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Chapter

Optimal Control of Fuzzy Systems
with Application to Rigid Body
Attitude Control

Yonmook Park

Abstract

In this chapter, the author presents a theoretical result on the optimal control of
nonlinear dynamic systems. In this theoretical result, the author presents the opti-
mal control problem for nonlinear dynamic systems and shows that this problem
can be solved by utilizing the dynamic programming approach and the inverse
optimal approach. The author employs the dynamic programming approach to
derive the Hamilton-Jacobi-Bellman (H-J-B) equation associated with the optimal
control problem for nonlinear dynamic systems. Then, the author presents an
analytic way to solve the H-J-B equation with the help of the inverse optimal
approach. Based on the theoretical result presented in this chapter, the author
establishes an optimal control design for TS-type fuzzy systems that guarantees the
global asymptotic stability of an equilibrium point and the optimality with respect
to a cost function and provides good convergence rates of state trajectories to an
equilibrium point. The author considers the three-axis attitude stabilization prob-
lem of a rigid body to illustrate the optimal control design method for TS-type fuzzy
systems. The author designs the optimal three-axis attitude stabilizing control law
for a rigid body based on this optimal control design method and analyzes its
control performance by numerical simulations.

Keywords: intelligent system design, nonlinear optimal control, fuzzy systems,
rigid body motion, rigid body attitude control

1. Introduction

Since Lotfi Aliasker Zadeh introduced the fuzzy set [1] and the fuzzy logic [2],
these two concepts have been successfully applied to various kinds of fields existing
in the earth (e.g., see references in [3]), and the usefulness of these two concepts
have also been verified in many industries.

Fuzzy logic is basically a multi-valued logic that allows intermediate values to be
defined between conventional evaluations like yes or no, true or false, and big or
small. The main characteristic of fuzzy concept is that it can handle some compli-
cated phenomena of systems with the help of the fuzzy and linguistic modeling.
Thus, it is possible to design knowledge-oriented intelligent systems if we use the
fuzzy logic in the design of systems. This is a very important characteristic of fuzzy
logic.

1 IntechOpen
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Most physical systems are almost nonlinear dynamic systems. Conventional
control design approaches use different approximation methods such as linear,
piecewise linear, and lookup table approximations to handle their nonlinearities.
The linear approximation method linearizes a nonlinear dynamic system about a
single equilibrium point and provides a linearized design-model for it. Then, the
controller is designed for the linearized design-model to satisfy a given control
objective. The linear approximation method is relatively simple, but it tends to limit
control performance. In addition, the controller designed by the linear approxima-
tion method is valid only under the assumption that the states of a nonlinear
dynamic system operate closely around the considered equilibrium point, which is
the basic limitation of the control design by the linear approximation method [4].
The piecewise linear approximation method requires the design of several linear
controllers. Thus, it works better than the linear approximation method, although it
is tedious to implement. The lookup table approximation method can improve
control performance, but it is difficult to debug and tune. Moreover, in complex
systems where multiple inputs exist, the lookup table approximation method may
be very costly to implement because large memories are required to store a lookup
table.

In many applications, the fuzzy control, based on the fuzzy logic, provides
better control performance than linear, piecewise linear, or lookup table approxi-
mation methods because it provides an efficient framework to incorporate linguistic
fuzzy information from human experts. The so-called intelligent control has
emerged to use the expert information in the control community. Some tools for
implementing the intelligent control can be referred to artificial neural network,
genetic algorithm, and fuzzy logic. Note that the artificial neural network is a
learning-based device whose design is motivated by the function of human brains
and components thereof. And, the genetic algorithm is inspired by Charles Robert
Darwin’s theory of evolution and works by creating many stochastic selection
parameters to a problem. Usually, the expert information is represented by fuzzy
terms like small, large, fast, and so on. Therefore, the fuzzy control is more ade-
quate to implement the intelligent control with the expert information than the
artificial neural network and the genetic algorithm.

Fuzzy controllers can perform the nonlinear control actions because fuzzy logic
systems are capable of uniformly approximating any nonlinear function over a
compact set to any degree of accuracy [5]. Thus, if the parameters of a fuzzy
controller are carefully chosen, it is possible to design a fuzzy controller for
nonlinear dynamic systems. Then, it is well known that fuzzy controllers are robust
with respect to disturbances of systems because their operations are determined by
fuzzy rules. Also, fuzzy controllers are customizable because it is easy to understand
and modify their rules.

As the behaviors of dynamic systems become complex, the need of fuzzy
scheme increases, and the linguistic analysis suggested by Zadeh [6] allows us to
analyze the qualitative behaviors of systems with the fuzzy algorithms. As moti-
vated by the study of [6], Mamdani and Assilian [7] proposed the configuration of a
fuzzy system with fuzzifier and defuzzifier, and they applied the fuzzy logic to the
control of a dynamic plant, and the fuzzy control has attracted a great deal of
interest among researchers. Note that fuzzy system is a name for the system which
has a direct relationship with fuzzy concepts (e.g., fuzzy sets and linguistic vari-
ables) and fuzzy logic [5]. Also, note that the function of fuzzifier is to map crisp
points to fuzzy sets, and the function of defuzzifier is to map fuzzy sets to crisp
points [5].
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Subsequently, many successful applications of the fuzzy control have increased
the need of theoretical analysis concerning the stability and performance of fuzzy
control systems. Most of all, the stability of fuzzy control systems has often been
required to be verified with theoretical arguments, and there have been several
significant studies for designing the stabilizing controllers for fuzzy systems with
rigorous stability proofs [8-14], in which the so-called TS-type fuzzy model pro-
posed by Takagi and Sugeno [15] has mainly been used to represent fuzzy systems.
Specifically, in [8-14], the authors made TS-type fuzzy models of dynamic systems
with the IF-THEN fuzzy implication and fuzzy inference and designed the stabiliz-
ing control laws for TS-type fuzzy models. Then they applied the stabilizing control
laws for TS-type fuzzy models to dynamic systems. In the fuzzy control design, the
knowledge of an expert can be applied to the control design for dynamic systems by
a linguistic expression such as the IF-THEN fuzzy implication.

Concerning the performance of fuzzy control systems, the optimality has often
been considered as an important issue in the design of fuzzy control systems, and
the conventional linear optimal control method [16] has been used to design the
optimal control law for TS-type fuzzy systems. On the optimality issue of fuzzy
control systems, Wang [17] developed the optimal fuzzy controller for linear time-
invariant systems by utilizing the Pontryagin minimum principal. However, the
design method of [17] does not have much practical implications because it may not
be a good choice to use the fuzzy controller designed for linear systems directly as
the controller for nonlinear fuzzy systems. Based on the linear quadratic optimal
control theory [16], Wu and Lin [18] presented a design method of the optimal
controllers for both continuous- and discrete-time fuzzy systems. The main strategy
of [18] is to seek the optimal controller that minimizes a given performance index
by solving the matrix Riccati differential equations or the steady-state algebraic
Riccati equations. Later, Wu and Lin [19] addressed a quadratic optimal control
problem for continuous-time fuzzy systems, which were represented by the so-
called linear-like synthetic matrix form and developed a design scheme of the
optimal fuzzy controller under finite or infinite horizon by utilizing the calculus-
of-variation method. The study of [19] is also based on solving a steady-state algebraic
Riccati-like equation, but it utilizes an efficient algorithm to design the global
optimal fuzzy controller. Park et al. [20] addressed the optimal control problem for
continuous-time TS-type fuzzy systems. However, the design method of [20] has
less redundancy in choice of feedback gains and requires undesirable high feedback
gains, which are the main drawbacks of [20] in the design of the optimal controller
for fuzzy systems. Kim and Rhee [21] presented a response surface methodology,
and they applied this methodology to the design of an optimal fuzzy controller for a
plant. Wu and Lin [22] proposed a way to design a global optimal discrete-time
fuzzy controller to control and stabilize a nonlinear discrete-time TS-type fuzzy
system with finite or infinite horizon time. Chen and Liu [23] studied the problem
of guaranteed cost control for TS-type fuzzy systems with a time-varying delayed
state. Mirzaei et al. [24] proposed an optimized fuzzy controller for antilock braking
systems to improve vehicle control during sudden braking. Lin, Wang, and Lee [25]
investigated a geometric property of time-optimal control problem in the TS-type
fuzzy model via Lie algebra and found the time-optimal controller as the bang-bang
type with a finite number of switching by applying the maximum principle.
Mostefai et al. [26] presented a fuzzy observer-based optimal control design for the
compensation of nonlinear friction in a robot joint structure based on a fuzzy local
modeling technique. Zhu [27] studied a fuzzy optimal control problem for a multi-
stage fuzzy system to optimize the expected value of a fuzzy objective function
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subject to a multistage fuzzy system. Esfahani and Sichani [28] studied the problem
of optimal fuzzy H,-tracking control design for nonlinear systems that are
represented by using the TS fuzzy modeling scheme. Through these studies, the
optimal control for fuzzy systems has quite been progressed.

Since TS-type fuzzy systems essentially have a nonlinear nature due to the IF-
THEN fuzzy implication and fuzzy inference, we see that a nonlinear optimal
control method is suitable for designing an optimal control law for TS-type fuzzy
systems. In addition, when we design an optimal control law for TS-type fuzzy
systems, it is often required that the control design should allow us to control the
convergence rates of state trajectories to an equilibrium point. The decay rate of the
closed-loop dynamics may be used to achieve this requirement in the control
design. These observations motivate the author to study an optimal control of
TS-type fuzzy systems that can provide good convergence rates of state trajectories
to an equilibrium point in this chapter.

More specifically, in this chapter, the author presents a theoretical result on the
optimal control of nonlinear dynamic systems. In this theoretical result, the author
presents the optimal control problem for nonlinear dynamic systems and solves this
problem by utilizing the dynamic programming approach [29] and the inverse
optimal approach [30]. Note that Kalman [31] first proposed the inverse optimal
approach to establish some gain and phase margins of a linear quadratic regulator.
Also, note that the conventional direct optimal approach is based on seeking a
stabilizing controller that minimizes a given performance index. On the other hand,
the inverse optimal approach avoids the task of solving the Hamilton-Jacobi-
Bellman (H-J-B) equation numerically but finds a stabilizing controller first and
then shows its optimality with respect to a posteriorly determined performance
index. In this chapter, the author employs the dynamic programming approach to
derive the H-J-B equation associated with the optimal control problem for nonlinear
dynamic systems. Then, the author presents an analytic way to solve the H-J-B
equation with the help of the inverse optimal approach, by which the author
establishes a systematic approach for designing the optimal controller for nonlinear
dynamic systems. The resulting optimal controller takes the form of state feedback
L,V controller and has a relaxed control gain structure.

Then, based on the theoretical result presented in this chapter, the author estab-
lishes an optimal control design for TS-type fuzzy systems that guarantees the global
asymptotic stability of an equilibrium point and the optimality with respect to a cost
function, which incorporates a penalty on the state and control input vectors, and
provides good convergence rates of state trajectories to an equilibrium point. The
problem appearing in this optimal control design for TS-type fuzzy systems is given
as a linear matrix inequality (LMI)-based problem. From the results, the optimal
controller can be found by a simple controller design procedure, which is essentially
given as LMIs. The control design involving LMIs is particularly useful in practice
because LMIs can be efficiently solved by recently developed interior-point methods
(e.g., [32, 33]). One of the algorithms belonging to the interior-point methods can be
found in [34], and an implementation of the algorithm in [34] is included in the LMI
Control Toolbox of MATLAB [35], which will be used as the solver for the LMI-
based problem appearing in the optimal control design.

Note that the optimal controller for a nonlinear dynamic system is in general
designed for a linearized design-model, which is obtained by conventional linear
approximation techniques, because it is sometimes difficult to solve the nonlinear
optimal control problem associated with a nonlinear dynamic system. Clearly, the
optimal controller designed for a linearized design-model guarantees its optimality
only at an equilibrium point used to design a linearized design-model. Compared



Optimal Control of Fuzzy Systems with Application to Rigid Body Attitude Control
DOI: http://dx.doi.org/10.5772/intechopen.82181

with a design-model obtained by conventional linear approximation techniques, the
TS-type fuzzy model can be seen as a good design-model for approximating a
nonlinear dynamic system because it retains the essential features of a nonlinear
dynamic system with a linguistic description in terms of fuzzy IF-THEN rules, by
which the TS-type fuzzy system is valid over a range of operating points within
fuzzy sets. Thus, when we design the optimal controller for a nonlinear dynamic
system, it is adequate to approximate a nonlinear dynamic system with a TS-type
fuzzy model and to use a TS-type fuzzy model rather than a linearized design-
model. In addition, one can expect that the optimal controller designed for a
TS-type fuzzy system has a wider range of optimality than the optimal controller
designed for a linearized design-model because the former guarantees the optimal-
ity over a range of operating points within fuzzy sets.

As a control design example in this chapter, the three-axis attitude stabilization
problem of a rigid body is considered to illustrate the optimal control design method
for TS-type fuzzy systems presented in this chapter. The attitude motion of a rigid
body is basically represented by a set of two Equations [36]: (i) Euler’s dynamic
equation, which describes the time derivative of the angular velocity vector and
(ii) the kinematic equation, which relates the time derivatives of the orientation
angles to the angular velocity vector. For representing the orientation angles of a
rigid body, there exist several kinematic parameterizations such as Euler angles,
Gibbs vector, Cayley-Rodrigues parameters, and modified Rodrigues parameters
[37, 38], which are singular three-dimensional parameter representations, and
quaternion (also called Euler parameters), which is a nonsingular four-dimensional
parameter representation. Note that three-dimensional parameter representations
exhibit singular orientations because the Jacobian matrix is singular for some
orientations. On the other hand, the quaternion consists of four parameters subject
to the unit length constraint and is a globally nonsingular parameter for describing
the body orientation [36].

In this chapter, the equations of motion of a rigid body including dynamics and
kinematics are considered. The kinematic equation of a rigid body considered in this
chapter is described by the quaternion. The equations of motion of a rigid body
considered in this chapter describe a system in cascade interconnection, and the
backstepping method of [39] can be efficiently utilized to apply the optimal control
design method presented in this chapter to the three-axis attitude stabilization
problem of a rigid body.

The optimal attitude stabilization problem of a rigid body has been addressed by
several researchers [40-42]. Also, there have been many studies which consider
performance indices such as time and/or fuel in the formulation of the optimal
attitude stabilization problem of a rigid body [43-49], in which the optimal regula-
tion problems for angular velocity subsystem of a rigid body and for some quadratic
performance indexes have mainly been addressed.

The optimal attitude control problem of the complete attitude motion of a rigid
body, which includes dynamics as well as kinematics, has been investigated by
many researchers: Carrington and Junkins [50] used a polynomial expansion
approach to approximate the solution of H-J-B equation. Rotea et al. [51] showed
that Lyapunov functions including a logarithmic term in the kinematic parameters
result in linear controllers with a finite quadratic performance index. For the gen-
eral quadratic performance index, they also presented sufficient conditions which
guarantee the existence of a linear and suboptimal stabilizing controller. Tsiotras
[52] derived a new class of globally asymptotically stabilizing feedback control laws
as well as a family of exponentially stabilizing optimal control laws for the complete
attitude motion of a nonsymmetric rigid body. Later, Tsiotras [53] presented a
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partial solution to the optimal regulation problem of a spinning rigid body by using
the natural decomposition of the complete attitude motion into its kinematics and
dynamics systems and the inherent passivity properties of these two systems.
Bharadwaj et al. [54] presented a couple of new globally stabilizing attitude control
laws based on minimal and exponential coordinates. Park and Tahk [55] have
considered the problem of three-axis robust attitude stabilization of a rigid body
with inertia uncertainties, and they have presented a class of new robust attitude
control laws having relaxed feedback gain structures. Later, Park and Tahk [56]
have extended their robust attitude control scheme of [55] to the optimal attitude
control scheme by using the Hamilton-Jacobi theory of [57]. Also, Park et al. [58]
have first addressed a game-theoretic approach to robust and optimal attitude
stabilization of a rigid body with external disturbances.

Note that, in the case of robot arm control, since the arms or hand fingers can be
viewed as actuators which maneuver the attitude of the held object, the results on
the attitude control of a rigid body can be applied to the attitude control of a rigid
payload held by the robot arm [59]. With this relation, there have been many
studies concerning the attitude control problem of a rigid body, and some remark-
able studies can be referred to [60, 61].

The rest of this chapter is composed as follows. In Section 2, the author presents
a theoretical result on the optimal control of nonlinear dynamic systems. In Section 3,
the author introduces TS-type fuzzy systems and presents an optimal control
design for TS-type fuzzy systems. In Section 4, the author considers the three-axis
attitude stabilization problem of a rigid body as a control design example and
illustrates the effectiveness of the optimal control design for TS-type fuzzy systems.
In Section 5, the author concludes this chapter with concluding remarks.

2. Nonlinear optimal control

Consider the nonlinear dynamic system given by

xX(t) =f(x(2)) +gx())u@), (1)

wheref : R — R" andg : R” — R"*? are smooth, vector- and matrix-valued func-
tions, respectively, and f(0) = 0. Moreover, x(¢) € R" and u(t) € R are the state and
control input vectors, respectively. Throughout this chapter, we use the definitions of

V(o) 2 (25 fx(0) and

L,V(x(t) = (%ﬁg))) 2(x(t)), where

V : R" — R is a scalar function [4].

In general, we can find the optimal control law for the nonlinear dynamic system
in (1) by numerically solving the corresponding Hamilton-Jacobi-Bellman (H-J-B)
equation. However, this is a difficult task, and, thus, we may need a simple and
efficient method to find optimal control law for the nonlinear dynamic system in
(1). In the following, the author presents a theory to provide the optimal control law
for the nonlinear dynamic system in (1) by circumventing the task of numerically
solving the H-J-B equation.
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Proposition 1 [62]: For the nonlinear dynamic system in (1), suppose that there
exists a radially unbounded and positive definite function V(x(¢)) that has continu-
ous, first, partial derivatives with respect to x(¢) and the feedback control

u(t) = —aR [LyV(x(2))] ”, where a>1isa constantand R = RT >0 isa positive
definite matrix, achieves global asymptotic stability of the equilibrium point
x(¢) = 0 for the system in (1) such that:

VGO g v = LV (0) — alL V@) R L V@) <0 @
for all x(¢) # 0. Then, the control law

u*(t) = —2aR " [L,V(x(2))]" 3)

is the optimal, globally asymptotically stabilizing control law for the system in
(1) that minimizes the cost function

P= T [l(x(t)) + u(t)TRu(t)}dt, (4)

where [(x(t)) is given by

I(x(£)) = — 4a? (LfV(x(t)) — a[LyV(x(t)R L V(x(t))] T)
+ 40 (@ — 1) [Lg V() JR LV (2))] )
>0

forallx(¢) # 0 and a>1.
Proof: First, the following condition holds by (2):

VD g = (V) + 5 (V)] 0)) 45 [ V()]0

< — a[LV(x(t)|R L V(x())]
(6)

for all x(t) # 0 and a>1. Since V' (x(¢)) is a radially unbounded and positive
definite function, the condition in (6) guarantees that the control law «*(¢) in (3) is
a globally asymptotically stabilizing control law for the system in (1) by the
Lyapunov's stability theorem [4].

Next, define W (x(t)) £ 4a?V (x(¢)) and consider the following H-J-B equation
associated with the optimal control problem for the system in (1):

min (16s(6)) + () Rue) + {L W) + [LWO)]u)}) =0, W(0) =0,
@)
Substituting #*(t) in (3) and [(x(¢)) in (5) into the H-J-B equation in (7) yields
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min (Z(x(t)) +u()TRu(t) + {LW(x(2)) + [LgW(x(t))]u(t)}>

u(t)=u*(t)
= u(t)rriiug(t) ({—LfW(x(t)) - 4—10[ (LW (x(2)) R L;W(x(2))]"
+% (LW (5 (£)) R [Ly W (x(2))] T} + % [LyW (x(£))] R Ly W (x(2))]
+{LfW(x(t)) - ia [LgW (x(2)]R™ [LgW(x<t))}T}) =0, W(0)=0,
(8)

which implies that #*(¢) in (3) and in (5) are solutions of the H-J-B equation in
(7). In addition, by (2) and the property of R = RT >0, I(x(t)) in (5) satisfies
I(x(z)) > 0 for all x(¢) # 0 and a > 1. This completes the proof.

In proposition 1, we see that the globally asymptotically stabilizing control law in
(3) for the nonlinear dynamic system in (1) can be found without the task of
numerically solving the H-J-B equation in (7) and the control law in (3) is optimal
with respect to the cost function in (4). The key point of this work is that we
posteriorly determine the penalty on the state vector, which is /(x(¢)), rather than
we priorly choose it. Sepulcher, Jankovi¢, and Kokotovi¢ [30] proposed this
approach which is referred to as the inverse optimal approach.

It is remarkable that as shown in (4, 5), we can adjust the penalty on the control
input vector, which is R, and the penalty on the state vector, which is /(x(t)), with
the weight matrix R.Indeed, we can decrease the penalty on the control input vector
and increase the penalty on the state vector with a weight matrix R having small
values. In this condition, we can obtain a cheap optimal control law requiring a large
control effort, and this cheap optimal control law makes the nonlinear dynamic
system in (1) stable within a short period of time. Note that the term “cheap” refers
to the fact that the control effort is viewed as being cheap. On the other hand, we
can increase the penalty on the control input vector and decrease the penalty on the
state vector with a weight matrix R having large values. In this condition, we can
obtain an expensive optimal control law requiring a small control effort, and this
expensive optimal control law makes the nonlinear dynamic system in (1) stable
within a long period of time. Note that the term “expensive” refers to the fact that
the control effort is viewed as being expensive.

As shown in (3), since the constant « of the optimal control law »*(¢) in (3)
plays the role of a feedback gain for «*(¢) even though the weight matrix R is
predetermined to impose the penalties on the control input and state vectors, it is
also remarkable that the optimal control law #*(¢) in (3) has a relaxed feedback gain
structure.

Now, if we consider a practical application, we know that any control law for
dynamic systems must provide good convergence rates of state trajectories to an
equilibrium point. For achieving this requirement in the design of a control law, the
decay rate can be used as a design factor to dominate convergence rates of state
trajectories to an equilibrium point. Note that the decay rate of a system is defined
to be the largest constant y > 0 such that lim,_., ¢"*||x(¢)||, = 0 holds for all trajec-
tories of a system, where ||x(¢)||, denotes the Euclidean norm of x(¢). From the
definition of decay rate, the convergence rate of the system trajectory to the equi-
librium point can be controlled. Also, note that stability of dynamic systems corre-
sponds to a positive decay rate. In the following, the author presents a theory about
the decay rate.
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Proposition 2 [32]: If there exist a positive definite function V(x(t)) and a
constant > 0 such that

V(x(t)) < — 28V (x(t)) 9)

for all trajectories of a system, then the decay rate of a system is at least .
Proof: 1f there exist a positive definite function V(x(¢)) and a constant > 0 such

that V(x(t)) < — 28V (x(t)) for all trajectories of a system, then we obtain
V(x(t)) < V(x(0))e ¥*. With a positive definite function V (x(t)) 2 x(t)" X x(t),
where X = XT > 0 is a positive definite matrix, V(x(t)) < V(x(0))e"%" can be
1 2 1 2
represented by HX T2 (2) Hz < HX “2¢7x(0) H2 Then, by Rayleigh-Ritz theorem [63],

we can derive the following:

HX—%x(t)
Amin (Xﬁ

Amax (Xil)

ﬂmin (Xfl) Hx(o) H%eizﬁt’

le(@)]3 <

L_xtemof L,
) S e ® ) Sz 1 Ok =

where Amin (X ") and Amax (X ') denote the minimum and maximum eigenvalues
of X1, respectively. Thus, we obtain ||x(t)||, < \/(Amax (X /Admin(X71))

|¢(0)|l,e ™, and therefore the decay rate of the system is at least . This completes
the proof.

3. Optimal control of fuzzy systems
3.1 Fuzzy systems

The TS-type fuzzy model and the TS-type fuzzy control law for a system are
given by the following IF-THEN fuzzy implications, respectively [15]:

* Plant rule i for a system:
IF x41(t) is Mj; and - - - and x,,(¢) is M;,, THEN

x(t) =Aix(t) + Bu(t),i =1, -, 7. (10)

* Control law rule i for a system:
IF x1(¢) is Mj; and - - - and x,,(¢) is M;,, THEN
ult) = —Kix(t),i =1, -, 7. (11)

In (10, 11), x;(¢), i = 1, ---, m and M, i =1, -, 7,j =1, --, n are state variables and
fuzzy sets, respectively, and 7 is the number of IF-THEN rules. Moreover,
Ai eRnxn’ B; ER”XP, and K; eRP*",

If we follow the usual fuzzy inference method, we can represent the state
equations of the TS-type fuzzy model and the TS-type fuzzy control law for a
system as follows, respectively [9]:
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£(6) = X Ii(e(0)Aex(t) + 3 x(0)Bau() (12)
and
u(t) = — X hi(x(e) Kix(0) (13)

where £;,i =1, ---,  are the normalized weight functions given by

o 1My (x;(2)) l
XM ((6))”
and M (x;(t)) denotes the grade of membership of x;(t) in the fuzzy set Mj;.

Here,h;, i = 1, -+, 7 in (14) satisfy 4;(x(¢)) > 0,7 = 1, -, v and Y._h;(x(¢)) = 1 for all
x(t) ER".

= 1’ T (14)

hi(x(r))

3.2 Problem definition

The author defines two kinds of problems considered in this section. The first
problem is to design a control law for the TS-type fuzzy system in (12) that achieves
the global asymptotic stability of the equilibrium point x(¢) = 0 and minimizes the
cost function

p— J 1c(0)) + () Ru(o)]

where [(x(t)) > 0 for all x(t) # 0 and R = RT > 0 is a positive definite matrix.
The second problem is that the decay rate of the closed-loop dynamics for the
TS-type fuzzy system in (12) should be at least g, where > 0 is a constant.

3.3 Optimal control design

We can use the results of propositions 1 and 2 to solve the problems defined in
Section 3.2. Specifically, we define f (x(¢)) £ X\_,h;i(x(¢))Aix(t) and
2(x(2)) £ X hi(x(¢))B; for the TS-type fuzzy system in (12). Then, if there exists a
radially unbounded and positive definite function V(x(z)) such that the conditions
in (2) and (9) hold, then an optimal control law in the form of (3) for the TS-type
fuzzy system in (12) can be found. Thus, we have to construct V(x(¢)) whose time
derivative satisfies the conditions in (2, 9). The author uses a quadratic Lyapunov
function V(x(t)) = x(t)" X 'x(t), where X = XT > 0 is a positive definite matrix, as
the candidate of such a V(x(¢)), and presents the following theory:

Theorem 1 [62]: For the TS-type fuzzy system in (12), suppose that there exists a

function V(x(t)) = x(t)" X 'x(t) with X € R*** such that
X=X">0, (15)

AX +XAT — 4aB,R'BI <0, i=1, -1,
1 (16)
= (4 +XAT + 4 + XAT ) — 2a(BR B + BR Bl ) <0, 1<i<j<n,

and

10
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AX +XAT —8aB,R'Bf +28X <0, i=1, 1,
1 (17)
(4% + XAT + A + XAT ) — 4a(BRB + BRBT) + 26X <0, 15i<j<r,

2
where R = RT > 0 is a positive definite matrix and @>1 and > 0 are constants.

Then the control law

W (6) = — 3 hi(x() Kix(2), (18)

i=1

where K; 2 4aR’1Bl-TX “14i=1, -, risthe optimal, globally asymptotically stabi-
lizing control law for the TS-type fuzzy system in (12) that minimizes the cost

function

P= T [l(x(t)) + u(t)TRu(t)}dt, (19)
0

where [(x(t)) is given by

l(x(t)) = —4a2x(t)T{éhf(x(t))(G5Xl —i—X*lG,‘,')

r Gi +Gi\ T Gii + G
23 B (o) (o)) | (S 11 (S }x(t)
+ 4d(a— 1)x(t)T{4ﬁ ﬁ:hi(x(t))hj(x(t))(X‘lBiR_lBjTX_1> }x(t)
1=1;=1
>0

for all x(t) # 0 and a>1, where Gj 24— 2aBiR_1BjTX ~1 and the decay rate of
the closed-loop dynamics for the TS-type fuzzy system in (12) with the control law

u*(t) in (18) is at least 5, where > 0 is a constant.
Proof: Suppose that V(x(t)) = x(¢)" X 'x(t), where X = XT > 0 is a positive def-
inite matrix. Then, from proposition 1, the control law #*(z) in (3) with

2(x(2)) £ X_1hi(x(¢))B; and V(x(z)) = x(¢)"X x(¢) becomes

u*(£) = —2aR L,V (x(2))]"

e [ZX T (éh,-(x(t))Bi)} r
(21)

= — Yhi(x(e)) (4R TBIX Vx(r)
i=1
S ha(e(e) K (2),

i=1

>

where K; £ 4aR’1B;FX’1, i=1,--,rand a>11is a constant.
Now, from propositions 1 and 2, assume that there exists a positive definite

matrix X = X7 > 0 such that

11
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for all x(¢) # 0, where G;j = A; — 1B, (4aR_1BjTX_1) = A; —}BiKj, and

V(x(0) a0 = LV (x(0) + [LgV(x(0)]u" ()

+ 23 hie(t) )y (x(0))

1<j

< —2px(t)"X % (t)
(23)

for all x(z), where Qjj 24, —B; <4aR’1B]-TX’1> = A; — BiKjand >0 is a con-
stant. Since the normalized weight functions 4;,i =1, ---, 7 in (22) and (23) satisfy
hi(oc(@)hj(x(8) 20,8 =1, 1,5 =1, -, v and Fi i 37 kil (t))hi(x(2)) = 1
(ie.y iy X7 qha(x(0)hi(x(2)) = Ti_yhi (x(2)) + 227 - jha(x(2))hi(x(2)) = 1) for all

x(t) €R", sufficient conditions for satisfying (22) and (23) are

GIX 14+ X1G;<0, i=1 -7

eN\T G + Gji 24
(G,]erG]1> X1+X1(%)<0’ 1<i<j<r 24
and
QX+ XTQ +2X T <0, i=1,
oN\T i + i =
(Q@%) x14x1? (%) +2X71<0, 1<i<j<r, %)

respectively. If all sets of inequalities in (24, 25) are pre- and post-multiplied by
a positive definite matrix X = X T> 0, then we can transform the nonlinear condi-
tions in (24, 25) into the linear conditions in (16, 17), respectively. Thus, by the
results of propositions 1 and 2, we see that the control law »*(¢) in (21) with a
positive definite matrix X = XT>0 satisfying the conditions in (16, 17) becomes
the optimal, globally asymptotically stabilizing control law for the TS-type fuzzy
system in (12) that minimizes the cost function in (19), where /(x(¢)) in (20) comes
from (5) and satisfies [(x(z)) > 0 for all x(¢) # 0 and @ >1 by (22) and the property
of R = R >0, and the decay rate of the closed-loop dynamics for the TS-type
tuzzy system in (12) with the control law #*(¢) in (21) becomes at least > 0. This
completes the proof.

12
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Now, consider the TS-type fuzzy system with a common input matrix, which is
described by

%(t) = X hi(x(t) Ax(t) + Bu(t). (26)
i=1
Then, the author presents the following theory:
Theorem 2 [62]: For the TS-type fuzzy system in (26), suppose that there exists a

function V(x(¢)) = x(t)" X 'x(¢) with X € R**" such that

X=X">0, (27)
AX + XAl —4aBR'BT <0, i=1, 1, (28)

and
AX + XAl —8aBR'BT 428X <0, i=1, 1, (29)

where R = RT > 0 is a positive definite matrix and @ >1 and > 0 are constants.
Then the control law:

u*(t) = —Kx(t), (30)

where K £ 4aR'BX ! is the optimal, globally asymptotically stabilizing control
law for the TS-type fuzzy system in (26) that minimizes the cost function

PZTP““”*””%MQV“ (31)
0

where [(x(t)) is given by
L(x(t)) = —4a’x (t)T{ ﬁh,-(x(t)) (AfX '+ X 'A;) — 4aX 'BRT'BTX ! }x(t)

+ 40 (a — Dx(t)" (4XBRBTX 1)« (t)

>0
(32)
for allx(z) # 0 and a>1, and the decay rate of the closed-loop dynamics for the

TS-type fuzzy system in (26) with the control law »*(¢) in (30) is at least 5, where
S >0 is a constant.

Proof: Suppose that V(x(t)) = x(¢)" X 'x(t), where X = X > 0 is a positive def-
inite matrix. Then, from proposition 1, the control law *(¢) in (3) with g(x(¢)) £B
and V(x(t)) = x(t)" X 'x(t) becomes

u*(t) = —2aR L,V (x(2)]"
— 2aR! [Zx(t)TX’lB} !

(33)
= —4aRBTXx(2)

2 — Kx(t),

13
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where K 2 4R 'B"X ! and @ >1 is a constant.
Now, from propositions 1 and 2, assume that there exists a positive definite
matrix X = X7 > 0 such that

1

V@) ut-ur) = LV x(2)) + 5 [L V(@) ] (0)

- x(t)T{ ﬁ;lhi(x(t) JATX T+ XA - 4aXlBRlBTX1}x(t) (34)

<0

for all x(¢) # 0 and
V(@) u=ur ey = LV (x(2)) + [LeV (x(2)) " (2)
= x(t)T{é:lh,-(x(t)) (ATX 1+ X714;) - 8aX‘1BR_1BTX_1}x(t) (35)
< —2px(t) X "x(t)

for all x(t), where > 0 is a constant. Since the normalized weight functions
hiyi =1, -, 7 in (34, 35) satisfy h;(x(¢)) >0,i =1, ---,7 and Y;_,h;(x(¢)) = 1 for all
x(t) €R", sufficient conditions for satisfying (34, 35) are

ATX '+ X'A; —4aX'BRBTX <0, i=1, -7 (36)

and

AIX ' XA; — 8aX 'BRTIBTX ' + 25X 1 <0, i=1, -7, (37)

respectively. If all sets of inequalities in (36, 37) are pre- and post-multiplied by
a positive definite matrix X = X T'> 0, then we can transform the nonlinear condi-
tions in (36, 37) into the linear conditions in (28, 29), respectively. Therefore, by
the results of propositions 1 and 2, we see that the control law «*(¢) in (33) with a
positive definite matrix X = X7 >0 satisfying the conditions in (28, 29) becomes
the optimal, globally asymptotically stabilizing control law for the TS-type fuzzy
system in (26) that minimizes the cost function in (31), where /(x(¢)) in (32) comes
from (5) and satisfies [(x(z)) > 0 for all x(¢) # 0 and a>1 by (34) and the property
of R = RT >0, and the decay rate of the closed-loop dynamics for the TS-type
fuzzy system in (26) with the control law #*(¢) in (33) becomes at least > 0. This
completes the proof.

Note that the problem appearing in Theorems 1 and 2 is to find a matrix X € R**"
subject to some linear constraints in the form of linear matrix inequality (LMI).
Therefore, this problem is an LMI-based problem [32], and we can efficiently solve
the LMI-based problem by the LMI Control Toolbox of MATLAB [35]. In this
chapter, the author uses the LMI Control Toolbox of MATLAB [35] as the solver for
the LMI-based problem in the optimal control design.

4. A control design example
As a control design example, the author considers the three-axis attitude stabili-

zation problem of a rigid body and illustrates the effectiveness of the optimal
control design for TS-type fuzzy systems presented in Section 3.

14
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4.1 Rigid body model

First, the dynamic equation of the rotational motion of a rigid body is described
as follows [36]:

o(t) =] Qo) Jo(t) + ] 'u(t), (38)

where w(t) = [w1(t) wa(t) @3(t)]" €R? is the angular velocity vector of the body
in the body-fixed frame, u(t) = [u1(t) ua(t) u3(t)]” €R? is the control torque vector
of the body, and J € R*3 is the inertia matrix of the body and satisfies ] =] T'>o.
And Q(w(t)) € R**3 denotes a skew-symmetric matrix defined by

0 w3 (t) —» (t)

Q)= | —w3(t) 0 )
()  —wi(t) 0
and has the property of
Qw(t) w() =0, Vo) R’ (39)

Second, the kinematic equation of rotational motion of a rigid body described in
terms of the quaternion is given as follows [36]:

4(t) =5F(q(t))a(t), (40)

where q(t) = [q,(t) 4,(t) 45(t) 4, (£)] " 2 [ql(t) q, (t)T] " € R* is the quaternion and

F(q(t)) : R* — R**3 denotes the kinematics Jacobian matrix defined as

—q,®)" ]
(0133 +Q(g,0))" )

where I3,3 denotes the 3 x 3 identity matrix.

With the notations of the Euler axis ¢ € R* and Euler angle ¢ € R, we define the
quaternion by ¢, (¢) £ cos (¢/2) and q,(¢) ¢ sin (¢/2). The quaternion ¢(¢) is subject
to the unit length constraint of ||g(t)|, = 1 for allt > 0 and is a kinematic parameter
set that can represent the orientation of a body and [36]. From the definition of the
quaternion, we see that ¢, (¢) satisfies ¢,(t) > 0 for all —z rad <¢ <z rad, which
describes all eigenaxis rotations [36]. Thus, we can write ¢, (t) as

q,t) =1/1— qu(t)Hi forall -z rad<¢ <z rad..

4.2 Optimal control design

F(q(t)) = [ (41)

First, it is observed that two state equations given by (38) and (41) represent a
system in cascade interconnection. That is, the angular velocity vector indirectly
controls the kinematics system in (41). Thus, the angular velocity vector can be
regarded as a virtual control input of the kinematics system in (41) to stabilize the
kinematics system in (41). This observation gives the following theorem:

Theorem 3 [62]: Consider the kinematics system in (41) with w(t) to be the control
input, and let the control law for the kinematics system in (41) be

15
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wy(t) = —kiq, (), (42)

where k1 > 0 is a constant. Then, w, (¢) in (43) is the global asymptotic stabilizing
control law for the kinematics system in (41).

Proof: With the control law w,(t) in (43), the closed-loop system of the kinemat-
ics system in (41) becomes

_qv (t)

1 __1
§() = —5kiF(q(1))q,(t) = =Sk 0,033 + (g, (1)

) T (9v (t) : (43)
Now, consider the Lyapunov function candidate V(q(¢)) = (¢,(¢) — 1)2+

llq, @) H; Taking the time derivative of V(q(¢)) along a nonzero trajectory of the

closed-loop system in (44) and using the property of Q(qg,(¢))q,(t) = 0 for all

q,(t) €R?, then the following condition holds:

V(g(0) = 2(q,(t) — 1)d,(0) +24,()" 4, (¢)

= 20,00 (30, 070,0)) - 2( 30,70

# 20,0 (- k009,00 + 35220, )0, 1))

= —kaq,(t)7q,(t) <0

for all g,(¢) # 0 and all k; > 0. Then, global asymptotic stability of the closed-
loop dynamics in (44) follows from the Barbashin-Krasovskii theorem [4]. This
completes the proof.

Next, we have to stabilize the dynamics system in (38) with making (¢) in (38)
follow w,(t) in (43), and this is a backstepping problem [39]. For solving this
problem, the author defines the new variable §(¢) as §(t) £ w(t) — w,(t) =
@(t) + k1q,(t). For convenience of notation, the author defines x1(¢) £ 51(¢),

x2(t) 26,(t), x3(2) £685(2), x4(2) 24, (1), x5(t) 2q5(t), x6(2) £q,(2), x5(2) = [xl(t%
x2(t) x3(¢))", and x, () 2 [xa(t) x5(¢) x6(¢)] . Then, with x(£) 2 |x5()" x, (£)"

q,(t) = /1 — ||q, (2) H; for all —z rad < ¢ <= rad, the author represents the state

equation for x(¢) by

and

x(t) = A(x(t))x(t) + Bu(t), (44)

where A(x(t)) €R°*® and B R®*3 are defined in (46) and (47), respectively. In
(47), 0343 denotes the 3 x 3 zero matrix:

| {]_lg(xé(t) — ke, (t))] {—klf_lg(xﬁ(t) = kaxg, (£))] -
+3kiS2(r, () - 3K, ()
Alx() 2 +<%k1 1—quu(t)H§>I3x3}, —(%k%\/l—(quv(t)\E)Iaxs} . (45)
{%Q(xqv(t))T {_%klg(xqv(t))T
RGN CT S N C R T S g
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Béljl ] (46)

0343

As a numerical example, the author assumes that

J = diag[10,15,20] kg - m?, (47)
where diag means the diagonal matrix, k1 = 0.2, and
X5, Xq, €[—0.5,0.5],i =1, -+, 3. If we do sampling A(x()) in (46) at nine operating
points of [xéxq} —[00], [00.5], [0—0.5], [0.250], [0.250.5], [~0.250],
[-0.25—-0.5], [0.50.5], [-0.5—0.5], i =1, ---, 3 with the given k; = 0.2 and J in
(48), we can obtain the following TS-type fuzzy model for the system in (38):

* Plant rule i for the system in (45):
IF xl(t) isM;; and - - - and x6(t) is M,s, THEN

%(t) = Aix(t) + Bu(t),i = 1, -, 9. (48)

In (49), x(t) €R® is the state vector, u(t) € R? is the control input vector,
M;,i=1,-,9,j =1, -, 6 are the fuzzy sets defined as in Figures 1 and 2,
Ai,i =1, -, 9 are obtained by sampling A(x(¢)) in (46) at the given nine operating-
points, and B is given in (47). With the normalized weight functions 4;,i =1, ---, 9
defined by

About-0.5 About-0.25 AboutO About-+0.25 About +0.5

08
.
Z s
=
0.4
02
v]
05 -0.25 Q 0.25 0.5
X

Figure 1.
Fuzzy sets M, i =1, -+, 9,j = 1, -+, 3 used to design TS-type fuzzy model in (49) for system in (45).
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About -0.5 About 0 About +0.5
(M3j= M7j: M9i) (M”, M4J., MSj) (Mzr Msr Maj)

Figure 2.
Fuzzy sets M, i = 1, -+, 9,j = 4, -+, 6 used to design TS-type fuzzy model in (49) for system in (45).

[T 1 M (x;(2))

o T2 M (x (1)

the TS-type fuzzy model in (49) can be transformed into the following TS-type
fuzzy system:

hi(x(t)) 2 i=1 9,

$(6) = 3 hs(e(0) A (t) + Bu(®). (49)

=1

We can use the result of theorem 2 to design the optimal control law for the TS-
type fuzzy system in (50) because the TS-type fuzzy system in (50) has the com-
mon input matrix B in (47). Then, we assume thata =2, = 0.1, and R = I3,3 in
(28) and (29). With these values, the authors solve the LMlIs in (27), (28), and (29)
by using the command of “feasp” provided by the LMI Control Toolbox of
MATLAB [35]. From the result, we obtain the following optimal control law for the
TS-type fuzzy system in (43) that minimizes the cost function in (31):

u,(t) = —K,x(t), (50)

where

110.0629 —24.5318 —47.2469  73.0798 —28.6127 —37.7649
K, =|-16.3545 1399846 -60.3201 —-17.0025  75.0011 —39.4506
—23.6235 —452400 1856703 56923 —18.6642  92.8441

Since we can analyze the pure effect of the weight matrix R on the control
performance without any constraint, the author designs two other optimal control
laws for the TS-type fuzzy system in (50) without considering the decay rate
constraint, which is given by (29), to clearly analyze the influence of the weight
matrix R in (31) on the control performance. The author designs one by solving (27)
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and (28) for the TS-type fuzzy system in (50) with @ = 2 and R = I3.3, and one is
given by

up (t) = —Kbx(t), (51)

where

28.0708 25099 —-1.9744 3.5899 0.3747 —-0.1420
K, = 1.6733 33.7936 —4.9727 13456 1.7520 0.3518
—-0.9872 37295 42.8319 14713 13202 —-0.2517

The author designs the other by solving (27) and (28) for the TS-type fuzzy
system in (50) with @ = 2 and R = 3 x I3,3, and the other is given by

u.(t) = —Kx(t), (52)
where

29.1798 18.4270 18.9874 0.6854  0.2322 —1.5053
K. = [12.2846 40.0169 18.1900 23547 —-1.7662 —1.3049
9.4937 13.6425 49.3411 2.4969 0.9770 —4.9648

4.3 Numerical simulation results

As the numerical simulation model, the author uses the equations of rotational
motion of a rigid body given by (38) and (41), where the inertia matrix is given by
(48). The author assumes that the initial conditions at the initial time ¢y = O sec for

the Euler axis ¢ and the Euler angle ¢ are é(ty) = [0.4896 0.2030 0.8480]" and
¢(to) = 2.4648 rad, respectively, which give ¢(¢o) = [0.3320 0.4618 0.1915

0.7999 |”. Note that the given ¢(t) represents an almost upside-down initial
orientation of a rigid body. Also, the author assumes a rest-to-rest maneuver of a
rigid body, and, thus, the author assumes that the initial condition for the angular

velocity vector is w(tg) = [0 0O 0] rad/sec.

With the optimal control laws u,(t) of (51), u,(¢) of (52), and u,(t) of (53), the
author illustrates the influences of the decay rate f in (29) and the weight matrix R
in (31) on the control performance. Then, in Figures 3-5, the author shows the
numerical simulation results for a rigid body with each control law u, (), u,(t), and
u.(t). In Figures 3-5, the red-solid, green-dashed, and blue-dotted lines represent
the state trajectories of a rigid body with u,(t), u;(¢), and u.(¢), respectively.

First, as shown in Figures 3-5, we see that u,(t), u;(¢), and u.(¢) guarantee the
asymptotic stability of the equilibrium point. Second, in Figures 3 and 4, we
observe that u,(t)provides more desirable control performance than u,(t) and u,(¢)
because the design of u,(t)incorporates with the decay rate constraint.

Finally, in Figures 3 and 4, we see that the state responses of a rigid body with
uy(¢) show faster convergence rates to the equilibrium point than those with u,(z).
And, in Figure 5, we see that the control efforts using u;(¢) and u,(t) are compara-
ble. We can explain this result by the fact that the weight matrix R whose diagonal
elements are small increases the penalty on the state vector and decreases the
penalty on the control input vector, which makes the system stable within a short
period of time and the weight matrix R whose diagonal elements are large decreases

19



Aerospace Engineering

w,(t) (rad/sec)

04(t) (rad/sec)

Figure 3.
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Angular velocity responses of the rigid body given by (38) and (41) with control laws u, (t) of (51), uy(t) of
(52), and u.(t) of (53) designed in this chapter at initial conditions w(to) = [0 0 0" rad/sec and
q(to) = [0.3320 0.4618 0.1915 0.7999]".
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Figure 4.

Quaternion responses of the rigid body given by (38) and (41) with control laws u,(t) of (51), uy(t) of (52),
and u.(t) of (53) designed in this chapter at initial conditions w(to) = [0 O O]T rad/sec and q(to) = [0.3320

0.4618 0.1915 0.7999]".
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For ua(t) of (51)
P AR e~ S— 30 For Ub(t) of (52)
. For uc(t} of {53)
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Figure 5.
Control input responses of the rigid body given by (38) and (41) with control laws u,(t) of (51), uy(t) of (52),

and u.(t) of (53) designed in this chapter at initial conditions w(to) = [0 O 01" rad/sec and
q(to) = [0.3320 0.4618 0.1915 0.7999]".

the penalty on the state vector and increases the penalty on the control input vector,
which makes the system stable within a long period of time.

5. Conclusion

In this chapter, the author presented a theory on the optimal control of nonlinear
dynamic systems by utilizing the dynamic programming approach and the inverse
optimal approach. Specifically, the author employed the dynamic programming
approach to derive the Hamilton-Jacobi-Bellman (H-J-B) equation associated with
the optimal control problem for nonlinear dynamic systems and utilized the inverse
optimal approach to avoid the task of solving the H-J-B equation numerically.

Then, the author established an optimal control design for TS-type fuzzy sys-
tems to achieve the global asymptotic stability of an equilibrium point, the opti-
mality with respect to a cost function, and the good convergence rates of state
trajectories to an equilibrium point. Based on this optimal control design, the author
presented a systematic way for designing the optimal control law for TS-type fuzzy
systems.

The author showed the usefulness of the optimal control design by considering
the three-axis attitude stabilization problem of a rigid body. The optimal three-axis
attitude stabilizing control law for a rigid body was designed, and its control per-
formance was analyzed by numerical simulations. The numerical simulation results
demonstrated that the optimal three-axis attitude stabilizing control law designed in
this chapter provides desirable optimal control performance together with good
convergence rates of state trajectories to an equilibrium point.
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The author would like to suggest two further research topics: one is an extension
of the study presented in this chapter toward the robust control design for TS-type
fuzzy systems with system parametric uncertainties and external disturbances. The
problem is to incorporate these robustness issues into the optimal control design
approach, and the key to solve this problem may be found in many literatures
addressing the robust control approaches such as loop-transfer-recovery approach,
guaranteed-cost approach, stochastic approach, and state-estimation approach.
However, the difficulty of combining these approaches with the optimal control
design method comes from the fact that these approaches are mainly for linear
systems. Therefore, the extension of these approaches to nonlinear dynamic sys-
tems may be requisite. The other is to develop the optimal control design of TS-type
fuzzy systems for tracking problems. Tracking problems assume that the equilib-
rium point is not the zero state. In linear dynamic systems, tracking problems can
be reduced to regulation problems under the assumption that the desired state is
known or can be reduced to disturbance-rejection problems under the assumption
that the disturbance signal is known. However, in many cases, the desired state or
the disturbance signal is not known. Thus, in such cases, some alternatives such as
minimax approach and proportional-integral control may be needed. The minimax
approach is for the worst-case design such that the disturbance signal maximizes
the same performance index that the control input minimizes. And the
proportional-integral control can be used to reject the constant disturbances. In the
sequel, the minimax approach and the proportional-integral control may provide
the solution to the tracking problem of TS-type fuzzy systems.
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