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Abstract

This chapter mainly describes the vegetated soil moisture retrieval approaches based on
microwave remote sensing data. It will be comprised of three topics: (1) SAR polarimetric
decomposition is to model the full coherency matrix as a summation of the surface,
dihedral, and volume scattering mechanisms. After removing the volume scattering com-
ponent, the soil moisture is estimated from the surface and dihedral scattering compo-
nents. Particularly, various dynamic volume scattering models will be critically reviewed,
allowing the readers to select the appropriate one to capture the complex variations of the
volume scattering mechanism with crop phenological growth. (2) Radiative transfer
model is to express the radar backscattering coefficient as the incoherent summation of
different scattering components. Hereby, we will review the water cloud model and its
several extensions for enhanced soil moisture retrieval. (3) Compared to the active radar,
the passive radiometer possesses high temporal resolution but coarse spatial resolution.
The third topic is dedicated to review the microwave emission models and the active-
passive combined approaches, in the context of Soil Moisture and Ocean Salinity (SMOS)
and Soil Moisture Active and Passive (SMAP) missions.

Keywords: soil moisture, polarimetric decomposition, radiative transfer model,
microwave emission model

1. Introduction

Soil moisture is an important factor influencing the food supply to human beings at the small

scale, and also an essential climate change variable that needs to be monitored at a large scale.

In order to estimate the spatiotemporal dynamics of the soil moisture, the Soil Moisture and
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Ocean Salinity (SMOS) satellite was launched in 2009, followed by the Soil Moisture Active

and Passive (SMAP) satellite launched in 2015 although the radar component failed to send the

signal back. These two missions used the microwave band, considering the dependence of

the emissivity on the target dielectric constant and the penetration ability at long frequency.

The microwave is found to be an appropriate frequency for monitoring the soil moisture, as it

is not influenced by the cloud, and can operate day/night. Nevertheless, the passive radiometer

signal is limited by the coarse spatial resolution. In contrast, the radar signal is characterized

by higher spatial resolution and longer revisit time. Thus, it is appropriate to employ the radar

signals for the soil moisture at a scale of agricultural fields. The polarimetric radars such as the

ALOS PALSAR and RADARSAT-2 provide a full coherency or covariance matrix, which

contain more information than the single-channel radar system. The PolSAR allows to extract

the scattering mechanisms, which are useful for the land classification and geophysical param-

eter retrievals.

The soil moisture retrieval from the microwave remote sensing data is mainly influenced by

the vegetation, surface roughness, and soil texture. However, over the agricultural fields, the

crop characteristics vary with the phenological growth, leading to the complexity to model the

vegetation influences on the soil moisture retrieval. For instance, the quality of the polarimetric

soil moisture retrieval approach is highly dependent on the volume scattering model, which is

used to remove the vegetation scattering contribution in the full polarized radar signal. To

address this issue, several adaptive volume scattering models were developed at L-band [1]

and C-band [2] for tracking the dynamic of crop growth. Both the retrieval accuracy and

retrieval rate are enhanced by the dynamic volume scattering models. In contrast, in the

radiative transfer models, the vegetation effect is often simulated by the vegetation optical

depth, which is subsequently related to the vegetation water content and the normalized

differential vegetation index (NDVI).

Within this context, this chapter provides a review of the model-based polarimetric decompo-

sition approach, radiative transfer models, and combined active-passive methods for soil

moisture retrieval over the vegetated agricultural fields. Particularly, different adaptive vol-

ume scattering models for the polarimetric decomposition are compared, and the optimal

application conditions are drawn for the soil moisture retrieval. This chapter gives readers an

overview of the soil moisture retrieval models at microwave band.

2. Soil and vegetation parameters influencing the microwave signals

SAR system transmits polarimetric waves toward the targets and receives the backscattering

signals after the interaction with ground and ground targets. This technique is of great impor-

tance for agricultural managers to monitor the soil properties and surface conditions of the

agricultural fields. For example, the retrievals of soil status information from SAR can be used

to identify areas at risk of erosion by water and wind. Thus, in this study, we propose to

investigate soil moisture and surface roughness as two important parameters describing the
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properties of bare agricultural fields. First of all, we propose to describe the parameterization

of soil moisture and surface roughness.

2.1. Soil moisture

Soil is considered as three-phase materials: liquid phase, solid particles, and air phase. The

liquid phase can be categorized into two types: the bound water and free water. Bound water

is comprised of the water molecules contained in the first few molecular layers surrounding

the soil particles. They are tightly held by the soil particles due to the influence of osmotic and

matric forces [3, 4]. As the distance away from the soil particle surface increases, the matric

forces decrease; thus the water molecules located far from the soil particle are able to move

within the soil medium, which is referred as free water. Nevertheless, the criterion to separate

bound water and free water is to some extent arbitrary. The amount of bound water located in

the first few layers is determined by the surface area of the soil particles, which depends on the

distribution of soil particle size. According to the distribution of soil particle size, different soils

can be categorized into different soil textures. The solid particles are the second phase, which

make up the soil skeleton. The void space between soil particles may be full of water if the soil

is saturated or may be full of air if the soil is dry or may be partially saturated. The water

percent hold in the soil particles is considered as soil moisture. There exist several expressions

for soil moisture representation, and the frequently used approaches are the volumetric soil

moisture mv and gravimetric soil moisture mg. The relationship between the volumetric soil

moisture mv and gravimetric soil moisture mg is established by the water density rw and total

mass density rb: mv ¼ mg � rb=rw , where mv is measured using time-domain reflectometry

(TDR) and mg is used to calibrate the TDR measurements. Nevertheless, the soil texture must

be taken into account in order to determine the soil capability for stocking water.

2.1.1. Soil texture

Soil texture is reported to have great effects on the dielectric behaviors over the entire micro-

wave frequency range and is most significant at frequencies around 5 GHz [5]. Different soil

textures can be qualitatively classified used both in field and laboratory measurements based

on their physical properties. The classes are distinguished by the “textural feel” which can be

further clarified by separating the relative proportions of sand, silt, and clay using grading

sieves. The classes are then used to determine the crop suitability and to approximate the soil

responses to environmental conditions [6]. Different soil elements which determine the specific

soil texture are separated and based on the specific ranges of particle diameter d [7]:

• The smallest particles are clay particles with d < 0.002 mm.

• The next smallest particles are silt particles with 0.002 mm < d < 0.05 mm.

• The largest particles are sand particles with d > 0.05 mm.

Soil texture classification is based on relative combination of sand, silt, and clay. Clay particles

are microscopic in size and are highly plastic at moist condition. The presence of silt and/or

Soil Moisture Retrieval from Microwave Remote Sensing Observations
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clay creates a fine texture soil, which impedes water and air movements. Sand-sized particles

are visible with the naked eye.

2.1.2. Soil permittivity

The complex dielectric constant describes the behaviors of nonconductor in the electrical field.

A number of factors affect the dielectric constant, such as wave frequency, temperature, and

salinity of the matter. The dielectric constant represents the maximum capability to store,

absorb, and conduct electric energy for a given matter. It is a measure of the medium response

to the electromagnetic wave and is defined as εa ¼ ε
0

a � iε
00

a ¼ ε0 ε
0

r � iε
00

r

� �

, where εa represents

the absolute complex permittivity, ε
0

a and ε
00

a are the real and imaginary parts of εa, and

ε0 ¼ 8:85 � 10�12 F=mð Þ is the vacuum permittivity. ε
0

r is referred as the relative permittivity

and considered as the dielectric constant of the specific medium. ε
00

r is referred as the absorp-

tion capabilities of the medium and is relative to its conductivity and dielectric loss. For most

natural medium, the condition ε
0

r ≫ ε
00

r is satisfied.

The relative dielectric constant of water is around 80, much larger than those of solid soil (2–5)

and air (around 1) [3]. Hence, the permittivity of natural soils which are mixtures of three

matters is influenced largely by water content. It is viable to measure the dielectric constant in

order to infer the soil water content. However, under very dry soil conditions, the real part of

the dielectric constant ε
0

r ranges from 2 to 4, and the imaginary part ε
00

r is below 0.05 [8]. This

low dielectric constant results in the soil moisture underestimation by TDR instruments,

because the water is tightly bounded to the surface of soil particle, and it causes only a

relatively small increase of soil permittivity which cannot be detected by TDR. On the contrary,

as the water content continues to increase, above the specific transition soil moisture value

(free water becomes dominant in soils), the soil permittivity will increase rapidly.

In addition, assuming the propagating wave attenuates exponentially in soils, the penetrating

depths δp of microwave into the soil (skin depth) can be calculated as [9, 10]

δp ¼
λ

ffiffiffiffi

ε
0

r

p

2πε00

r

(1)

It is noted that as the wavelength increases, the penetrating depth increases, as shown in

Figure 1 for L-, C-, and X-band, respectively. Meanwhile, for a given wavelength, the penetrat-

ing depth decreases as soil moisture increases.

2.1.3. Conversion between soil moisture and soil dielectric constant

Topp model: The soil permittivity is expressed as a three-order polynomial function in Topp

model [4], which is only available for wave frequency between 20 MHz and 1 GHz:

ε
0

r ¼ 3:03þ 9:3mvþ 146mv2 � 76:7mv3 (2)
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Inversely, the soil moisture is deduced from the soil permittivity measurements by a similar

three-order polynomial equation:

mv ¼ �5:3� 10�2 þ 2:92� 10�2
ε

0

r
� 5:5� 10�4

ε

02
r
þ 4:3� 10�6

ε

03
r

(3)

This model does not consider the imaginary part of dielectric constant, and the main restriction

is that the used frequency must be less than 1 GHz. The in situ soil moisture measurements

using TDR are based on this model.

Hallikainen model: A more applicative conversion model is proposed by [5], and the soil

permittivity is modeled as a function of soil moisture and soil texture in a two-order polyno-

mial form:

εr ¼ a0 þ a1Sþ a2Cð Þ þ b0 þ b1Sþ b2Cð Þmvþ c0 þ c1Sþ c2Cð Þmv2 (4)

where ai, bi, and ci (i = 1, 2, 3) are the complex coefficients for difference wave frequency

between 1.4 and 18 GHz. Thus, both the real and imaginary parts of soil permittivity can be

modeled. The S and C represent the percentage of silt and clay components, respectively.

Mironov model: The soil dielectric constant depends on the soil water content, temperature,

texture, and wavelength. In the past decades, the semiempirical models in [4, 11] were mainly

used for both the active and passive microwave remote sensing of soil moisture. Furthermore,

Mironov dielectric model [12] considers the difference between the bound water and free

water in the soil layers, which is found to be better for soil moisture retrieval at L-band.

Figure 1. The penetrating depth in terms of radar frequency and soil moisture.
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2.2. Surface roughness

Besides the soil moisture, the surface roughness is another important factor that affects the

backscattering SAR signature, because it determines how the incidence wave interacts with

the surface. There exist several ways to describe the natural surface roughness, and two

frequently used methods are mentioned here: the fractal geometry theory and the statistical

description.

2.2.1. Fractal description

The fractal geometry theory was introduced in [13] to describe the complicated surface rough-

ness structure, especially for the irregular and fragmented soil structures. This surface rough-

ness description approach is proved to be suitable for natural soil because of its self-similarity,

no matter what the surface scale is. In addition, many basic natural physical processes generate

fractal surface; thus fractal structure is quite common in natural environment.

The fractal models describe the local structure of the soil surface using one parameter, the

fractal dimension D, ranged from 1 to 2. The higher the fractal dimension, the rougher

the surface. One of the frequently used fractal approaches is the Brownian model [14, 15]

for a limited fractal profile. In this model, the surface profile height h(x) at location x is

considered to be a fractional Brownian function: For any x and Δx > 0, the increase of

surface height h(x + Δx) � h(x) follows a Gaussian distribution with mean value zero and

variance AΔx2H. Consequently, the expected value of the surface elevation increase is

derived as

E h xþ Δxð Þ � h xð Þ½ � ¼ 2

ð

∞

0

u
ffiffiffiffiffiffiffiffiffi

2πA
p

ΔxH
exp

�u2

2AΔx2H

� �

du ¼ ΔxHE h xþ 1ð Þ � h xð Þ½ � (5)

where A is the variance of the normal distribution h(x + 1) � h(x) and H is the Hurst

exponent constant ranged from 0 to 1. The equation is rewritten in logarithm format in order

to resolve H:

log h xþ Δxð Þ � h xð Þ½ � ¼ Hlog Δxð Þ þ log h xþ 1ð Þ � h xð Þ½ � (6)

In this equation, the parameter H equals to the slope of log h xþ Δxð Þ � h xð Þ½ � in terms of

log Δxð Þ. It is calculated by using minimum RMSE method [16]. Consequently, the fractal

dimension D can be obtained directly from H by the relationship D = 2 � H.

2.2.2. Statistical description

The second approach to describe the surface roughness is from the statistical point of view.

There are two parameters to describe the statistical variations of the surface height relative to a

reference surface: the standard deviation of the surface height s is to quantify the vertical
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roughness, while the correlation length l (with autocorrelation function) is to characterize the

horizontal roughness [9, 17].

Suppose a surface in the x-y plane and the height of point (x, y) are assumed to be z(x, y) above

the x-y plane. A representative surface with dimensions Lx and Ly is segmented statistically,

which is centered at the original point.

The average height of the surface is given by

z ¼
1

LxLy

ð

Lx=2

�Lx=2

ð

Ly=2

�Ly=2

z x; y
� �

dxdy (7)

and the second moment is given by

z2 ¼
1

LxLy

ð

Lx=2

�Lx=2

ð

Ly=2

�Ly=2

z2 x; y
� �

dxdy (8)

Consequently, the standard deviation of the surface height within the area Lx X Ly is

defined as

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2ð Þ � z2
q

(9)

The formulation above can be reduced to a discrete condition. The surface profiles are digi-

tized into discrete values zi(xi) at spacing rate Δx which is satisfied the criterion Δx < 0.1λ as

described in [3]. The standard deviation s for discrete condition is formulated as

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 zið Þ2 �N ẑð Þ2

N � 1

s

(10)

where ẑ ¼

PN

i¼1
zi

N is the mean surface height and N is the number of samples.

For the horizontal surface roughness description, the surface autocorrelation function (ACF)

has to be determined. The autocorrelation function r characterizes the independence of two

points at a distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ2 þ ζ
2

p

:

r ξ; ζð Þ ¼

Ð Lx=2
�Lx=2

Ð Ly=2
�Ly=2 z x; y

� �

z xþ ξ; yþ ζ
� �

dxdy
Ð Lx=2
�Lx=2

Ð Ly=2
�Ly=2 z

2 x; y
� �

dxdy
(11)

In the discrete case, the autocorrelation function for a spatial displacement xi = (j � 1)Δx is

defined as
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r ξð Þ ¼

PNþ1�j
i¼1 zjzjþi�1
PN

i¼1 zi
2

(12)

where zj + i � 1 is a point with the spatial displacement xi from the point zi. The surface

correlation length l is then defined as the displacement xi, under which the r(xi) between the

two points equals 1/e. The correlation length characterizes the statistical independence of two

points. In case that the distance between two points is larger than l, their heights can be

considered statistically independent from each other. For very smooth surface, the correlation

length is toward infinity.

2.2.3. Wave interaction with the surface roughness

Furthermore, the effective surface roughness observed by SAR system depends on microwave

wavelength. For instance, a given surface that appears smooth in L-band may seem rough in

C-band. The relative surface roughness status (compared with wavelength) affects the surface

scattering behaviors:

• For the smooth surface, the angular radiation pattern of the reflected wave is modeled as a

delta function which is centered about the specular direction.

• For the medium roughness surface, the angular radiation pattern is comprised of coherent

component and incoherent component. The coherent component is radiated in the specu-

lar direction even though its magnitude is smaller than over the smooth surface. The

incoherent scattering component consists of energy scattered in all directions, but its

magnitude is smaller than that of the coherent component.

• For the rough surface, the radiation pattern seems like a Lambertian surface, comprised of

only incoherent scattering.

Thus, in the electromagnetic models, the effective vertical and horizontal surface roughness is

given in terms of the production with EM wave number (k = 2 π f/c): ks and kl. It is obvious that

ks and kl are decreasing with increasing wavelength. Consequently, as shown in Figure 2, the

surface roughness is one of the important factors that determine the electromagnetic wave

response from bare soil.

Figure 2. Scattering patterns determined by surface roughness.
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2.2.4. Bragg phenomenon

Except the surface roughness and soil moisture, the row direction also influences the backscat-

tering SAR wave from the bare agricultural soils, because it induces the Bragg phenomenon.

Bragg resonance is a type of coherent scattering, which is present in some agricultural fields

due to the plowing or other row structures’ tillage. The resonance occurs in case that the

distance between radar and each of the periodic structures has an additional phase difference

of λ/2 in the slant-range direction. Under this condition, the additional phase shift is 2π, and

the signals will add in phase.

2.3. Vegetation

Vegetation has two effects on the radar signal: (1) attenuate the backscattering from the

underlying soils and (2) produce the volume scattering adding to the radar signal. These two

effects increase the complexity of soil moisture retrieval from microwave signal. The vegeta-

tion attenuation and scattering effects were parameterized by the vegetation scattering albedo

and optical depth, which are related to the vegetation water content or leaf area index.

Α. Vegetation optical depth τ is linked to the vegetation water content through b parameter:

τ ¼ bVWC (13)

The b parameter depends on the crop type, structure, and growth stage and microwave

polarization. The vegetation water content is often obtained from the NDVI. Alternatively, τ

can be obtained from the LAI through a linear relationship:

τ ¼ b1LAIþ b2 (14)

The b1 and b2 are assumed to be dependent on the vegetation type.

B. Vegetation scattering albedo ω is set to be zero or a low value in the passive radiometer

analysis.

3. Polarimetric decomposition for soil moisture estimation

Depending whether the sensor generates the microwave by itself, the microwave remote

sensing can be categorized into the active and passive, which are reviewed separately. Polari-

metric SAR is a coherent active microwave remote sensing system, providing backscattering

signals in quad-polarization states with fine spatial resolution. Unlike the optical remote

sensing, the SAR system monitors the earth using a side-look geometry, resulting in the issues

of overlap, shadow, and forth short. Furthermore, at the microwave bands, the signals are

sensitive to the permittivity and the structure of the targets. Thus, the interpretation and

modeling of the SAR data differ from those of optical domain. The SAR system generates the

microwave, so that it operates regardless the light and day/night and clear/cloudy conditions.
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This is particularly interesting for monitoring the soil moisture over the area frequently cov-

ered by the cloud.

3.1. Decomposition theories

3.1.1. Polarimetric SAR data expression

The microwave scattering process over the ground can be formulated ES ¼ S½ �EI , where the

Sinclair matrix [S] relates the incident wave EI to the scattering wave ES. Thus, the polarimetric

SAR data extracted as [S] includes the target dielectric and structural properties:

S½ � ¼ SHH SHV

SVH SVV

� �

(15)

where SHH and SVV are the co-polarized scatterings, and SHV and SVH represent the cross-

polarized scattering power. They are all complex numbers. For the monostatic case of back-

scattering, the satisfied reciprocity results in SHV = SVH. This format of [S] matrix is considered

as single-look data suffering from the speckle effect, as no averaging process is performed.

However, the natural targets dynamically vary with time, requiring a statistical description

such as the second-order moment approach. In order to extract more polarimetric information

such as the correlation between different polarimetric channels, the Pauli and Lexicographic

vectors are constructed from the [S] matrix, respectively:

k ¼ SHH þ SVV ; SHH � SVV ; 2SHV½ �T (16)

Ω ¼ SHH;

ffiffiffi

2
p

SHV ; SVV

h iT

(17)

From the Pauli and Lexicographic vectors, the coherency matrix [T] and the covariance matrix

[C] are obtained by T½ � ¼ k � k∗T
	 


and C½ � ¼ Ω �Ω∗T
	 


, where the symbol hi means the tempo-

ral or spatial averaging to reduce the randomness of the polarimetric images. In the monostatic

condition (transmitter and receiver in the same location), they are expressed as

T3½ � ¼

T11 T12 T13

T∗

12 T22 T23

T∗

13 T∗

23 T33

2

6

6

4

3

7

7

5

¼ 0:5

SHH þ SVVj j2
D E

SHH þ SVVð Þ SHH � SVVð Þ∗h i 2 SHH þ SVVð ÞS∗HV

	 


SHH þ SVVð Þ∗ SHH � SVVð Þh i SHH � SVVj j2
D E

2 SHH � SVVð ÞS∗HV

	 


2 SHH þ SVVð Þ∗SHVh i 2 SHH � SVVð Þ∗SHVh i 4 SHVj j2
D E

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(18)
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C3½ � ¼

C11 C12 C13

C∗

12 C22 C23

C∗

13 C∗

23 C33

2

6

6

6

4

3

7

7

7

5

¼

SHHj j2
D E

ffiffiffi

2
p

SHHS
∗

HV

	 


SHHS
∗

VV

	 


ffiffiffi

2
p

S∗HHSHV

	 


2 SHVj j2
D E

ffiffiffi

2
p

SHVS
∗

VV

	 


S∗HHSVV
	 
 ffiffiffi

2
p

S∗HVSVV
	 


SVVj j2
D E

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

The polarimetric decompositions are often done on the coherency matrix [T3] and the covari-

ance matrix [C3], which can be converted between each other via unitary transformation.

However, the elements of the [T3] matrix are physically convenient. For instance, the T11, T22,

and T33 can be used to approximate the surface, dihedral, and volume scattering powers.

3.1.2. Eigen-based decomposition

Both [T3] and [C3] matrices are characterized by nonnegative eigenvalues and orthogonal

eigenvector. The classical decomposition approach proposed by Cloude and Pottier relies on

the eigenanalysis on the [T3] matrix. The scattering mechanism and the corresponding relative

power were quantified by the eigenvector (Ti) and eigenvalues (λi), respectively:

T3½ � ¼ λ1T1 þ λ2T2 þ λ3T3 (19)

From the eigenvalues and eigenvectors, the entropy H and α angle are defined to characterize

the randomness of the scattering scene and the dominant scattering mechanism:

H ¼
X

3

i¼1

�pi log 3 pi, α ¼
X

3

i¼1

pi acos ei1j jð Þ and pi ¼ λi=
X

3

i¼1

λi (20)

In addition, the scattering anisotropy A is introduced to discriminate the ambiguous case of

H > 0.7:

A ¼ λ2 � λ3ð Þ= λ2 þ λ3ð Þ (21)

These polarimetric parameters are used to describe the scattering mechanisms under a variety

of scenarios. However, in Baghdadi et al. [18], the sensitivity of entropy and α angle to soil

moisture and surface roughness is analyzed, indicating insignificant response of these polari-

metric parameters to the soil characteristics at C-band.

3.1.3. Model-based decomposition

Under the assumption of reflection symmetry (zero correlation between the co- and cross-

polarization channels), the Freeman-Durden decomposition models the covariance matrix

[C3] as the incoherent summation of the surface, dihedral, and volume scattering components.
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In order to be consistent with previous eigen-based approach, we express the Freeman-Durden

decomposition based on [T3] matrix [19]:

T3½ � ¼
T11 T12 0

T∗

12 T22 0

0 0 T33

2

6

4

3

7

5
¼ f s

1 β∗ 0

β β
�

�

�

�

2
0

0 0 0

2

6

4

3

7

5
þ f d

αj j2 α 0

α∗ 1 0

0 0 0

2

6

4

3

7

5
þ f v

V11 0 0

0 V22 0

0 0 V33

2

6

4

3

7

5
(22)

The surface component is modeled using the simple Bragg model. The polarimetric parameter

β ¼ RH�RV

RHþRV
and f s ¼ 0:5 RH þ RVj j2 are constructed from the Bragg scattering coefficients:

RH ¼ cosθ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε� sin 2θ
p

cosθþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε� sin 2θ
p , RV ¼ ε� 1ð Þ sin2θ� ε 1þ sin2θ

� �� �

ε cosθþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε� sin 2θ
p� 
2

(23)

The dihedral component is developed from the Fresnel coefficients of the orthogonal dielectric

planes between the plant stalks and the underlying soils. The scattering amplitude

f d ¼ 0:5 RSHRTH þ RSVRTVe
iψ

�

�

�

�

2
and polarization ratio a ¼ RSHRTH�RSVRTV e

iψ

RSHRTHþRSVRTV eiψ
are related to the

Fresnel coefficients of soil and plant:

RjH ¼ cosθj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εi � sin 2θj

p

cosθj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εi � sin 2θj

p andRjV ¼ εi cosθj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εi � sin 2θj

p

εi cosθj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εi � sin 2θj

p (24)

where j represents soil (S) or plant (T). In the dihedral geometric configuration, the incidence

angle over soil θS and over the plant θT is supplementary (θS þ θT ¼ π
2).

The vegetation volume is simulated by the dipole with a uniform statistical distribution.

Consequently, the volume component is derived as

V½ � ¼ fv

0:5 0 0

0 0:25 0

0 0 0:25
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(25)

The Freeman-Durden model is firstly fitted to the forest scenario, and it is reported to be

effective to discriminate the forest and deforest areas.

3.2. Soil moisture retrieval using polarimetric decomposition techniques

3.2.1. Model-based decomposition

The polarimetric soil moisture retrieval can be conducted based on the model-based decompo-

sition, in which the soil dielectric constant is related to the surface scattering component

through the Bragg scattering model and to the dihedral component through the combined

Fresnel scattering model. Nevertheless, in the past decades, the model-based polarimetric
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decompositions were mainly applied to the image classification, target detection by analyzing

the scattering mechanisms. Hajnsek et al. [19] proposed to estimate the soil moisture from the

L-band polarimetric decomposition. In their approach, after removing the volume component

from the full signature, the soil moisture is retrieved from the surface and dihedral scattering

component, respectively.

For the surface scattering component, the polarimetric parameter β is related to the soil

moisture and incidence angle (Figure 3). Unlike the traditional radar backscattering coeffi-

cients which are more sensitive to soil moisture at low incidence angle condition, the polari-

metric parameter β is more sensitive to the soil moisture at high incidence angle. Thus,

depending on the incidence angle ranges of the radar data, the traditional direct backscattering

approach or the advanced polarimetric approach is preferable. In Hajnsek et al. [19], the

surface scattering component is adapted by replacing the Bragg model with the X-Bragg

model in order to take the surface roughness effect into account.

In contrary to the surface scattering component, the dihedral scattering component is influenced

by both the soil and vegetation dielectric constants. Thus, two equations were required to

decouple the soil and vegetation contributions on the dihedral component, in order to extract

the soil moisture from it. In the literature [19, 20], the parameter α and fd are used to construct an

equation system, from which the soil and vegetation dielectric constants are solved. Neverthe-

less, the vegetation dielectric constant is not furthermore considered, as the main purpose of this

chapter is to estimate the soil moisture frommicrowave remote sensing data.

Figure 3. Sensitivity of surface scattering parameter β to soil moisture.
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Figures 4, 5 plot the α and fd in terms of soil and vegetation dielectric constants:

• Parameter α is more sensitive to soil moisture when the incidence angle is less than 45�;

otherwise, it is more sensitive to vegetation dielectric constants.

• For the fd parameter, the sensitivity to soil moisture is the same between the low and high

incidence angles, while the absolute value of fd is different.

The dihedral scattering component is complementary to the surface component, increasing the

overall retrieval rate. The surface scattering component which is the function of only soil

dielectric constant is generally easier for the soil moisture retrieval than the dihedral compo-

nent which is the function of both soil and vegetation dielectric constants. However, for some

crop types such as canola and wheat, the significant dihedral scattering power at the early

phenological stages contributes largely to the soil moisture [21]. There is a limitation in the

dihedral component at incidence angle around 45�, when the soil and vegetation dielectric

constants are not possible to be decoupled from each other.

Figure 5. Sensitivity of alpha parameter fd to soil and vegetation dielectric constants under low and high incidence angles.

Figure 4. Sensitivity of dihedral parameter alpha to soil and vegetation dielectric constants under low and high incidence

angles.
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It is in the consensus that the most challenging issue is the modeling of the volume scattering

component. With the crop growth, the shape and crop structures vary dynamically, which

makes the unique volume coherency matrix fail to capture the high complexity of the crop

growth. In order to analyze this issue, Hajnsek et al. [19] compared several volume scattering

formulations. One is the flexible volume model in Yamaguchi et al. [22], where the crops are

described in vertical, random, and horizontal orientations. The volume coherency matrix was

derived considering the dipoles with different orientation angle distribution widths. The

parameter Pr = 10 log10(VV)/10 log10(HH) is used to determine the dominant orientation:
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fv
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(26)

Another volume coherency matrix is proposed by narrowing the dipole orientation angle

around radar line of sight. However, for all the volume models in [19], the corresponding soil

moisture retrieval results indicate an underestimation for the wheat and corn fields, while an

over-/underestimation for the rape fields. So far, there is no universal volume coherency matrix

which performs well for all the crop types and the whole phenological development stages.

Furthermore, Jagdhuber et al. [20] developed an L-band polarimetric decomposition for the

multiangular soil moisture retrieval over the agricultural fields covered by low vegetation. In

the study, the multiangular observation was conducted by three flight lines over the same area.

The effects of microwave extinction and phase shift on the surface and dihedral scattering

component were accounted. For each pixel, multiple β, α, and fd were obtained for a joint

retrieval process. The soil moisture retrieval obtained an RMSE ranging from 0.06 to 0.08m3/m3.

Recently, the hybrid decomposition which combines the model-based and eigen-based decom-

positions is used for the soil moisture retrieval [1]. After extracting the volume scattering

component using the model-based approach, the remaining ground scattering component is

decomposed again using the eigen-based approach in order to better discriminate the surface

and dihedral scattering mechanisms, taking advantages of the orthogonality of the eigenvec-

tor. This avoids the assumption of the dominant scattering mechanism in the ground compo-

nent, in the original Freeman-Durden decomposition approach [23].

In addition, the deorientation process is accounted before conducting the polarimetric decom-

position, to reduce the fluctuation due to the random orientation angle of each pixel. This was

done by minimizing the cross-polarization power [24]. After the deorientation process, the

pixel with different orientation angles will result in the same decomposition results. Wang

et al. [25] studied effectivity of the deorientation on the polarimetric soil moisture, indicating

that the surface scattering component is significantly enhanced, as a result of the deorientation

process. The increase in the surface scattering power is assumed to benefit the soil moisture

retrieval. This is understandable, as the surface component is a function of the soil characteris-

tics, while the dihedral component is complicated due to the coupling between the soil and
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vegetation dielectric constants. Three different polarimetric decompositions (Freeman-Durden,

Hajnsek, and An) were compared for the soil moisture retrieval. However, the performances

depend on the crop types and phenological stages, and none of them can perform well for all

the crop types and the whole growth stages. The Hajnsek decomposition is better for the early

growth stage, while the An decomposition is overperformed for the crop’s later development

season. The Freeman decomposition obtained better results on the corn fields with sparse

planting density. Furthermore, the incidence angle normalization is conducted on the polari-

metric parameters (β, α, and fd) to reduce the incidence angle effect on the soil moisture

retrieval.

Similar to the idea of X-Bragg model which rotates the Bragg surface around radar line of

sight, the extended Fresnel model was developed for the dihedral scattering component [26]. It

is achieved by rotating the soil plane of the dihedral component around the radar line of sight,

to introduce the surface roughness effect on the dihedral component. Unlike the introduction

of the surface roughness in the dihedral component in Hajnsek et al. [19], which did not

change the matrix rank, the dihedral coherency matrix obtained in the extended Fresnel model

increases the matrix rank from 1 to 3. Thus, both the amplitude and phase of the dihedral

component have been changed.

3.2.2. Eigen-based decomposition

The eigenvalues and eigenvectors of [T] matrix were computed to construct the polarimetric

parameters for characterization of the scattering mechanisms. However, the currently eigen-

based decomposition is mainly limited for soil moisture retrieval over the bare soils. The first

one is the X-Bragg model [27], introducing the surface roughness effect into the Braggmodel by

rotating the soil plane around the radar light of sight. In order to estimate the soil moisture, the

X-Bragg model relates the entropy H and α angle to the soil dielectric constant. A lookup table

is established to determine the soil dielectric constant from the data-derived entropy and α

angle. In addition, the surface roughness is derived from the polarimetric anisotropy parameter.

Furthermore, under the assumption of the reflection symmetry, the polarimetric parameters

which are dominated by only the soil moisture or the surface roughness were constructed from

the eigenvalue and eigenvector of the coherency matrix. According to Allain [28], the analyti-

cal eigenvalues is derived as

λ1nos ¼ 0:5 < SHHj j2 > þ < SVVj j2 > þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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λ3nos ¼ 2 < SHVj j2 >

(27)
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where the sign nos denotes no order in size. The corresponding analytical eigenvectors can be

derived as

e1 ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(28)

with Δ ¼ SHHj j2 � SVVj j2
� 
2

þ 4 SHHS
∗

VV

�

�

�

�

2
. Based on the eigenvalues in reflection symmetry

conditions, three polarimetries SERD, DERD, and SDERD are defined to characterize the

difference among three scattering mechanisms (single bounce, double bounce, and multiple

scattering):

SERD ¼ λs � λm

λs þ λm

DERD ¼ λd � λm

λd þ λm

SDERD ¼ λs � λd

λs þ λd

(29)

where λs ¼ λ1nos and λs ¼ λ2nos if a1 < a2. In contrary, λs ¼ λ2nos and λs ¼ λ1nos if a1 > a2. The

λm ¼ λ3nos holds on in all cases. It is reported [10] that SERD is suitable to characterize

vegetation, while DERD is appropriate to quantify the surface roughness. SDERD can be

applied to discriminate between bare and sight vegetation soils.

In order to find a polarimetric parameter which is sensitivity to soil moisture, the α1 from the

first eigenvector is derived as
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α1 ¼ arctan

2σHHVV � σVVVV � σHHHH þ
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(30)

In Allain [28], the IEMmodel is used to simulate the backscattering coefficients. It is found that

α1 tends to be invariable with respect to the radar frequency higher than 8 GHz. At such high

frequency, the α1 is approximated using the IEM model as

lim
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α1 ¼ arctan
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where the fhh and fhh are the parameters in the IEMmodel. In this case, the α1 is independent of

surface roughness and mainly depends on the soil dielectric constant. The potential of α1 for

the soil moisture retrieval is investigated in Baghdadi et al. [18] using the C-band RADARSAT-

2 data, indicating it is possible to discriminate two soil moisture levels or provide necessary a

priori information to enhance the accuracy of soil moisture retrieval.

3.2.3. Hybrid decomposition

The eigen-based decomposition is more empirically used for soil moisture retrieval, as it is

inherently a mathematical approach. In contrast, the model-based decomposition based on the

Bragg and Fresnel scattering models is more physically used. Recently, the combination between

the model-based and eigen-based decompositions results in the hyper-decomposition [1]. Firstly,

the volume scattering component is removed using the model-based decomposition. Then, the

remaining ground scattering is decomposed using the eigen-based decomposition. This process

overcomes the requirement of assumption on the dominant surface or dihedral scattering mecha-

nism in the ground component (in that case, we need to assume the β or α to be constant in order to

solve the undetermined equation system).

Furthermore, as the vegetation shape and structure vary with the phenological growth, the

limited volume scattering model is not sufficient to capture this complex variability. Thus, the

dynamic volume scattering is developed [1], which is suitable for the entire crop phenological

cycle:

Tv½ � ¼
f v
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V11 ¼ Ap þ 1
� �2

(32)
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V12 ¼ A2
p � 1

� 
2
sinc 2Δφð Þ

V22 ¼ 0:5 Ap � 1
� �2

1þ sinc 4Δφð Þð Þ

V33 ¼ 0:5 Ap � 1
� �2

1� sinc 4Δφð Þð Þ

The parameters Ap and Δϕ were used to characterize the vegetation shape and its distribution

width, respectively. With the dynamic volume model and hyper-decomposition approach, the

soil moisture estimation obtained an inversion rate higher than 95% and RMSE from 4.0 to

4.4 m3/m3. In addition, for the covariance matrix, a generalized volume scattering model is

proposed in [29] to quantify the vegetation scattering using the cosine-square distribution.

Although the formulation varies from one to another study, the main idea relies on the

characterization of the vegetation shape and orientation using the minimum number of

parameters.

However, the model-based polarimetric decomposition for the soil moisture retrieval is mainly

valid at L-band. When it comes to C-band, the surface roughness condition is beyond the valid

range of Bragg (ks < 0.3) or X-Bragg model (ks < 1). In order to overcome this limitation, Huang

et al. [2] first proposed a C-band polarimetric decomposition for the slight vegetation condi-

tion. In their approach, the surface scattering component is simulated using the IEM model,

while the volume scattering component is formulated using the first-order sine and cosine

functions for the vertical and horizontal orientations. Finally, a RMSE of 6.12 m3/m3 is obtained

for the soil moisture retrieval using the C-band RADARSAT-2 dataset.

4. Radiative scattering model

The soil moisture retrieval is performed using either physical or empirical models. We intro-

duced below the application of integral equation model (IEM) and Oh model over the bare soil

and the water cloud model (WCM) over the vegetated condition.

4.1. IEM model

The IEM model can be used to simulate the backscattering coefficients from incidence angle θ

and soil parameters (surface roughness ks, correlation length kl, and soil moisture mv). Two

surface roughness conditions (Gaussian or exponential) are considered to compute the corre-

sponding backscattering coefficients. Regarding the applicability of IEM model, some studies

show reasonable agreements between measurements and the model [30, 31]. However, the

disagreements between measurements and model predictions are frequently observed [32–36],

because the IEM model backscattering behavior depends on the autocorrelation function

(ACF). Furthermore, the measurement of correlation length l is difficult to be accurate enough,
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since this parameter is dependent on the profiler length as well as the number of repetition in

the surface roughness measurements [37, 38].

To overcome the limitations of IEM model, Baghdadi proposed in [35, 36, 39] a calibration

procedure for HH, VV, and HV polarization channels, respectively. It is assumed that the

disagreements between IEM model and actual datasets are due to the selection of autocorrela-

tion function and the in situ correlation length measurements. Therefore, after fitting a large set

of experiment datasets, a calibration parameter lc is built for different polarization channels at

different incidence angles in order to take the place of measured correlation length l. The

calibration parameter lc given in [40] for C-band is described with respect to RMS surface

height s and incidence angle θ:

• For HH polarization: lc ¼ 0:162þ 3:006 sin 1:23θð Þ�1:194s

• For VV polarization: lc ¼ 1:281þ 0:134 sin 0:19θð Þ�1:59s

• For HV polarization: lc ¼ 0:9157þ 1:2289 sin 0:1543θð Þ�0:3139s

By replacing the measured correlation length with this calibration parameter, the agreement

between the IEM model simulation and actual radar measurement is reported to be improved

[35, 40].

4.2. Oh model

The Oh model is established based on theoretical scattering models [9], scatterometer measure-

ments, and airborne polarimetric SAR datasets (in L-, C-, and X-band, respectively) under

different roughness and soil moisture conditions at incidence angles ranging from 10 to 70�. This

model relates the co-polarized ratio p ¼ σ
0
HH=σ

0
VV and the cross-polarized ratio q ¼ σ

0
HV=σ

0
VV and

absolute σ
0
HV to soil parameters (including s, l, ε) and radar system parameters (including the

wave number k and local incidence angle θ).

4.3. Water cloud model

As a first-order radiative transfer solution, the WCM model expresses the total backscattering

signals as the summation of surface and volume scattering components, σ0total ¼ Γ
2
σ
0
surfaceþ

σ
0
volume. The surface scattering can be modeled using the bare soil moisture model such as the

previous IEM and Oh models. The vegetation two-way attenuation on the surface scattering

power is modeled by Γ
2 ¼ exp �2τ= cosθð Þ.

The vegetation layer is assumed to be comprised of homogenous water particles with a

uniform distribution, and volume scattering component can be expressed from vegetation

scattering albedo and optical depth such as σ
0
volume ¼ 0:75ω 1� Γ

2
� �

cosθ. Accounting the

polarization leads to the following empirical volume power [8]:
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σ
VV�pola
volume ¼ σ

HH�pola
volume ¼ 0:74ω 1þ 0:54ωτ� 0:24 ωτð Þ2

h i

1� exp �2:12τ= cosθð Þ
� �

cosθ

σ
HV�pola
volume ¼ ω 0:044ωτ� 0:018 ωτð Þ2 þ 0:006 ωτð Þ3

h i

1� exp �11:7τ= cosθð Þ
� �

cosθ
(33)

At the moderate or high frequency such as C- and X-bands, the dihedral scattering is negligi-

ble. However, at low frequency such as L-band, the dihedral scattering component must be

accounted, which can be quantified as [8]

σ
HH�pola
dihedral ¼ 1:9ω 1þ 0:9ωτþ 0:4 ωτð Þ2

h i

1� exp �1:93τ= cosθð Þ
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RHHj j2 cosθ

σ
HV�pola
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h i

1� exp �9:62τ= cosθð Þ
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exp �1:02τ1:38= cosθ
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exp �2:9 ksð Þ2 cosθ
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RHHj j2 þ RVVj j2
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0:5 cosθ

σ
VV�pola
dihedral ¼ 0

(34)

5. Soil and vegetation emission model

To collect sufficient emitted energy at microwave bands, satellite radiometer uses large foot-

print, resulting in coarse spatial resolution. Based on the measured brightness temperature,

two typical models are applied for the soil moisture retrieval: L-band Microwave Emission of

the Biosphere (L-MEB) and Land Parameter Retrieval Model (LPRM). The former was mainly

developed for the L-band such as the SMOS mission, while the latter was mostly used at high

frequency but can be also applied to L-band. All these models were based on a simple τ-ω

model for vegetation covered lands.

Vegetation effect: The τ-ω model is formulated to account for the vegetation effect on the

brightness temperature. It simulates the TB at polarization p (h or v) as the incoherent summa-

tion of (i) the soil emission attenuated by the vegetation, (ii) vegetation direct upwelling

microwave emission, and (iii) vegetation downwelling emissions which are reflected by the

soils and attenuated by the vegetation itself:

TBp ¼ EpγpTsoil þ 1� ωð Þ 1� γp

� 


Tvege þ 1� ωð Þ 1� γp

� 


TvegeRpγp (35)

where Tsoil and Tvege are soil and vegetation effective temperatures, respectively. The soil

emissivity Ep = (1 � Rp) is computed from the soil reflectivity (Rp). The vegetation attenuation

on the soil emission is modeled through a vegetation transmissivity γp which is a function of

the optical depth τp and incidence angle θ:

γp ¼ e�τp= cos θð Þ and τp ¼ bp � VWC (36)
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At L-band, the vegetation scattering albedo ω is assumed to be close to zero and independent

of the polarization and incidence angle [41].

Surface roughness effect: assuming the surface scattering over the interface between soil and air,

the rough soil reflectivity Rp was obtained from the smooth surface reflectivity rp:

Rp ¼ 1�Qð Þ � rp þQ � rq
� �

� exp �Hr cos
Np θð Þ

� �

(37)

where rp is the Fresnel coefficients for h and v polarizations:
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(38)

The parameter Q quantifies the polarization mixing degree due to the surface roughness and is

neglected at L-band [42, 43]. Np represents the dependence of roughness on incidence angle.

Furthermore, the effective surface roughness parameter Hr is associated to the measured

surface roughness in a conventional way:

Hr ¼ 4k2s2 (39)

with wave number k and surface RMS height s. However, the clear general relationship

between Hr and measured surface roughness is still uncertain. In the literature, different

empirical relationships were established to link the Hr parameter to surface RMS height and

the autocorrelation length [44]. The Hr parameter is also found to be influenced by soil

moisture, but it is reported to be mainly valid for the sandy soils [42].

6. Joint active-passive microwave for soil moisture estimation

The radar signal comprised of the amplitude and phase is coherent and more influenced by the

surface roughness and vegetation. In contrast, the radiometer signal is incoherent, reducing the

influences from the surface roughness and vegetation. In addition, the radar signal is acquired

with high spatial resolution at the cost of narrow swath range, while the radiometer signal has

a frequent revisit cycle but coarse spatial resolution. In order to combine the advantages of the

radar and radiometer signals, recent studies go into the soil moisture retrieval by a joint active-

passive approach. In this context, the original objective of the SMAP mission is to monitor the

soil moisture by the active-passive combination, although the radar component failed.

For the airborne platform, the active and passive signals can be obtained with a similar spatial

resolution. The optimization process is conducted to match the microwave signals to the
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model output. For instance, the following cost function was constructed [45] by using both the

radar and radiometer signals:

C Xð Þ ¼ 0:5
X σdatapq � σsimu

pq Xð Þ

σdatapq

�

�

�

�

�

�

�

�

�

�

2

þ γ �
X TBdata

p � TBsimu
p Xð Þ

TBdata
p

�

�

�

�

�

�

�

�

�

�

2
2

4

3

5 (40)

where σdatapq and TBdata
p are the real data from the radar and radiometer, respectively. σsimu

pq Xð Þ

and TBsimu
p Xð Þ are the simulated radar and radiometer signals. The γ is a tuning parameter to

balance the radar and radiometer signals in the optimization process. The increase of γ repre-

sents the enhanced contribution of the radiometer signals for the soil moisture retrieval. The

airborne Passive-Active L-band Sensor (PALS) data were collected during the SMAPVEX12

and SMAPVEX16 campaigns, providing an opportunity to develop the active-passive soil

moisture retrieval approaches.

For the spaceborne platform, such as the condition of the original SMAP mission, the radar

and radiometer signals have different spatial resolutions. In this case, the radar signal with fine

spatial resolution is used to disaggregate the radiometer signal with coarse resolution to obtain

TB data with moderate resolution, considering the correlation between the radar and radiom-

eter signals. Then, the emission model was applied to the disaggregated brightness tempera-

ture to retrieve the soil moisture at a moderate spatial resolution.

Author details

Hongquan Wang1,2*

*Address all correspondence to: hongquan.wang@usherbrooke.ca

1 College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China

2 CARTEL, University of Sherbrooke, Sherbrooke, QC, Canada

References

[1] Jagdhuber T, Hajnsek I, Papathanassiou KP. An iterative generalized hybrid decomposi-

tion for soil moisture retrieval under vegetation cover using fully polarimetric SAR. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2015;8(8):

3911-3922

[2] Huang X, Wang J, Shang J. An integrated surface parameter inversion scheme over agri-

cultural fields at early growing stages by means of C-Band polarimetric RADARSAT-2

imagery. IEEE Transactions on Geoscience and Remote Sensing. 2016;54(5):2510-2528

Soil Moisture Retrieval from Microwave Remote Sensing Observations
http://dx.doi.org/10.5772/intechopen.81476

51



[3] Baver LD, Gardner WH, Gardner WR. Soil Physics. New York: Wiley; 1977

[4] Topp GC. Electromagnetic determination of soil water content: Measurements in coaxial

transmission lines. Water Resource Research. 1980;16(3):574-582

[5] Hallikainen MT, Ulaby FT, Dobson MC, et al. Microwave dielectric behavior of wet soil-

part 1: Empirical models and experimental observations. In: IEEE Transactions on Geosci-

ence and Remote Sensing. Vol. 23; 1985. pp. 25-34

[6] Toogood JA. A simplified textural classification diagram. Canadian Journal of Soil Science.

1958;38:54-55

[7] Rowell DL. Soil Science: Methods and Applications. Harlow, UK: Longman Scientific &

Technical; 1994

[8] Ulaby FT, Moore RK, Fung AK. Microwave Remote Sensing: Active and Passive, Vol. III –

Volume Scattering and Emission Theory, Advanced Systems and Applications. Norwood,

USA: Artech House; 1986

[9] Ulaby FT, Moore RK, Fung AK. Microwave Remote Sensing: Active and Passive, Vol. II –

Radar Remote Sensing and Surface Scattering and Emission Theory. Norwood, US: Addison-

Wesley Publishing Company, Advanced Book Program/World Science Division; 1982

[10] Daniel S. Analysis d'images SAR polarimetriques aeroportees pour l'estimation de param-

eters bio-physiques des sols agricoles. Universite de Rennes 1; 2009

[11] Dobson MC, Ulaby FT, Hallikainen MT, et al. Microwave dielectric behavior of wet soil-

part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing.

1985;GE-23:35-46

[12] Mironov VL, Kosolapova LG, Fomin SV. Physically and mineralogically based spectro-

scopic dielectric model for moist soils. IEEE Transactions on Geoscience and Remote

Sensing. 2009;47(7):2059-2070

[13] Mandelbrot BB. The Fractal Geometry of Nature. San Francisco, CA: Freeman; 1982

[14] Falconer K. Fractal Geometry, Mathematical Foundations and Applications. New York:

John Wiley and Sons; 1990

[15] Zribi M, Ciarletti V, Taconet O, et al. Characterisation of the soil structure and microwave

backscattering based on numerical three-dimensional surface representation: Analysis

with a fractional Brownian model. Remote Sensing of Environment. 2000;72:159-169

[16] Jaynes ET. Probability Theory: The Logic of Science. Cambridge,UK: Cambridge Univer-

sity Press; 2003

[17] Hajnsek I. Inversion of Surface Parameters using Polarimetric SAR. Jena, Germany:

Friedrich-Schiller-Universitat Jena; 2001

[18] Baghdadi N, Cresson R, Pottier E, et al. A potential use for the C-band polarimetric SAR

parameters to characterize the soil surface over bare agriculture fields. IEEE Transaction

on Geoscience and Remote Sensing. 2012;50(10):3844-3858

Soil Moisture52



[19] Hajnsek I, Jagdhuber T, Schon H, et al. Potential of estimating soil moisture under vegeta-

tion cover by means of PolSAR. IEEE Transaction on Geoscience and Remote Sensing.

2009;47(2):442-454

[20] Jagdhuber T, Hajnsek I, Bronstert A, et al. Soil moisture estimation under low vegetation

cover using a multi-angular polarimetric decomposition. IEEE Transaction on Geoscience

and Remote Sensing. 2013;51(4):2201-2215

[21] Wang H, Magagi R, Goita K, et al. Evaluation of simplified polarimetric decomposition for

soil moisture retrieval over vegetated agricultural fields. Remote Sensing. 2016; 8(2):142

[22] Yamaguchi Y, Moriyama T, Ishido M, et al. Four-component scattering model for polari-

metric SAR image decomposition. IEEE Transaction on Geoscience and Remote Sensing.

2005;43(8):1699-1706

[23] Freeman A, Durden SL. A three-component scattering model for polarimetric SAR data.

IEEE Transaction on Geoscience and Remote Sensing. 1998;36(3):963-973

[24] AnW, Cui Y, Yang J. Three-component model-based decomposition for polarimetric SAR

data. IEEE Transaction of Geoscience and Remote Sensing. 2010;48(6):2732-2739

[25] Wang H, Magagi R, Goita K. Comparison of different polarimetric decompositions for soil

moisture retrieval over vegetation covered agricultural area. Remote Sensing of Environ-

ment. 2017;199(1):120-136

[26] Jagdhuber T. An approach to extended Fresnel scattering for modeling of depolarizing

soil-trunk double-bounce scattering. Remote Sensing. 2016;8(10). Article No. 818

[27] Hajnsek I, Pottier E, Cloude SR. Inversion of surface parameters from polarimetric SAR.

IEEE Transactions on Geoscience and Remote Sensing. 2003;41(4):727-744

[28] Allain S. Caracterisation d'un sol nu a partir de donnees SAR polarimetriques etude multi-

frequentielle et multi-resolutions. Universite de Rennes 1; 2003

[29] Arii M, vanZyl JJ, Kim Y. Adaptive model-based decomposition of polarimetric SAR

covariance matrices. IEEE Transactions on Geoscience and Remote Sensing. 2011;49(3):

1104-1113

[30] Shi JC, Wang J, Hsu AY, et al. Estimation of bare surface soil moisture and surface

roughness parameter using L-band SAR image data. IEEE Transaction on Geoscience

and Remote Sensing. 1997;35(5):1254-1266

[31] Bindlish R, Barros AP. Multifrequency soil moisture inversion from SAR measurements

with the use of IEM. Remote Sensing of Environment. 2000;71:67-88

[32] Mattia F, Le Toan T, Souyrb J, et al. The effect of surface roughness on multifrequency

polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing. 1997;35:

954-966

[33] Zribi M, Taconet O, Hégarat-Mascle SL, et al. Backscattering behavior and simulation

comparison over bare soils using SIR-C/X-SAR and ERASME 1994 data over Orgeval.

Remote Sensing of Environment. 1997;59:256-266

Soil Moisture Retrieval from Microwave Remote Sensing Observations
http://dx.doi.org/10.5772/intechopen.81476

53



[34] Baghdadi N, Gherboudj I, Zribi M, et al. Semi-empirical calibration of the IEM backscat-

tering model using radar images and moisture and roughness field measurements. Inter-

national Journal of Remote Sensing. 2004;25:3593-3623

[35] Baghdadi N, Holah N, Zribi M. Calibration of the integral equation model for SAR data in

C-band and HH and VV polarizations. International Journal of Remote Sensing. 2006;27:4

[36] Baghdadi N, Chaaya JA, Zribi M. Semi-empirical calibration of the integral equation

model for SAR Data in C-band and cross polarization using radar images and field

measurements. IEEE Geoscience and Remote Sensing Letters. 2011;8(1):14-18

[37] Altese E, Bolognani O, Mancini M, et al. Retrieving soil moisture over bare soil from ERS-1

synthetic aperture radar data: Sensitivity analysis based on a theoretical surface scattering

model and field data. Water Resources Research. 1996;32:653-661

[38] Oh Y, Kay YC. Condition for precise measurement of soil surface roughness. IEEE Trans-

actions on Geoscience and Remote Sensing. 1998;36(2):691-695

[39] Baghdadi N, King C, Bonnifait L. An empirical calibration of the Integral Equation Model

based on SAR data and soil parameters measurements. IEEE International Geoscience and

Remote Sensing Symposium. Toronto, Canada. June 24-28 2002

[40] Dong L, Baghdadi N, Lu R. Validation of the AIEM through correlation length parameter-

ization at field scale using radar imagery in a semi-arid environment. IEEE Geoscience

and Remote Sensing Letters. 2013;10:461-465

[41] Wigneron JP, Parde M, Waldteufel P, et al. Characterizing the dependence of vegetation

model parameters on crop structure, incidence angle, and polarization at L-band. IEEE

Transactions on Geoscience and Remote Sensing. Feb. 2004;42(2):416-425

[42] Martens B, Lievens H, Colliander A, et al. Estimating effective roughness parameters of

the L-MEB Model for soil moisture retrieval using passive microwave observations from

SMAPVEX12. IEEE Transactions on Geoscience and Remote Sensing. 2015;53(7):4091-

4103

[43] Wang JR, Neill PEO, Jackson TJ, et al. Multifrequency measurements of the effects of soil

moisture, soil texture, and surface roughness. IEEE Transactions on Geoscience and

Remote Sensing. 1983;GE-21(1):44-51

[44] Lawrence H, Wigneron JP, Demontoux F, et al. Evaluating the semiempirical H–Q model

used to calculate the L-Band emissivity of a rough bare soil. IEEE Transactions on Geosci-

ence and Remote Sensing. 2013;51(7):4075-4084

[45] Akbar R, Moghaddam M. A combined active-passive soil moisture estimation algorithm

with adaptive regularization in support of SMAP. IEEE Transactions on Geoscience and

Remote Sensing. 2015;53(6):3312-3324

Soil Moisture54


