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Abstract

Phosphorus (P) eutrophication in the water bodies is of global concern. The role 
of biochar in the mitigation of (P) eutrophication has recently received substantial 
attention. Agriculture is the main source of P in the water bodies, as a result of 
excessive fertilizer and manure application. Excessive P results in excessive primary 
production in the water bodies, leading to anoxic conditions, growth of toxic algae 
blooms, altering plant species composition and biomass. Therefore, resulting in food 
web disruption, fish kill, toxins production and recreation areas degradation. When 
biochar is applied on farm, it has potential to sorb/adsorb P, immobilizing it, slowing 
its translocation to the water bodies. However, biochar effectiveness in P sorption 
is influenced by both feedstock type and pyrolysis temperature. The interaction 
between feedstock type and pyrolysis temperature influences the biochar pH, sur-
face area, aromatic carbon, cation exchange capacity, surface charge density, biochar 
internal porosity and polar and nonpolar surface sites that promote nutrient absorp-
tion. Hence, biochar properties have a broad spectrum that influences how biochar 
reacts with P sorption; therefore, it is not appropriate to extrapolate observed results 
to different materials. Biochar that promote P sorption rather than desorption 
should be considered and designed to meet specific management practices.

Keywords: biochar, desorption, eutrophication, phosphorus, mitigation, sorption

1. Introduction

Phosphorus (P) eutrophication is a major problem globally. Increased aquatic 
primary production attributed to P over enrichment results in eutrophication [1, 2].  
Aquatic systems affected by eutrophication often exhibit harmful algal blooms, 
which foul water intakes and waterways, disrupt food webs, fuel hypoxia and 
produce secondary metabolites that are toxic to water consumers and users includ-
ing human, cattle, zooplankton, shellfish, domestic pets and fish [3]. Agriculture 
is the main pollutant of aquatic systems [4]. Overapplication of P fertilizer and 
manure to soil is in itself wasteful and causes P accumulation in the soil, but the 
transport of P to aquatic ecosystems by erosion is also causing widespread problems 
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of eutrophication [5–8]. Soil P exists in both organic and inorganic forms [9]; the 
inorganic P is highly influenced by soil pH and is mainly coupled with amorphous 
and crystalline forms of Fe, Al, and Ca [10]. Biochar exhibits potential to mitigate 
P eutrophication when applied on farm as a result of its high capacity to sorb P [1]. 
Biochar is a by-product of pyrolysis process, whereby in an energy-limited world, 
biomass is converted to energy products through pyrolysis process [11]. Biochar 
nutrient sorption capacity has been reported to exceed that of natural organic 
matter by a factor of 10–100 in some cases [12]. However, its capacity for P sorption 
is influenced by both feedstock type and pyrolysis temperature [13]. The interaction 
between feedstock type and pyrolysis temperature influences biochar characteristics 
resulting in wide spectrum of biochar properties that influence P sorption [1, 14].  
Therefore, extrapolation of P sorption findings from one material to another is not 
appropriate; as a result of diversity of biochar response to P sorption, every material 
needs to be studied and designed to address the set P sorption objectives.

2. Forms of phosphorus

Soil P exists as either organic or inorganic compounds that differ significantly 
in their biological availability in the soil environment [9]. Phosphorus goes through 
different geochemical processes in soil which include adsorption, solubilization, pre-
cipitation and complexation that determine its mobility and fate [15]. The inorganic 
P compounds mainly couple with amorphous and crystalline forms of Fe, Al, and 
Ca [10] and are highly influenced by soil acidity and alkalinity [1]. Soil acidity and 
alkalinity influence the impact of solubilization, complexation, adsorption and pre-
cipitation on P retention and release. In acidic soils P is fixed by sorption to oxides and 
hydroxides of Al and Fe through formation of insoluble Al and Fe phosphates by ligand 
exchange and precipitation reactions [16, 17]. In alkaline soils, P is made unavailable 
due to formation of metal complexes such as Mg-P and Ca-P [18, 19]. The organic P in 
most soils is dominated by a mixture of phosphate monoesters  
(e.g., inositol phosphates and mononucleotides) and phosphate diesters (mainly 
phospholipids and nucleic acids), with smaller amounts of phosphonates (compounds  
with a direct carbon-phosphorus bond) and organic polyphosphates (e.g., adenosine 
triphosphate) [20]. Plants can acquire P from organic compounds through various 
mechanisms; some of the mechanisms allow plants to utilize organic P as efficiently 
as inorganic phosphate [21, 22]. Different environmental conditions influence avail-
ability and sorption of P, for example anaerobic condition leads to the release of P 
resulting from reduction of ferric to ferrous iron [23]. The presence of sulfate could 
lead to reaction of ferric iron with sulfate and sulfide to form ferrous iron and iron 
sulfide resulting in the release of P [24]. Increased temperature can reduce adsorption 
of P by mineral complexes in the sediment [25]. Other physicochemical processes 
affecting the release of P from the sediment include redox, temperature, reservoir 
hydrology, pH potential and environmental conditions [26]. These processes are 
further complicated by the influence of biological processes, for example miner-
alization, leading to a complex system regulating the release of P across sediment 
water interface [26]. Understanding of P retention and release mechanism enhances 
effective management of P enhancing crop production and promoting sustainability 
of soil and water quality [11].

3. Agriculture: the major source of phosphorus to water bodies

Increasing human population calls for increased food production. Increased 
food production requires increased fertilizer application which includes P fertilizer 
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(Figure 1) [27]. Today agriculture is heavily dependent on P derived from phos-
phate rock. Phosphorus is a nonrenewable resource and it is expected that economi-
cally mineable P reserves will be exhausted within 50–100 years (Figure 2) [27]. 
Crop and livestock production systems are the major cause of human alteration of 
the global P cycles [28]. The major source of P input to water bodies is the excessive 
application of fertilizer or manure on farm which causes P accumulation in soils 
[5]. Excess P or poor-timed application could mobilize P through runoff, negatively 
impacting water quality of water bodies and causing eutrophication [29, 30].

Figure 1. 
Historical sources of phosphorus for use as fertilizers, including manure, human excreta, guano and phosphate 
rock (1800–2000). Modified from [27].

Figure 2. 
Indicative peak phosphorus curve, illustrating that, global phosphorus reserves are likely to peak after which 
production will be significantly reduce. Modified from [27].
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In many cases, P enters aquatic ecosystems sorbed to soil particles that are 
eroded into rivers, lakes and streams; any factor elevating soil P concentration or 
accelerating soil erosion potentially increase P runoff to aquatic system [31, 32]. 
Mobilization of P involves chemical, biochemical and biological processes. The pro-
cesses are grouped into detachment or solubilization mechanisms and are defined 
by the physical size of the P compounds that are mobilized [33]. Potential for solu-
bilization increases with increasing concentrations for extractable P. Depending on 
site conditions, diffuse P transport occurs as particulate or dissolved P in overland 
flow, drainage, channelized surface runoff or groundwater [34].

4. Phosphorus sorption is dependent on biochar properties

Biochar exhibits variable properties which are related to its formation; biochar 
properties are mainly influenced by method of pyrolysis, temperature of pyroly-
sis, feedstock type, particle size, pyrolysis retention time and furnace oxygen 
level [35–38]. Biochar has been reported to increase soil pH and cation exchange 
capacity (Figure 3) [1, 39]. Biochars exhibit high surface charge density, and CEC 
values up to 112 cmolc kg−1 have been observed [40]. The high surface charge 
density allows biochar to retain cations by cation exchange, whereas biochar 
internal porosity, high surface area and presence of both polar and non-polar 
surfaces sites promote absorption of nutrient [41]. Biochar is also reported to 
contain essential nutrients [41, 42] that could be retained and slowly released 
over time [43, 44].

As a result of biochar variable properties, the P sorption findings by different 
studies are inconsistent; some previous studies indicated no increase in P sorption 

Figure 3. 
Relationship between biochar phosphorus sorption and pH for all feedstocks, switchgrass, kudzu and Chinese 
tallow. Modified from [1].
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of the sandy and clayey soils after addition of biochar [45]. There was no P sorption 
observed with corn biochar produced at 350 and 550°C pyrolysis temperatures 
[46]. Biochar produced from sugarcane bagasse, peanut hull, Brazilian pepper 
wood and bamboo at 200, 450 and 600°C did not indicate any clear trend in 
phosphorus sorption [47]. However, other studies indicated reduction of P leach-
ing after biochar application [41, 48]. Further, biochar addition reduced P leaching 
after manure addition and in green roof discharge water [41, 49]. Application of 
2% biochar to agricultural soil amended with swine manure resulted in reduc-
tion of P leaching by 69% [41]. Addition of 2% pecan shell biochar to loamy soil 
reduced P leachate by 40% [50]. Orange peel pyrolyzed at between 250 and 700°C 
improved P sorption by 8–83% [51]. [1] indicated that biochar pyrolyzed from 
kudzu and Chinese tallow at 300–700°C temperature exhibited increased P sorp-
tion; when switchgrass was pyrolyzed at 300–500°C, it exhibited P desorption, but 
when pyrolyzed at 500–700°C temperature, it exhibited P sorption, clearly demon-
strating that feedstock type and pyrolysis temperature are major determinant of P 
sorption capacity (Figures 4 and 5).

In [1], it is also demonstrated that increasing temperature resulted in loss of 
O-alkyl carbon and accumulation of aromatic carbon that favored P sorption 
(Figure 6). This variability in biochar capacity to sorb P suggests that understand-
ing each biochar type is important to ensure appropriate application to meet target 
objectives.

Figure 4. 
Biochar phosphorus adsorption; Modified from [1].
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5. Biochar pH influence phosphorus sorption–desorption

The influence of the changes in pH after biochar application seems to vary 
between different studies. Biochar application reduces soil acidity altering P 
complexity with metals such as Al3+, Fe3+ and Ca2+ affecting P availability, sorption 
and desorption (Figure 3) [13, 52]. As a result of higher alkalinity, biochars from 
legume plants increase pH much compared to biochars from non-legume plants [52].  

Figure 5. 
Phosphorus sorption by corn stover, Ponderosa pine wood residue, and switchgrass biochars. Each data point is 
the mean of four replications with standard error. Modified from [11].

Figure 6. 
Biochar carbon functional groups as determined by Nuclear Magnetic Resonance (NMR); modified from [1].
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Biochar has potential to adsorb cations such as Al3+, Fe3+ and Ca2+, which can lead 
to delayed P adsorption or precipitation; in addition organic molecules could 
sorb onto biochar reducing its capacity to chelate with Al3+, Fe3+ and Ca2+ in soil 
(Figure 7) [53]. Ref. [53] reported that P sorption was increased in acidic soil but 
decreased in alkaline soil, and attributed increased P sorption after biochar addition 
to Ca induced P sorption/precipitation and also reported that P sorption was less 
affected by Fe and Al oxides. In contrast, incorporation of 4% biochar into acidic 
soil reduced the P sorption and increased availability of sorbed P, whereas applica-
tion of alkaline biochars to calcareous soil increased P sorption significantly and 
decreased availability of sorbed P [11]. The increase in soil pH reportedly enhances 
the solubility of P [54] but, in contrast [1], demonstrated that addition of biochar 
with high pH, Ca concentration and aromatic C reduced P solubility (Figures 3–5). 
Ref. [55] indicated that colloidal and nano-sized MgO (periclase) particles on 
the biochar surface played the key role in providing adsorption sites for aqueous 
phosphate [55]. In addition, initial solution pH and coexisting anions have potential 
to affect adsorption of P on biochar.

6.  Feedstock/biomass type and pyrolysis temperature influence 
phosphorus sorption

There have been diverse findings on the effect of biochar on P sorption, and in 
some studies, biochar application promoted availability and uptake of P as a result 
of biochar high anion exchange capacity; reduction of availability of Al and Fe in 
soil resulted in less P fixation (Figure 8) [50, 56]. Biochar feedstock and pyrolysis 
temperature affect its chemical composition and surface characteristics influenc-
ing biochar P sorption and desorption capacity [1, 11, 13]. Biochar produced from 
different biomass often has very different chemical characteristics and as a result 
influences the P sorption capacity of biochar [1, 11]. In [1], it is reported that corn 
stover biochar (79%) had greater sorption followed by switchgrass biochar (76%), 

Figure 7. 
P sorption by acidic soil and acidic soil (Grummit series) incubated with corn stover, Ponderosa pine wood 
residue or switchgrass biochars at 4 g/kg soil for 30 days. Each data point is the mean of four replications with 
standard error. Modified from [11].
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while Ponderosa pine wood residue biochar (31%) exhibited the lowest biochar 
sorption. Increasing biochar pyrolysis temperature leads to loss of the volatile 
compounds and increased aromatic carbon, elevated pH, biochar yield decreases 
(Table 1), increased surface area and decreased surface functional groups that 
provide exchange capacity (Figures 4 and 5) [1, 14]. Beet tailing biochar pyrolyzed 
at 600°C adsorbed P; the adsorption was suggested to have occurred due to binding 
sites contained in colloidal and nano-sized MGO particles on the biochar surface 
[55]. [57] indicated that similar to P sorption, desorption is also influenced by 
feedstock, for example Inga exhibited less sorption of P compared to Lacre and 
Embauba feedstocks but also desorbed less P (Figures 9 and 10) [57].

Temperature 200°C 300°C 400°C 500°C 550°C 650°C 750°C P-value

Switchgrass

BC recovery 

(%)

78.0±1.5a 46.2±1.1b 31.7±1.3c 35.4±2.0c 24.9±0.3d 24.1±0.2d 22.8±0.2d <0.0001

pH 7.1±0.4b 8.0±0.3b 9.3±1.0ab 9.0±0.7ab 10.7±0.04a 11.3±0.1a 11.3±0.1a 0.0001

Kudzu

BC recovery 

(%)

74.0±2.3a 38.8±0.2b 29.8±2.0c 26.0±1.1cd 26.9±0.5cd 24.6±0.1cd 23.4±0.2d <0.0001

pH 7.8±0.03e 9.5±0.1d 10.5±0.03c 11.3±0.1b 11.1±0.2b 12.0±0.03a 12.4±0.01a <0.0001

Chinese 

Tallow

BC recovery 

(%)

80.0±0.4a 36.5±2.6b 23.7±0.3c 22.2±0.3cd 20.6±0.9cd 20.8±0.8cd 17.5±0.6d <0.0001

pH 7.0±0.03c 7.0±0.9c 8.8±0.1b 8.9±0.05b 8.9±0.1b 10.2±0.1ab 11.2±0.3a <0.0001

Data indicate mean ± SEM (standard error of mean) between temperatures. Different letters superscript along the row 
indicate Tukey HSD significant difference between means of biochar recovery and pH under different temperatures. 
Modified from [1].

Table 1. 
Biochar recovery and pH.

Figure 8. 
P sorption calcareous soil (Langhei series) and calcareous soil incubated with corn stover, Ponderosa pine wood 
residue, and switchgrass biochars at 40 g/kg soil for 30 days. Each data point is the mean of four replications 
with standard error. Modified from [11].
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Therefore, P sorption–desorption varies between feedstock type and pyrolysis 
temperature levels, providing a possibility of designing biochars for specific soil 
management objectives (Figures 4, 5 and 10) [57].

7. Biochar potential to mitigate phosphorus eutrophication

Biochar has potential to mitigate P eutrophication in the water bodies through 
its application in the farm. However, it is clear that biochar P sorption capacity is 
feedstock specific and is highly influenced by pyrolysis temperature [1]. Therefore, 

Figure 9. 
Desorption of PO4–P from washed biochars plotted as the cumulative fraction desorbed. Modified from [58].

Figure 10. 
Phosphorus desorption curve data for the sequential desorption of P from a degraded tropical soil with biochar 
added. The points represent desorption of P from the soil/biochar complex after the addition of 75, 150, 200 
and 300 mg P/kg. The encircled area represents a uniform desorption curve common to all treatments with a Kd 
between solution concentrations of 0.1 and 0.2 mg/L of approximately 1230 L/kg. Modified from [57].
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it is important to understand the interaction between feedstock type and pyroly-
sis temperature and how they influence biochar acidity/alkalinity, surface area, 
aromatic carbon, cation exchange capacity, surface charge density, biochar internal 
porosity and presence of both polar and non-polar surfaces sites that promote nutri-
ent absorption [1, 13, 39, 41]. Biochar that promotes P sorption rather than release 
of P should be considered for P eutrophication mitigation, and biochar should be 
designed to meet specific management practices [57]. When applying biochar on 
farm, it is also important to consider the erodibility of biochar to water bodies; P is 
easily translocated to water bodies as particulate P [32, 34]. Therefore consideration 
of influence of biochar on erosion is important, for example in conditions where 
biochar reduces soil erosion, it results in reduced particulate P losses [59].

8. Conclusion

Biochar has potential to mitigate P eutrophication in the water bodies through 
biochar application on farm. However, biochar exhibits broad spectrum of proper-
ties which are mainly influenced by feedstock type and pyrolysis temperature and 
as a result influences P sorption. Some biochars have exhibited P sorption while 
others exhibited P desorption. Carbon composition of biochar and pH values of 
biochar and soils are major drivers of P sorption. It is not appropriate to extrapolate 
any single study findings to any other material as a result of the wide diversity in 
terms of biochar influence on P sorption. Therefore every material needs to be 
evaluated and its potential for P sorption determined. The usefulness of biochar on 
P sorption is dependent on its characteristics; to mitigate P eutrophication, employ-
ment of biochar with high P sorption is important.
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