138) yield 

 

 
(139)

Now, let η approach ηR. Due to reciprocity, it is found that 

 (140)

Therefore, 

 (141)

The residue of the resolvent kernel is expressed as 

 
(142)

For the case in which the eigenfunction is normalized as I2(ηR) = 1, we have W ′(ηR) = −2μηR, 

which concludes the proof.                                                                                                                 □ 

Next, the function gij: 

 (143)

is investigated for the case in which s = Re(η) > ξr. The function gij for this case is 

constructed by 

 (144)

where vik is the definition function of the improper eigenfunction (Touhei, 2002). The 

definition function vik satisfies the following: 
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 (145)

The relationship between the improper eigenfunction and the definition function is given as 

 (146)

Next, let us define the following function: 

 (147)

Substitution of the explicit forms of the eigenfunction and definition function of Eq. (147) 

yields the following: 

 
(148)

In addition, note that 

 (149)

which is obtained from the definition of wik shown in Eq. (136). Based on Eqs. (148) and 

(149), the following lemma is obtained. 

Lemma 4 For the region of s > ξr, the function gij satisfies the following equation: 

 

 
(150)

where ψim(x 

3, ξ) is the improper eigenfunction. 

[Proof] 

The requirement of the free boundary condition for gij yields the following expression of Δk┚: 

 (151)

Incorporating the following reciprocity relation: 

 (152)

into Eq. (151) yields 

 (153)

Therefore, the following is obtained: 

 

 
(154)

Thus, Eqs. (146), (148), and (149) conclude the proof.                                                                     □ 
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Next, let us again consider Eq. (127). Equation (127) holds for an arbitrary vi ∈ L2(R+), so that 

the following equation can be obtained by incorporating the results of Lemmas 3 and 4: 

 

 
 
 
 
 
 

(155)

where uj (ξr, · ) ∈ L2(R+), ξ = (ξ1, ξ2, ξ3) ∈  and 

 (156)

As mentioned earlier,  and , so that 

 
(157)

Therefore, Eqs. (125) and (155) yield 

 

 
 
 

(158)

Let b in Eq. (158) approach infinity. Then, the following eigenfunction expansion form of ui 

is obtained: 

 

(159)

Note that the eigenfunction expansion form shown in Eq. (159) is that for ui(ξr, ·) having the 

compact support. This result can be extended to all ui(ξr, · ) ∈ L2(R+) by a limiting 

procedure, namely, 

 
(160)

where the convergence is in L2(R+). The transform of the function in L2(R+) obtained here 

can be summarized as follows: 
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(161)

At this point, the transformation of the elastic wave field in a half space can be presented. 
Let us define the subset of the wavenumber space as follows: 

 (162)

The following theorem is obtained based on Eqs. (85), (95), and (158): 

Theorem 2 There exists a map satisfying the free boundary condition of the elastic half space of the 

wave field from L2( ) to L2(σp) ⊕ L2(σc) defined by 

 

 
(163)

the inverse of which is 

 

 
(164)

Here,  and  are expressed as follows: 

 

 
 
 
 
 

(165)

where 

 
(166)

Here,  is referred to as the generalized Fourier transform of uj, and  is referred 

to as the generalized inverse Fourier transform of . Based on the literature (Reed and 

Simon, 1975), the domain of the operators  and  could be extended from L2 to the 

space of tempered distributions  ′. 

4.4 Method for the volume integral equation 
We have obtained the transform for elastic waves in a 3-D half space, which is to be applied 
to the volume integral equation. Preliminary to showing the application of the transform to 
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the volume integral equation, we have to construct the Green’s function for the elastic half 
space based on the proposed transform. The definition of the Green’s function for the half 
space is expressed as 

 

 
 

(167)

The application of the generalized Fourier transform to Eq. (167) yields 

 (168)

where  is the generalized Fourier transform of the Green’s function. Therefore, as a result 
of Eq. (168), the Green’s function for a half space can be represented as 

 

 
 
 

(169)

Next, let the function wi(x) be given in the following form: 

 
(170)

The formal calculation reveals that 

 

 
 
 
 
 
 
 

(171)

where  denotes 

 
(172)

Note that 1(· ) in Eq. (172) is defined such that 

 (173)

At this point, the application of the generalized Fourier transform to the volume integral 
equation becomes possible and is achieved as follows: 
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(174)

where  is the generalized Fourier transform of vi and  is the incident wave field due to 

the point source expressed by 

 (175)

The volume integral equation for the elastic wave equation in the wavenumber domain in a 
half space has the same structure as that in a full space. Therefore, almost the same 
numerical scheme based on the Krylov subspace iteration technique is available. Note that 
the difference in the numerical scheme between that for the elastic full space and that for the 
half space lies in the discretization of the wavenumber space. The discretization of the 
wavenumber space for elastic half space is as follows: 

 

 
 
 

(176)

where Δξj , (j = 1, 2, 3) are the intervals of the grids in the wavenumber space, 

 
(177)

and N1, N2, and N3 compose the set of integers defined by 

 

 
 

(178)

where (N1,N2,N3) defines the number of grids in the wavenumber space. Note that Eq. (176) 

corresponds to the decomposition of the Rayleigh and body waves. 

4.5 Numerical example 

For the numerical analysis of an elastic half space, the Lam´e constants of the background 

structure is set such that λ0 = 4 GPa, μ0 = 2 GPa and the mass density is set at ρ =2 g/cm3. 

Therefore, the background velocity of the P and S waves are 2 km/s and 1 km/s, 

respectively. and that for the Rayleigh wave velocity is 0.93 km/s. In addition, the analyzed 

frequency is f = 1 Hz. 

First, let us investigate the accuracy of the generalized Fourier transform by composing the 

Green’s function. For the calculation of the generalized Fourier transform, N1 = N2 = N3 = 256, 

Δx 

1 = Δx 

2 = 0.25 km, and Δx 

3=0.125 km are chosen to define Dx and Dξ. The parameter ε for 

the Green’s function is set at 0.6. 
Figures 6(a) and 6(b) show the Green’s function calculated by the generalized Fourier 
transform and the Hankel transform. The distributions of the absolute displacements are 
shown is these figures. For the calculation of the Green’s function, the point source is set at a 
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depth of 1 km from the free surface. The direction of the excitation force is vertical, and the 

excitation force has an amplitude of 1.0 × 107 kN. Comparison of these figures reveals good 
agreement between the calculated results, which confirms the accuracy of the generalized 
Fourier transform. 
 

 

(a) Generalized Fourier transform (b) Hankel transform 

Fig. 6. Comparison of the Green’s function calculated by the generalized Fourier transform 
and the Hankel transform. 

The following example shows the solution of the volume integral equation. The fluctuation 
of the elastic wave field is set as follows: 

 (179)

 (180)

where A┣ and A┤ describe the amplitude of the fluctuation, ζ┣ and ζ┤ describe the spread of 

the fluctuation in the space, and x 

c is the center of the fluctuation. These parameters are set 

at A┣ = A┤ = 0.6 GPa, ζ┣ = ζ┤ = 0.3 km−2 and 

 (181)

The fluctuation of the medium in the x 

2 − x 

3 plane at x 

1 = 0 [km] is shown in Fig. 7. 
 

 

Fig. 7. Fluctuation of the medium 

In order to generate the scattered wave field, the location of the point source is set at x 

s = (5, 

0, 0) km. The direction of the excitation force is vertical, and the excitation force has an 
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amplitude of 1×107
 kN. Bi-CGSTAB method (Barrett et al., 1994) is used for the Krylov 

subspace iteration technique. Figures 8 and 9 show the propagation of scattered waves at 

the free surface and the amplitudes of the scattered waves in the x 

1 − x 

3 plane, respectively. 

According to Fig. 8, the amplitudes of the scattered waves are larger in the forward region 

of the fluctuating area, where x 

1 < 0. Figure 9 shows that the propagation of the Rayleigh 

waves as the scattered wvaes in the forwrad region. The amplitude of the scattered waves 

are smaller in the fluctuating area. The scattered waves are found to be reflected at the 

fluctuating area, thereby generating Rayleigh waves. The above numerical results explain 

well the propagation of the scattered elastic waves in the half space. 
 

 

Fig. 8. Scattering of waves at the free surface. 

 

 

Fig. 9. Distribution of scattered waves in the vertical plane. 

The numerical calculations were carried out using a computer with an AMD Opteron 2.4-
GHz processor. The CPU time needed for iteration in Bi-CGSTAB was five hours, which is 
due primarily to the calculation of the generalized Fourier transforms. Note that the 2-D FFT 
for the horizontal coordinate system was used for the generalized Fourier transform. The 
transform for the vertical coordinate required a large CPU time. The reduction of this large 
CPU time requirement should be investigated in the future. The development of a fast 
algorithm for the generalized Fourier transforms may be required. It is also important to 
formulate the inverse scattering analysis method and to carry out the analysis. 

5. Conclusions 

In this chapter, a volume integral equation method was developed for elastic wave 
propagation for 3-D elastic full and half spaces. The developed method did not require the 
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derivation of a coefficient matrix. Instead, the Fourier transform and the Krylov subspace 
iterative technique were used for the integral equation. The starting point of the formulation 
was the volume integral equation in the wavenumber domain. The Fourier transform and 
the inverse Fourier transform were repeatedly applied during the Krylov iterative process. 
Based on this procedure, a fast method was realized for both forward and inverse scattering 
analysis in a 3-D elastic full space via the fast Fourier transform and Bi-CGSTAB method. 
For example, if the number of iterations was two, the CPU time to obtain accurate solutions 
was only two minutes. Furthermore, for the inverse scattering problem, the reconstruction 
of inhomogeneities of the wave field was also successful, even for the multiple scattering 
problem. 
The ordinary Fourier transform is not valid for an elastic half space due to the boundary 
conditions at the free surface. The generalized Fourier transform and the inverse Fourier 
transform for elastic wave propagations in a half space were developed for the integral 
equation based on the spectral theory. The generalized Fourier transform composing the 
Green’s function was also verified numerically. The properties of the scattered wave field in 
a half space were found to be well explained by the proposed method. At present, the 
proposed method for an elastic half space requires a large amount of CPU time, which was 
five hours for the present numerical model. As such, a fast algorithm for the generalized 
Fourier transforms should be developed in the future. 
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