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Chapter

Tumor Malignancy
Characterization in Clinical
Environments: An Approach
Using the FYC-Index of
Spiculation and Artificial
Intelligence
Fernando Yepes-Calderón, Flor M. Medina,

Nolan D. Rea and José Abella

Abstract

According to the World Health Organization, cancer is the second leading cause
of death in the world. The myriad of variations, paths of development, and muta-
tions make this abnormality challenging to treat. With the advent of medical imag-
ing, complex qualitative information is collected with the aim of characterizing the
pathology; however, the uncomfortable and time-consuming histology remains the
state of care within hospitals. This manuscript presents a strategy to extract quan-
tifiable features from the images. The method captures shape perturbation as vari-
ations in reference to a perfect circle that is used in a standardized dimensional
space. A multifeatured scheme is created when the quantification is applied in all
slices produced by imaging modalities such as computed tomography, magnetic
resonance imaging, and tomosynthesis. Later, the numbers obtained by the intro-
duced algorithm are used in an artificial intelligence pipeline that correlates
spicularity with aggressiveness using the histology as supervising factor.

Keywords: medical image analysis, tumor grading, cancer, tumor characterization

1. Introduction

Classifying cancer lesions in form and intensity from the images is of interest in
radiology units [1–3]. Currently, histology is the gold standard to define cancer
type, stage, and grade; nevertheless, histology comes with its associated costs and
delays and has been reported to increase morbidity [4, 5]. When diagnosing from
the images, the desired classification is accurate and repeatable only if the operator
includes the quantitative domain to the set of available tools that are mostly from
the qualitative domain. The quantification is accomplished by separating the neo-
mass from the anatomical parts in the image employing segmentation.
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Regarding segmentation, authors have proposed assisting techniques that par-
tially or fully accomplish the tasks with different levels of accuracy [6–8].

After segmentation, the challenge is finding a repeatable and performant
method for all kinds of cancer manifestations. Some quantifying approaches target
cancer in specific parts of the body [9, 10], while others focus on particular kinds of
cancer [11, 12].

Although technology has invaded the medical facilities, currently assisting tools
are not of help in diagnosing cancer. The tasks are still performed by human experts
employing purely qualitative judgment. There is a need to quantify and thus aban-
don the uncertainty produced by human variability.

In practice, qualitative features suggested by X-rads [13, 14] such as roughness
and stiffness are difficult to conceptualize with mathematical models; therefore,
indexes based on these features are complicated to model [15]. However, the shape
of the captured objects is a stable feature in the field of view [16, 17] and, conve-
niently, has the required sensibility across all cancer manifestations because it
captures the core manifestations of the disease, the disordered growth pattern
[18, 19]. More importantly, tumor shape is quantified in a feature-enriched scheme
to favor further machine-learning implementation. In this document, we employ
the FYC-Index of spiculation [20] to assert quantification on the edges of breast
tumors imaged with tomosynthesis [21, 22]. The numbers yielded by the FYC-Index
strategy are fed to an artificial intelligence classifier that initially differentiates
between benign and malign neo-masses, showing a high degree of accuracy in
supervised experiments. The presented strategy is equally performant in all imaging
techniques that generate volumetric representations by slicing, including MRI, CT,
and tomosynthesis.

2. Materials and methods

2.1 Clinical data

A cohort of 48 breast tomosynthesis images underwent segmentation performed
by an expert radiologist. Histology was performed on the 48 masses yielding 29
malignant cases and 19 benign. The resulting masks hold the specifications of the
original images regarding the field of view and spatial resolution. Since the algorithm
explained in Section 2.2 is immune to resolution changes and the field of view is
standardized, records of the images’specifications are not provided in this document.

2.2 The FYC-Index of spiculation

The reader is invited to refer to Figure 1. Recall that the procedure explained
below is used on both views, axial and sagittal.

Block I. Images of CT, MRI, or tomosynthesis are suitable for this processing
due to their slicing nature. The FYC-Index re-sample all masks to isometric

Figure 1.
Block diagrams for the FYC-Index pipeline.
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voxels of 1 mm before selecting the biggest mask through area calculation.
Next, the dimensions of the biggest bounding box are used as a dimensional
template. Then, the other slices in the study—including those of other tumors
in case we are working with a population—are scaled to the dimensions of the
biggest bounding box. This process also centers the masks. Distortion in the
mask growing process is avoided by using the adaptive supersampling method
[23, 24]. After scaling, all the images share the same field of view (FOV) and
therefore, the same planar coordinates for the center point.

Block II. Then, the edges of the masks are detected using the Canny edge
detector [25].

Block III. As the Canny detector does not create single-pixel edges, the system
detects two paths corresponding to the outer and inner edges. The Euclidean
distance from the artificially created center of coordinates to each point in the
edge is saved in two arrays, one corresponds to the outer edge and the other to
the inner edge. The two arrays are averaged in an ordered array of distances
(AoD). The run along the edge that creates the AoD is standardized by starting
the distance calculation at the top center of the image and taking the edging
points in a clockwise fashion until the starting point is located at a distance of
ffiffiffiffiffiffiffi

2ð Þ
p

mm of the current point or below. Recall that voxels are all set to 1 mm.
Block IV. The AoD is Gaussian filtered creating the FAoD. This filtering is
intended to eliminate the high-frequency components produced by the digital
grid. The filter is implemented in the frequency domain, keeping 80% of the
original spectral power. According to [26], maintaining the 80% of the signal
spectral power assures that the important content of the signals is kept.

Block V. A five-point differentiation is applied to find the regions of rapid
change; next, a second five-point differentiation is executed to recover the
inflection points. These operations are generalized to each point in FAoD as
shown in Eq. 1:

p0n ¼ dn � dn�2ð Þ þ dn � dn�1ð Þ þ dnþ1 � dnð Þ þ dnþ2 � dnð Þ½ �=4 (1)

The second derivative “p”— obtained with the second pass of Eq. (1)—is where
peaks are detected. The peak elements on FAoD are exalted, while regions of low
dynamics in the same array are diminished when raising FAoD to the fourth power.

Block VI. Amoving window integration selects peaks in the exponential second
derivative. Given points p sð Þ ¼ s; dð Þ, the area Að Þ under the curve section with
a width Nð Þ is calculated for step sð Þ, as it is shown in Eq. (2). If A sð Þ>T for a
chosen value of T, s is added to this list of locations of peaks:

A sð Þ ¼ ∑

N
2

i¼�N
2

p
sN

2

� �

�
N

2
þ i

� �� �

(2)

Block VII. The spiculation quantifying process is executed in axial and sagittal
views.

Block VIII. The location of the detected peaks is then crossed; we only kept the
points that coincide in both views.

Block IX. These points when mapped back in the images uplift the regions
where the tumor presents a highly disorganized growing pattern.

Block X. Each slice in the study contributes to the histogram signature of the
tumor. The FYC-Index defines the span of the histograms by using the
maximum and minimum amount of points found in the slices when working
on a single mass or among all analyzed tumors when working on populations.
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Under the FYC-Index domain, while more spiculation, the histogram profiles
are more populated in the right side.

2.3 Proof of concept on synthetic data

Testing on extremes is a common practice in engineering. Unfortunately, find-
ing extremes on clinical data is cumbersome. The difficulty relies on the nature of
the information; in the clinics, where the patients are imaged on the presumption
that some abnormality is present, the images often yield moderately spiculated
masses, posing a problem overall for the lower extreme reference. Regarding the
highly spiculated reference, one can use the histogram signature to pinpoint the
slice yielding the most right-filling pattern. However, a sounded proof of concept
should comply with the common complexity found in the clinics, where two masses
can have similar volumes and have a different nature regarding malignancy; thus,
conventional methods are unable to detect differences. To overcome this problem,
we have created a synthetic framework where lower references are created by
stacking the less spiculated slice among all the data analyzed. A mildly spiculated
mass is created by stacking a mildly spiculated slice among the study, and, analo-
gously, the extreme spiculated sample is created by stacking the most spiculated
slice found in the study. For the three samples, the stacking is driven in a manner
that the masses end by having a similar volume.

2.4 Artificial intelligence (AI) implementation

Every column in the histogram signature created by employing the procedure in
Section 2.2 is seen as a feature in classification postulate that aims to distinguish
between malign and benign samples. This is possible due to the independence of the
peaks counting in a slice by slice fashion. In general, the perturbations on the slice n
do not have any correlation with the perturbations on slice m; therefore, orthogo-
nality is granted. In addition to the bins counting, the number of bins fulfilled—
some bins may end empty—those filled from the middle bin to the right and those
filled to the middle bin to the left, is also used in the featuring space.

Every tumor population has a different span in the histogram signature; how-
ever, the amount of peak-counting-derived features have been set constant by
forcing seven equally spaced bins regardless of the peak-counting range. Thus, the
experiments always create an analyzing matrix containing 11 columns, 10 columns
for the features, and 1 column to register the supervising factor provided by the
histology. The current exercise presents a boolean support vector machine (SVM)
classifier, where the machine is trained to provide a benign or malign verdict.

The data matrix is scaled and normalized using Python-Pandas [27, 28]. The
classifier estimators are proved by cross correlation where the train and test samples
are gathered from the original dataset using (0:7 : 0:3) (train:test) in a fivefold
experimental scheme. For the classification experiments, Scikit-learn [29] is
employed.

Listing 1: Python code use to run the SVM classifier while progressively adding
features.

def run Features Testing Classification (features, mdata, lbls):
atregs = []
ascores = []
for i in length(features):
est = feature_selection.SelectKBest (k=i)
est . fit (mdata, lbls)
tregs = est . get_support (indices = True)
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ndata = est . transform (mdata)
estsvm = svm . LinearSVC ()
gs = grid_search . GridSearchCV (estsvm, {’C’ : np . logspace (–4,3)})
tscore = np . mean (cross_validation . cross_val_score (gs, ndata, lbls, n_jobs=5))
As it is shown in Listing 1, the SVM classification is done after progressively

adding features which are grabbed from the mdata matrix using the indexes saved
in the features’ array. The accuracy records presented in Section 4 correspond to the
experiment that yielded the highest accuracy values per folding.

3. Results

3.1 FYC-Index extraction

Figure 2 shows how the algorithm yields two different outcomes based on the
tortuosity of the two analyzed shapes. The small shape refers to a mostly rounded
region of interest (ROI), therefore, does not present abrupt changes in the distances
from the edging points to the center of FOV. In contrast, the same measure yields
rapidly changing distances in the big ROI. Those rapidly changing distances are
captured by the first derivate and framed in their inflection points by the second
derivate. Later, those points are amplified and made all positive by the fourth power
function, while the same fourth power function diminishes changes in which the
derivate yielded values in the range (�1, 1). As the moving window adds up all
values encountered in its domain, the regions of rapid change represented by large
values compute to higher numbers within the domain of the moving window, and
that is where the enhanced points appear in the plot. As all the points are mapped
with their original coordinates, a crossing of 3D positions among the selected points

Figure 2.
FYC-Index extraction. The inner loop is the detailed block diagram similar to the one shown in Figure 1 but
specific for tomosynthesis images. The outer loop shows sampling images on each block.
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in two image views filters out positions erroneously selected. Finally, the presented
procedure allocates an item of frequency in a histogram where the bins contain
ranges of point counting. Naturally, highly spiculated slices contribute mostly to the
right bins of the histogram. When all slices in a tumor have been analyzed, the
operator could be sure that the histogram is descriptive of the degree of homogene-
ity of the mass which is also associated with aggressiveness (see Figure 3).

A sample of the process where the 3D reconstruction of the masses together with
the respective normalized FYC-Index histogram is presented in Figure 4.

3.2 Analysis of synthetic data

As explained in Section 2.3, extreme references are created to demonstrate the
span of the method and the capacity to deliver a representation of easy interpreta-
tion. The synthetic creations are shown in Figure 5.

The results obtained on synthetic data corroborates that the FYC-Index is sensi-
ble to the changes in the edges that distinguish between malign and benign masses.
In contrast, commonly used geometrical indexes are not sensitive to changes. In this
exercise, we have isolated the spiculation by equalizing the volumes of the studied
software objects. A complete set of 3D geometrical functions are applied on the
clinical data in use, with the aim of comparing the performance of standard of care
tools in the clinics, and the FYC-Index is shown in Figure 6.

4. Verdicts dictated by (AI) implementation

The fivefolding SVM exercise proposed in Section 2.4 was executed using a
Python-Pandas dataframe and Scikit-Learn SVM. The results are registered in
Table 1.

The strong-force algorithm presented in Section 2.4 executed the supervised
classification with a high degree of accuracy. The design of the experiments turns the
classification into the capacity to differentiate whether a mass is benign or malign.

Figure 3.
Histogram signature of the FYC-Index on two tumors and intermediate steps (b, c, d, g) of processing. The
circles in frames in (c) and (g) correspond to perfectly rounded regions where the area is equal to the one of the
mask.
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5. Discussion

The proposed method is sensitive to slight changes in the edges of the masses
that are characteristically malignant. The same method includes a stage of quantifi-
cation that has proven to be descriptive at a simple glance even for nonspecialized
operators. Since the procedure has been automated, it is compliant with the confi-
dentiality regulations and, therefore, can be easily implemented in hospitals and
clinics. The FYC-Index is a flexible method equally performant when analyzing
masses in individuals and populations. The method presents a signature which
results in a measure of lobularity. This strategy works regardless of factors such as
size and spatial resolution. Moreover, the results are direct and easy to interpret.

Figure 4.
A sample of the processed tumors and their FYC-Index signatures.
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The specifications of the FYC-Index make it suitable to analyze all sort of cancer
manifestations, regardless of localization or pathogenic roots. The presented strat-
egy uses a machine-learning classifier to rapidly characterize the malignancy of a
mass. However, the real challenge consists of defining malignancy together with
aggressiveness. Such an approach requires more rounds of training/testing sessions

Figure 5.
Performance of the FYC-Index in software-created references. On the right, a table with records of often used
3D geometrical indexes. Note that these indexes are not sensible within the characteristics that require to be
quantified.

Figure 6.
The two boxes per colored column correspond to the clinical data detailed in Section 2.1. Normality was
discarded by Kolmogorov test [30] done in the two groups separately. As normality was not met, the
nonparametric Kruskal-Wallis test [31] was employed. The p-values are mapped back and forward in the chi-
square distribution.
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with sufficient samples in all grading range. This multilevel classification should be
designed to follow the classification directives presented in the X-RADS standards;
thus, the existing automatic tools can also provide insights for selecting more
accurate treatments. To the best of our knowledge, no other authors are integrating
the tools as we have proposed. The use of the features we have proposed is a novel
view of the solution; therefore, we do not include in this report a comparison with
other methods.

6. Conclusion

Cancer is the second most threating disease which humanity has not been able to
neutralize. Other diseases that were considered pandemics in the past, costing
millions of human lives, have been eradicated through vaccination. Rapidly mutat-
ing diseases such as AIDS have been downgraded from mortal to chronic. Maladies
like high blood pressure, stroke, or cirrhosis among several other chronic afflictions
have been associated with race, genetics, habits, or exposition factors, providing a
way to reduce the probability of acquiring them or a path of development where
scientists still have space to explore. Cancer instead affects all humans regardless of
any factor. The only aspect that increases the surviving expectations, without a
doubt, is early detection, and it is here where the method presented in this manu-
script gains relevance. Detection from the images is possible, and automatic diag-
nosis not only avoids the painful and uncomfortable biopsy, but it also contributes
to faster and more accurate verdicts.

Folding Accuracy (%) Sensibility (%) Specificity (%)

1 93.4 92.1 89.1

2 91.3 92.4 90.4

3 90.3 90.2 89.6

4 92.7 90.1 89.3

5 89.9 90.0 89.6

Results for the fivefolding experiments on histograms acquired with the FYC-Index of spiculation.

Table 1.
SVM-supervised classification.
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