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1. Introduction     

Recently, dance movement has been frequently studied using motion capture, but some 
movements are unable to be analysed by motion data alone. Systematic research of dance 
movements using several kinds of data captured by simultaneous measurement of body 
motion and biophysical information are rarely carried out. 
In the research literature there are several studies using the analyses of movement through 
simultaneous measurement of body motion and biophysical information, for instance, the 
learning environment for sport-form training (Urawaki, 2005), biomechanical analysis of 
ballet dancers (Humm et al, 1994), and behaviour capture systems (Kurihara et al, 2002), etc.  
Although there is one study that extracts a target motion from motion captured dance data 
(Yoshimura et al, 2001), and another where skillfulness of a dancer is investigated by 
calculating a typical style of the dancing called Okuri (Yoshimura et al, 2004), quantitative 
analysis on an expert traditional dancer has not been accomplished yet.  
We paid attention to leg movements of the lower half of the body. Leg movements of a 
dancer generate a path of motion, a tempo, and a dance rhythm. In particular, leg 
movements in Japanese traditional dance allow dancers to express various performances, 
shift performances, and transfer and retain body weight (Kunieda, 2003). 
In the following research, we aim to quantitatively analyse characteristics of leg movement 
patterns of an expert traditional dancer using simultaneous measurement of body motion 
and biophysical information (EMG: ElectroMyoGram). 

2. Method of experiment 

We carried out experiments on the leg movements of expert Japanese traditional dancers 
with simultaneous measurement of body motion and EMG (Choi, 2007). 

2.1 Subject 
The subjects who participated in this experiment are two Hanayagi style dancers; one has 
forty years experience (Expert D) and the other has twenty years experience (Skilled S).  

Source: Advances in Human-Robot Interaction, Book edited by: Vladimir A. Kulyukin,  
 ISBN 978-953-307-020-9, pp. 342, December 2009, INTECH, Croatia, downloaded from SCIYO.COM
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Hamstrings
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Vastus medialis
Gastrocnemius

Front Back  

Fig. 1. Attaching place of EMG electrodes. 
 

Performance Role of subject 

Performance 1 Guest 

Performance 2 Woman expert entertainer 

Performance 3 Man entertainer 

Performance 4 Warrior 

Performance 5 Coachman 

Performance 6 Carpenter 

Performance 7 Novice entertainer 

Performance 8 Narrator 

Table 1. Experiment performances in Hokushu. 

2.2 Performance 
We measured the traditional Japanese dance named Hokushu using the constructed system. 
In Hokushu, one dancer plays several roles such as a warrior, a guest, a coachman, a 
merchant, etc., and acts a total of twenty one performances by oneself. In this research, we 
measured eight performances from among the twenty-one (see Table 1).  

2.3 Simultaneous measurement of body motion and EMG 
In this research, 32 markers were attached on the body of a subject in order to capture 

motion data, and 12 EMG electrodes on the front and back of both legs. 

Recording EMG signals needs electrodes, an amplifier and a data recording device. Each 

EMG signal is obtained by A/D converting data amplified by the amplifier. In this research, 

we used the SYNA ACT MT11 system (NEC Corp.). The amplitude of an EMG signal is 

almost proportional to the scale of muscle force. This relationship between EMG signal and 

muscle force can therefore be used to analyse various human body movements. Because the 

raw EMG signal obtained by the equipment is corrupted by high frequency noise, we have 

to employ some noise reduction techniques like low pass filtering. Also, we have to convert 

the raw signal into a signal that is proportional to the activities of the muscles. Rectification 

of the signal, or the RMS (Root Mean Square) of the signal is usually used for the analysis.  

As per the literature on EMG (Choi, (2007)), the attaching place of EMG electrodes is fixed 

on the following six muscles (see Fig 1): Rectus Femoris (RF), Vastus medialis (VM), Tibialis 

Anterior (TA), Hamstrings (HA), Gastrocnemius (GAS) and Soleus (SOL). As shown in 

Table 2, these muscles have functions associated with leg movement. The SOL, VM, and TA 

muscles are mono-articular muscles. HA, RF, and GAS muscles are bi-articular muscles.  
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Muscle Function 

Rectus Femoris (RF) 
Extension of knee and 

flexion of hip 

Vastus medialis (VM) Extension of knee 

Tibialis Anterior (TA) Dorsal flexion of ankle 

Hamstrings (HA) 
Flexion of knee and 

extension of hip 

Gastrocnemius (GAS) 
Plantar flexion of ankle 

and flexion of knee 

Soleus (SOL) Plantar flexion of ankle 

Table 2. Function of muscle (Perotto, (1994)). 

To obtain 3D motion data, the Eagle-Hawk system (Motion Analysis Corp.) at Ritsumeikan 

University was used. This system incorporates 12 infrared cameras detecting small markers 

attached to a subject who moves in a 4m × 4m area. 

We captured data by adjusting the sampling rate of motion capture to 60Hz, and EMG 
measurement to 1200Hz, and recorded eight performances a total of three times using the 
simultaneous measurement system. 

3. Result and discussion of experiment 

In this research, we compared the leg movements of an Expert D with that of a Skilled 
subject S by calculating the center of gravity of the subject's body and a co-contraction of the 
knee and the ankle using a biomechanical method (Winter, 1990).  
In the following, we will describe the result of our experiment on a part of Performance 1 of 
Hokushu under the condition of a single support phase. 

3.1 Center of gravity 
Firstly, we compared the center of gravity of the two subjects under the condition of a single 
support phase of both legs in Performance 1. 

3.1.1 Computation of center of gravity 
The center of gravity can be used to indicate transfer and retainment of leg movement. The 

center of gravity 
0, 0 0

( , )x y z of Fig. 2 can be calculated by Eq. (1) (Winter, 1990). 
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The co-ordinates 
1, 1 1 ,

( , ) ( , )
n n n

x y z x y z⋅ ⋅ ⋅ are the locations of center of gravity in each body 

segment. These locations in each body segment can be calculated by using anthropometric 
data (segment weight and segment length) as presented by Matsui (Matsui, (1958)). Fig. 2 (b)  
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Fig. 2. Center of gravity. (a) Center of gravity in human body. (b) Center of gravity in each 
segment. 
 

Segment 
Segment weight/ 

Total body weight 
Center of gravity/ 
Segment length 

Head 0.037M 0.63 

Neck 0.026M 0.50 

Torso 0.487M 0.52 

Upper arm 0.0255M 0.46 

Forearm 0.013M 0.42 

Hand 0.006M 0.50 

Thigh 0.1115M 0.42 

Shank 0.0535M 0.42 

Foot 0.015M 0.50 

Table 3. Anthropometric data (Matsui, (1958)). 

shows the result of our computation for the location of center of gravity in each body 

segment for subject. The M  is a total body weight. M is equal to
1 2 n

m m m+ + ⋅ ⋅ ⋅ + . The 

values 
1

( , , )
n

m m⋅ ⋅ ⋅ are the segment weight in each body segment. In this experiment, we use 

the anthropometric data of Japanese woman (see Table 3). 

3.1.2 Center of gravity on Performance 1 
Fig. 3 shows the center of gravity data obtained during Performance 1 of Expert D and 
Skilled S.  
Fig. 3 (a) and (c) show leg movement under a condition of a single support phase of the 
right leg during Performance 1. Subjects maintain their body weight with the right leg, 
while the left leg is swinging. Fig. 3 (b) and (d) show leg movement under a condition of a 
single support phase of the left leg. Subjects retain their body weight with the left leg, while 
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Fig. 3. Center of gravity on Performance 1. (a) Single support phase: D (right). (b) Single 
support phase: D (left). (c) Single support phase: S (right). (d) Single support phase: S (left). 
(e) Center of gravity in body (right). (f) Center of gravity in body (left). (g) Velocity of CG 
(right). (h) Velocity of CG (left). (i) Average of velocity of CG (right). (j) Average of velocity 
of CG (left). 

www.intechopen.com



 Advances in Human-Robot Interaction 

 

170 

the right leg is swinging. The two subjects have no significant difference in leg movement 
during the single support phases. 
Fig. 3 (e) and (f) show the transfer of the center of gravity of Expert D and Skilled S.  Points 
indicated by “�” in (e) and (f) show the start point of the single support phase of both legs 
during Performance 1. The two subjects exhibit leg movement with lower center of gravity 
under a condition of single support phase of the right leg in (e). Skilled S has more transfer 
of center of gravity than that of Expert D. In (f), the two subjects show leg movement which 
raised the center of gravity. When we consider the fact that the body height of the two 
subjects are almost the same (about 153cm), we notice that Expert D raised her center of 
gravity approximately 10cm higher than that of Skilled S. 
Fig. 3 (g) and (h) show the velocity of center of gravity of the two subjects under the single 
support phase of both legs in Performance 1. In (g), Skilled S has a velocity variation of 
center of gravity of approximately 10-20cm/s greater than that of Expert D. In (h), the 
velocities of center of gravity of both subjects are almost the same. 
Fig. 3 (i) and (j) show the average velocity of center of gravity under the single support 
phase of both legs. In (i), Skilled S has an average velocity and a standard deviation larger 
than those of Expert D. In (j), the two subjects have almost the same velocity and standard 
deviation. Expert D dances slowly, about 40cm/s, during the single support phase of 
Performance 1, but Skilled S dances faster at 40-60cm/s velocity. 
Based on the above data, we found that Skilled S had more center of gravity transfer and 
velocity variation than Expert D during the single support phase of Performance 1. 

3.2 Movement of knee and ankle 
Secondly, we analysed the characteristics of leg movement of the subjects Expert D and 
Skilled S by comparing not only the angles of the knees and ankles but also EMG data of 
muscles used during their movement in Performance 1. 

3.2.1 Knee movement 
Fig. 4 shows the angle of the knees and the RMS of the EMG during Performance 1.  Fig. 4 

(a) and (c) show movements of the right knee of the two subjects under the single support 

phase of the right leg.  Fig.4 (b) and (d) show movements of the left knee during single 

support phase of the left leg. There is no significant difference in movement of the knees of 

two subjects during the single support phases. 

Fig. 4 (e) and (f) show the angle of the knees of both legs of the two subjects during the 

single support phase. The angle variation of the knee in (e) indicates that the subjects use 

knee flexion to lower the leg. The difference of angle variation of the knee between the two 

subjects was approximately 10-20°. This is not a significant difference. Angle variation of the 

knees in (f) indicates that the subjects use knee extension to raise the leg.  

Fig. 4 (g) and (h) show the RMS values of the RF muscle for Expert D and Skilled S. During 
the single support phase of the right leg in (g), the RF muscles of Expert D and Skilled S 
discharged approximately 200mV and 400mV, respectively. Compared to Expert D, the RF 
muscle of Skilled S discharged approximately twice the EMG level to support the body with 
lowered center of gravity. During the single support phase of the right leg in (h), the RF 
muscles of Expert D and Skilled S discharged approximately 100mV and 200mV, 
respectively. Once again, the RF muscle of Skilled S discharged approximately double the 
EMG signal than that of Expert D. 
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Fig. 4. Angle of knee and RMS of EMG on Performance 1. (a) Knee: D (right). (b) Knee: D 
(left). (c) Knee: S (right). (d) Knee: S (left). (e) Angle of knee (right). (f) Angle of knee (left). 
(g) RMS of RF(right). (h) RMS of RF (left). (i) RMS of HA (right). (j) RMS of HA (left). (k) 
Average of RMS (right). (l) Average of RMS (left). 
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Fig. 4 (i) and (j) show the RMS values of the HA muscles of Expert D and Skilled S. Under 
the single support phase of the right leg in (i), the HA muscle produces less EMG than the 
RF muscle. In order to lower the leg movement, the subjects are able to flex the knee by 
using a smaller muscle force due to gravity. The RF muscle antagonistic to HA muscle in 
knee is activated to support the body weight. Also, the HA muscle produces less EMG than 
the RF muscle during the single support phase of the left leg in (j). The RF muscle is 
activated to raise the leg with knee extension. 
The X and Y axes of Fig. 4 (k) and (l) show the RMS values of EMG signal from the RF and 
HA muscles. RF and HA muscles are antagonistic muscle pairs of the knee. Expert D takes a 
balance of EMG activity between the two antagonist muscles when compared with Skilled S 
during the single support phase of the right leg in (k). Also, Expert D takes balance of EMG 
activity compared to Skilled S during the single support phase of left leg in (l). 
Since Skilled S has a larger transfer and velocity variation of center of gravity than Expert D 
in (e) of Fig. 3, we noticed that when flexing the knee the RF muscle of Skilled S had more 
EMG activity than that of Expert D for supporting the body. 

3.2.2 Ankle movement 
Next, Fig. 5 shows the angle of the ankle and the RMS of the EMG signal during 
Performance 1. Fig. 5 (a) and (c) show the movement of the ankle of Expert D and Skilled S 
during the single support phase of the right leg. Fig. 5 (b) and (d) show the movement of the 
ankle during the single support phase of the left leg.  
Fig. 5 (e) and (f) show ankle angle of the two subjects during the single support phase of 
both legs. Ankle angle variation in (e) indicates that the subject used the ankle dorsal to 
lower the leg. The difference between ankel angle variation between the two subjects was 
approximately 10°. The angle variation of the knee in (f) indicates that the subjects used 
ankle plantar flexion to raise the leg. 
 Fig. 5 (g) and (h) show the EMG RMS value of the TA muscle of Expert D and Skilled S. The 
TA muscles of both subjects produced approximately 100mV during the single support 
phase of the right leg in (g). During the single support phase of the right leg in (h), the TA 
muscle of Expert D and Skilled S produced approximately 50mV and 50-200mV, 
respectively. The TA muscle of Skilled S also produced approximately double the EMG 
signal compared to Expert D. After maintaining the EMG discharge of approximately 
200mV in the TA muscle during the first 0.1 second, Skilled S reduced the discharge of EMG 
by approximately 50mV during the single support phase of left leg. Expert D maintained the 
EMG discharge of approximately 50mV. Therefore, we conclude that Skilled S used more 
muscle force for acting Performance 1. 
Fig. 5(i) and (j) show the RMS value of the SOL muscles of Expert D and Skilled S. The SOL 
muscle EMG discharge was maintained at approximately 100mV during the single support 
phase of the right leg in (i). Also, the EMG discharge of the SOL muscle was maintained at 
approximately 50mV during the single support phase of the left leg in (j).  
The X and Y axies of Fig. 5 (k) and (l) show the EMG RMS values of the TA and SOL muscles. 
TA and SOL muscles are antagonistic muscles of the ankle. Expert D and Skilled S took a 
balance of muscle activity between two antagonistic muscles of ankle during the single 
support phase of the right leg in (k). However, Expert D took a balance of EMG activity of 
ankle compared to that of Skilled S during the single support phase of the left leg in (l). In this 
result, Expert D maintained the EMG activity of the ankle muscle during the single support 
phase. In particular, Expert D takes a balance of EMG activity between two antagonist muscles 
of the ankle and knee for the single support phase as shown in Figs. 4 and 5. 
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Fig. 5. Angle of ankle and RMS of EMG on Performance 1. (a) Ankle: D (right). (b) Ankle: D 
(left). (c) Ankle: S (right). (d) Ankle: S (left). (e) Angle of ankle (right). (f) Angle of ankle 
(left). (g) RMS of TA (right). (h) RMS of TA (left). (i) RMS of SOL (right). (j) RMS of SOL 
(left). (k) Average of RMS (right). (l) Average of RMS (left). 
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3.3 Efficiency of co-contraction of the knee and ankle 
Thirdly, we compared the efficiency of leg movement of the two subjects during the single 

support phase in Performance 1. The efficiency of leg movement is calculated by observing 

co-contraction of the two antagonistic muscles of the knee and ankle. The efficiency of co-

contraction of antagonistic muscles can be determined by the following equation (Winter, 

1990) (see Fig. 6). 

 1002 ××=−
BA

BA
ncontractioCo

∪
∩

  (2) 

We compute the efficiency of leg movement via Eq. (2). Table 4 shows the co-contraction of 

the knee and ankle of two subjects during Performance 1 of Hokushu. Expert D had high co-

contraction that was approximately 10-20% greater than Skilled S. When we take into 

consideration that the EMG activity of Expert D was less than Skilled S, we notice that 

Expert D is performing leg movement more efficiently during the single support phase of 

both legs. 
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Fig. 6. Co-contraction of antagonistic muscles during single support phase of right leg. (a) 
Co-contraction of knee (Expert D). (b) Co-contraction of knee (Skilled S) . (c) Co-contraction 
of ankle (Expert D). (d) Co-contraction of ankle (Skilled S). 
 

Single support 
phase (right) 

Single support 
phase (left) 

 
 
 

Knee Ankle Knee Ankle 

Expert D 41% 77% 53% 86% 

Skilled S 25% 76% 36% 83% 

Table 4. Co-contraction of knee and ankle on Performance 1 of Expert D and Skilled S. 
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Fig. 7. Quantized RMS of EMG signal on single support phase during Performance 1. (a) 
Single support phase of Expert D. (b) Single support phase of Skilled S. 
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3.4 Visualization of the single support phase of Performance 1 
Finally, we visualize the leg movement of the two subjects during Performance 1 using CG 
character animation. 
Fig. 7 (a) and (b) show the quantized RMS values of the EMG signal for the RF and TA 
muscles of both legs during single support phase. We used the RMS data of the RF muscle 
in (g) and (h) of Fig. 4, and the RMS data of the TA muscle in (g) and (h) of Fig. 5. The RMS 
data is quantized to 5 levels. We then made a CG character animation using an OpenGL 
program, colouring the character's legs in accordance with the quantized RMS data. At the 
same time, we show the leg movement of the single swing phase versus the single support 
phase of both legs in Fig. 7 (a) and (b). 
Fig. 8 (a) and (b) show snapshots of the CG character animation with generated colours 
based on the single support phase of both legs. During high EMG activity, the colour 
becomes deeper than during low EMG activity, in proportion to the EMG signal level as 
shown in Fig. 8. We found that the differences in leg movement between the Expert D and 
Skilled S were more obvious when displaying EMG information via the CG character. 
As shown in Fig. 8 (a) and (b), we notice that the RF and TA muscles of both legs  of Skilled S 
on are activated to act Performance 1 compared to Expert D. Expert D had less EMG activity 
than Skilled S for acting the single swing movement during the single support phase. 
 

Single support phase

Single swing phase

SkilldS
ExpertD  

(a) 

Single support phase

Single swing phase

SkilldS ExpertD  

(b) 

Fig. 8. CG character animation of body motion and EMG signal on single support phase 
during Performance 1. (a) Single support phase of right leg.  (b) Single support phase of left 
leg. 
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4. Conclusion and future work     

In this research, we performed quantitative analysis of leg movement patterns of an expert 
traditional dancer using simultaneous measurement of body motion and leg muscle EMG.  
As a result, we verified that Expert D, who has a forty-year career as a Japanese traditional 
dancer, has the effective co-contraction of antagonistic muscles of the knee and ankle and 
less center of gravity transfer than Skilled S, who has only a twenty-year career. Therefore, 
Expert D can efficiently perform dance leg movements with less EMG activity than Skilled 
S. Our research can help dancers and researchers of dance by providing new information on 
dance movement that cannot be analysed via motion capture alone.  
In the future, we will measure the leg movement control of veteran dancers, especially for 
quantitatively comparing leg movement skills, by recording the leg movements of masters 
and beginners. Furthermore, we will investigate leg movement skill by simultaneously 
using EMG equipment and a force plate. 
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