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1. Introduction  

Most of us have seen robots in movies, animations and comic book stories, so the word 

“robot” tends to conjure up images of fictional robots rather than the real thing. The robots 

in Japanese cartoons such as Astro Boy and Doraemon have human-like social skills, and their 

physical abilities make it possible for them to live alongside humans without any 

difficulties. In reality, robots are quite different from these fictional creations. At least, the 

robots of the early 21st century are still unable to interact smoothly with humans (Norman, 

2007). Due to the large disparity between the fictional image of robots and their actual 

appearance, people sometimes feel stressed when confronted with robots. To facilitate 

smoother interactions between humans and robots, we must not only to improve the 

intelligence and physical ability of robots, but also find some way of evaluating the 

psychological stress felt by humans when they have to interact with robots. To develop 

robots that can interact smoothly with humans, we need to be able to ascertain the 

psychological and physiological characteristics of humans by evaluating and analyzing the 

stress they experience in everyday activities, design robots based on human characteristics, 

and evaluate and study these robots. In short, stress evaluation is a key requirement for the 

realization of smooth interactions between robots and humans. 

In this chapter, we discuss methods for objectively evaluating and investigating the 

psychological stress that people experience when interacting with robots. For the evaluation 

of stress, we used acceleration pulse waveforms and the saliva constituents which are 

biochemical stress markers. These were used to evaluate the psychological stress of a 

surgeon using a surgical assistant robot. 

A surgical assistant robot is a robot that interacts with a surgeon and is situated in contact 
with the patients to provide support for surgical operations. Interaction with humans is of 
greater importance for surgical assistant robots than for any other type of robot. A 

Source: Advances in Human-Robot Interaction, Book edited by: Vladimir A. Kulyukin,  
 ISBN 978-953-307-020-9, pp. 342, December 2009, INTECH, Croatia, downloaded from SCIYO.COM
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laparoscope robot is one robot of this type that is put to practical use and is a typical 
example of a robot where interaction with humans is important. This is a robot that is used 
instead of a human camera assistant in order to hold the laparoscope in position during 
laparoscopic surgery (Jaspers et al., 2004). Laparoscopic surgery is a technique where 
surgical tools and a laparoscope are inserted into the patient’s body through small holes in 
the abdomen, and the surgeon carries out the surgery while viewing the images from the 
laparoscope on a TV monitor. Laparoscopic surgery has grown rapidly in popularity in 
recent years, not only because it is less invasive and produces less visible scarring, but also 
because of its benefits in terms of healthcare economy, such as shorter patient stays. The 
most important characteristic of this technique is that the surgeon performs the operation 
while watching the video image from the laparoscope on a monitor instead of looking 
directly at the site of the operation. Thus, an important factor affecting the safety and 
smoothness of the operation is the way in which the video images are presented in a field of 
view suitable for the surgical operation. Manipulation of the laparoscope is not only needed 
for orienting the laparoscope towards the parts requiring surgery, but also for making fine 
adjustments to ensure that the field of view, viewing distance and so on are suitable for the 
surgical operation being performed. A camera assistant operates the laparoscope according 
to the surgeon’s instructions, but must also make independent decisions on how to operate 
the laparoscope in line with the surgeon’s intentions as the surgery progresses. 
Consequently even the camera assistant that operates the laparoscope must have the same 
level of experience in laparoscopic surgery as the surgeon. However, not many surgeons are 
skilled in the special techniques of laparoscopic surgery. It is therefore not uncommon for 
camera assistants to be inexperienced and unable to maintain a suitable field of view, thus 
hindering the progress of the operation. To address this problem, a laparoscope robot was 
developed to hold and position the laparoscope instead of a human camera assistant. Figure 
1(a) shows how laparoscopic surgery is conventionally performed with a human camera 
assistant operating the laparoscope, and Figure 1(b) shows how laparoscopic surgery is 
performed using a laparoscope robot. When using a laparoscope robot, the laparoscope is 
held and positioned by the manipulator part of the laparoscope robot which is situated 
beside the surgeon and is operated by a human-machine interface based on speech 
recognition or the like. 
 

 

                                     (a)                                                                              (b) 

Fig. 1. (a) Conventional laparoscopic surgery where the laparoscope is operated by a human 
camera assistant. (b) Robot-assisted surgery where the laparoscope is operated by a 
laparoscope robot. 
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Laparoscope robots have already been made commercially available and are in widespread 
use. These include Hitachi’s Naviot™ (Kobayashi et al., 1999; Tanoue et al., 2006), the 
AESOP™ made in the US by Computer Motion (now known as Intuitive Surgical Inc.) 
(Sackier & Wang, 1994), and EndoAssist™ made by Prosurgics (Finlay, 2001). These 
commercial products all move according to the surgeon’s instructions. Meanwhile, although 
still at the research stage, there are other systems in which the surgeon’s movements are 
autonomously determined by the robot which positions the laparoscope automatically. A 
typical example is the laparoscope positioning system developed by Nishikawa et al. 
(Sekimoto et al., 2009; Nishikawa et al., 2008; Nishikawa et al., 2006). 
Laparoscope robots are generally evaluated by measuring work efficiency, precision and 
error rates, and by using interviews and questionnaires to gather the opinions of surgeons. 
In cases where the interaction between laparoscope robots and the surgeons operating them 
resulted in bad feelings, the result was that this drawback worsened the overall performance 
of the system even if the robot performed excellently in all other aspects. It is therefore 
necessary to evaluate stress by using interviews, questionnaires and the like. However, 
interviews and questionnaires produce subjective results that tend to be rather vague, and it 
is also possible that the results are affected by the human relationship between the examiner 
and examinee. For the objective measurement of stress, there is growing interest in methods 
that use biological stress responses. 
The concept of biological stress responses was defined by the physiologist Hans Selye as 
“the nonspecific response of the body to any demand upon it” (Selye, 1936; Selye, 1974). 
Since stress appears to originate from very complex mechanisms, not only do different 
people respond differently to stimuli, but even the same person can exhibit a range of 
different responses to the depending on whether the stress is comfortable or uncomfortable, 
psychological or physical, and so on. 
In the field of physiology, biological stress responses to psychological stress stimuli take 
place in the autonomic nervous system and endocrine system. In biological stress responses 
of the autonomic nervous system, sympathetic nerves produce a very fast biological 
response in which the activity of sympathetic nerves takes priority, and a biophylactic 
mechanism acts to resist the stress stimulus. In biological stress responses of the endocrine 
system, processes such as hormone secretion from the adrenal cortex causes a biological 
response that changes the organism’s internal environment so as to keep it in a suitable 
state. 
Methods for the evaluation of biological stress responses include biochemical methods that 
measure stress-related substances in biological samples of blood, saliva or the like, and 
methods that involve performing a statistical dynamic analysis of physiological markers 
such as blood pressure and heart rate. 
In the following section, as a typical stress evaluation technique, we describe the evaluation 
of stress based on biochemical markers and acceleration pulse waveforms. 

2. Evaluation of stress with biochemical markers (saliva, urine) 

Stress responses can be generally distinguished by two systems — the hypothalamus – 
sympathetic nerves – adrenal medulla system (sympathetic-adrenal-medullary axis: SAM) 
and the hypothalamus – pituitary – adrenal cortex system (hypothalamic-pituitary-adrenal 
axis: HPA). When an excessive stress is loaded, this is reflected as changes in biochemical 
markers in blood, urine and saliva (Figure 2).  
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Fig. 2. Physiological reaction to stress loading 

The SAM system corresponds to the response of the autonomic nervous system, where the 
stimulus of stress load is transmitted to the cerebral cortex and causes the catecholamines 
(epinephrine, norepinephrine, etc.) to be released via the hypothalamus, either directly from 
the autonomic nervous system or indirectly via the adrenal medulla. These catecholamines 
and related substances can be useful as stress markers. On the other hand, the HPA system 
corresponds to the response of the endocrine system, where the stress stimulus is 
transmitted to the cerebral cortex and causes corticotropin releasing factor (CRF) to be 
released from the hypothalamus, promoting the release of adrenocorticotropic hormone 
(ACTH) from the pituitary gland and the secretion of glucocorticoids such as cortisol from 
the adrenal cortex. These pituitary and adrenal cortex hormones can be also useful as stress 
markers. 
In the case of evaluating the stress when people use robots or work together with robots, it 
is not recommended to use biochemical markers in blood because an invasive medical 
practice is accompanied to obtain blood samples. Therefore urinary and salivary markers 
are more suitable because of obtaining the samples by non-invasive means. In this section 
we discuss especially important and useful stress markers in saliva and urine. 
As mentioned above, the largest merit of using urinary and salivary markers is to obtain 
samples by non-invasive means, but the data often have larger variation than these of blood 
samples with depending on the condition of the samples, so it is necessary to select suitable 
collecting and sampling methods for the markers being measured. Especially in the case of 
saliva, it is necessary to select different collecting methods according to which salivary 
gland the target substances are mainly secreted from (submandibular, parotid, sublingual, 
etc.). A suitable collecting apparatus must be selected for the markers being measured [e.g. 
test tube for collecting saliva samples (Salivett® Sarstedt AG & Co.) , a short straw, etc].  
As possible urinary markers for the stress response of the SAM system, vanillylmanderic 
acid (VMA) and homovanillic acid (HVA) are recommended, which are metabolites of 
catecholamines, individually norepinephrine and dopamine (Frankenhaeuser et al., 1986). 
Norepinephrine and dopamine in blood are a direct reflection of sympathetic nerve activity, 
so it has been suggested that these markers make it possible to detect changes in autonomic 
nerve balance induced by stress loads. However, it is not easy to identify the time point at 
which measuring the blood concentrations of these substances, moreover the concentrations 
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depend on the clearance from the blood (Esler et al., 1984), so catecholamines in blood have 
been found to be unsuitable for use as stress markers, besides the sample collection needs 
invasive clinical practice. Therefore it is recommended to use the urinary concentrations of 
VMA and HVA as stress markers. Urinary VMA and HVA have long been used as clinical 
markers of neuroblastomas in infancy, and measurement methods using high performance 
liquid chromatography (HPLC) have been established. In human studies psychological 
stress load (having to perform calculations and operate a PC) is given for 4 hours, the level 
of VMA in urine is found to increase compared with that of unstressed condition. Also, in 
the case of physical stress load (ergometer exercise) for 4 hours, the urinary VMA and HVA 
levels are found to be higher for 4 hours after the load is given. Thus in the last few years, 
urinary VMA and HVA have attracted attention as markers for evaluating the effect of 
stress-reducing foods and medicines. More recently, they have also been used to evaluate 
electrical appliances for reducing stress. In one report, it was confirmed that stress-related 
increases in urinary HVA could be suppressed by controlling the airflow of cooling air 
conditioners, thus confirming the use of urinary HVA. These reports suggest that urinary 
VMA and HVA levels are thought to be promising stress markers for surgeons using robots, 
and it is expected that they will lead to the creation of robots that reduce stress. 
Possible markers in saliva include α-amylase and chromogranin A as stress responses to the 
SAM system, and cortisol as a stress response to the HPA system. 
Salivary α-amylase is mainly secreted by the parotid salivary glands, and the control of 

these secretions is known to be regulated by sympathetic nerves (Nater et al., 2006). When a 

stress load is given, this can be detected as an increase in salivary α-amylase activity, but 

this mechanism is thought to involve two pathways — one where the autonomic nervous 

system acts directly on the salivary glands, and another which is mediated by the secretion 

of norepinephrine from the adrenal medulla. This stress response generally occurs within 10 

minutes. Salivary α-amylase activity is known to have circadian rhythm, increasing from the 

morning until midday and decreasing at night (Nater et al., 2007). Therefore it is no problem 

when evaluating acute phase stress, but when evaluating sub-acute or chronic stress for 

several hours or longer, the control sample must be obtained at the same time of another 

day. Salivary α-amylase activity is confirmed to change by both physical and psychological 

stress load. In the clinical study for the evaluation of electrical appliances, it has been 

reported that under 8-hour psychological stress loading conditions, an airbag-type 

automated massage chair (medical appliance) can inhibit the increase in salivary α-amylase 

activity. Salivary α-amylase activity can be measured by using the Caraway method, which 

is established as a method for the clinical examination of α-amylase in blood and urine that 

is a highly reliable measurement system. It has also been used to evaluate stress in surgeons 

using laparoscope robots.  

Chromogranin A is an acid glycoprotein with a molecular weight of approximately 49,000 
which is separated from adrenal medulla chromaffin cells. It is known to be widely 
distributed the endocrine and nervous systems, and is mostly found in the adrenal medulla 
and pituitary gland (Winkler & Fischer-Colibrie, 1992). A characteristic of this protein is that 
it coexists and is co-released with catecholamine which contributes to the stress response of 
the SAM system, so the blood level of chromogranin A reflects the sympathetic nerve 
activity. Chromogranin A is also present in the ducts of the submandibular glands, and is 
known to be released in the saliva as a result of stress loading (Saruta et al., 2005). Salivary 
chromogranin A is therefore used as a stress marker. Interestingly, it has been reported that 
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specific changes only occur for a psychological stress load (Kanamaru et al., 2006), and in 
our studies we also observed changes for psychological stress loads but not for physical 
stress loads. The ELISA method was established for the measurement of salivary 
chromogranin A concentrations. Although it has not yet been demonstrated to be useful for 
stress evaluation electrical appliances, it is very interesting to see how salivary 
chromogranin A chages when using a robot. 
Cortisol is released from the adrenal cortex when the pituitary is stimulated by ACTH as a 
stress response of the HPA system, and has been studied for a very long time as a stress 
marker (Levine, 1993). Since cortisol also affects the immune system and central nervous 
system, it is an important hormone that reflects not only stress levels but also physiological 
condition. Hitherto it has been used together with ACTH as a stress marker in blood. In 
recent years, a method has been developed for the measurement of salivary cortisol 
concentrations with ELISA, and this has come to be widely used as a stress marker. Salivary 
cortisol concentrations are of the order of a few percent compared to that in blood, but have 
been found to have a very strong correlation with stress. Cortisol level generally increases 
from 20 to 30 minutes after the application of stress load. The response time depends on the 
types of load, which is a slower response than the SAM system. Also, like salivary α-
amylase, the salivary cortisol is known to have circadian rhythm, with a high concentration 
in the morning which decreases rapidly by midday, so it is essential to perform evaluations 
by comparing the results with a control sample. Salivary cortisol responds to both physical 
and psychological stress (Nozaki et al., 2009), and it has been shown that the 
abovementioned massage chair reduced cortisol concentrations caused by psychological 
stress loading. Furthermore, as introduced in this section, it is also used to evaluate the 
stress of surgeons when using a laparoscope robot. 

3. Evaluation of stress with accelerated plethysmography 

The stress response of the SAM system can be detected as a change in autonomic nerve 
functions by using a physiological marker. Changes in autonomic nerve function can be 
evaluated in various ways such as nerve impulses, electroencephalograms and 
electrocardiograms. Acceleration pulse waveforms are especially useful because they can be 
measured quickly and easily by accelerated plethysmography (Figure 3). The acceleration 
pulse waveform is a secondary differentiation of plethysmogram readings based on 
measurements of the optical absorbency of hemoglobin in peripheral blood vessels of a 
fingertip or other region. These waveforms have been generally used to evaluate 
arteriosclerosis. The a-a interval of the acceleration pulse waveform is strongly correlative to 
the R-R interval in an electrocardiogram in physiological aspect. The electrocardiogram R-R 
interval can be used to evaluate autonomic nerve functions by the coefficient of variation 
and by the frequency analysis of time-series data  with maximum entropy method or fast 
Fourier transform method (Akselrod et al., 1985). Even in the a-a interval of the acceleration 
pulse waveform, when the coefficient of variation reflects the activity of parasympathetic 
nerves or by the analysis of time-series data, it is shown that the low-frequency component 
(LF: 0.02–0.15 Hz) mainly reflects the sympathetic nerve activity, while the high-frequency 
component (HF: 0.15–0.5 Hz) reflects the parasympathetic nerve activity, and it is known 
that the LF/HF ratio indicates the autonomic nerve functions and that LF/HF increases in 
stress states (when sympathetic nerves become predominant). When a physical stress load is 
given, it has been reported that in comparing before with after the stress load, the coefficient 
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of variation of the a-a interval decreases and the LF/HF increases. These markers are often 
used to evaluate the stress-reducing effects of foods (Nukui et al., 2008). Recently, it has also 
been applied to evaluating the stress-reducing effects of electrical appliances. 
It has also been found that LF/HF in the frequency analysis is related to fatigue as well as 
stress. The acceleration pulse waveform is useful for  not only the evaluation of stress and 
fatigue when using electrical appliances, but also the detection of the worker’s fatigue level 
before the start of work, it is possible to detect the worker’s health condition before 
operating a robot. 
 

 

Fig. 3. Evaluation of stress based on autonomic nervous system functions 

4. Objective evaluation of psychological stress by analyzing biochemical 
markers and acceleration pulse waveforms 

In this section we describe a method for objectively evaluating psychological stress in 
examinees by analyzing acceleration pulse waveforms and the examinee’s biochemical 
markers measured before and after performing a task. Saliva was used as the biochemical 
marker. For the acceleration pulse waveform data, we used the LF/HF ratio. 
The duration of the task was set to 25 minutes. Immediately before and after the test, the 
examinee’s saliva was sampled and acceleration pulse waveform measurements were 
performed. 
The saliva samples were obtained by having the examinee chew the cotton swab from a 
saliva collection test tube (Salivette®, made by Sarstedt AG & Co.) for three minutes with the 
back teeth on one side of the mouth. If necessary, the saliva was stored by freezing after 
collection. Since the saliva constituents have circadian rhythm, in cases where multiple 
measurements were made on the same examinee, the saliva samples were obtained on the 
same day of the week and at the same time. The test subjects were also asked to chew the 
cotton swab with the same teeth on each occasion. The measurement of acceleration pulse 
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waveforms was performed by attaching an infrared acceleration pulse waveform meter to 
the index finger and taking readings under resting conditions. The same finger was used for 
all measurements. The examinees were required to rest for approximately 30 minutes before 
starting the task. The cortisol in saliva samples was measured using a method such as 
ELISA. Also, the salivary α-amylase was measured using a method such as the Caraway 
method. The results of the salivary cortisol and α-amylase measurements are shown in 
Figures 4(a) and (b). Here, the subscripts “Before” and “After” indicate the results of 
measurements made immediately before and after performing the task. The numbers shown 
above the bar graphs are the measurement results or the average of multiple measurements. 
The results of measuring the acceleration pulse waveforms were used to calculate the 
LF/HF ratios, and the change before and after the task is shown in Figure 4(c) in the same 
way as in Figures 4(a) and (b). 
Salivary cortisol, salivary α-amylase and the LF/HF ratio each have different reaction times 
to stress. Salivary α-amylase increases (activates) within about 10 minutes of applying a 
stress stimulus, whereas salivary cortisol increases (activates) roughly 20–30 minutes after 
applying a stress stimulus. The LF/HF ratio increases instantaneously when stress is given. 
By using these differences in reaction time, it is possible to estimate the stress before, during 
and after the task from the saliva constituents and acceleration pulse waveforms measured 
before and after the task lasting approximately 25 minutes as shown in Figure 5. In this 
Figure, the results of salivary cortisol measurements made immediately before the task 
(CORBefore) represent the stress levels 20–30 minutes before the start of the task, the results of 
salivary α-amylase measurements made immediately before the task (AMYBefore) represent 
the stress levels up to 10 minutes before the start of the task, the results of acceleration pulse 
measurements made immediately before the task (LF/HFBefore) represent the stress levels 
immediately before the start of the task, the results of salivary cortisol measurements made 
at the end of the task (CORAfter) represent the stress levels in the first half of the task (20–30 
minutes before the end of the task), the results of salivary α-amylase measurements made at 
the end of the task (AMYAfter) represent the stress levels in the second half of the task (up to 
10 minutes before the end of the task), and the results of acceleration pulse measurements 
made at the end of the task (LF/HFAfter) represent the stress levels at the end of the task. By 
exploiting the time lags to the stress responses of each factor in this way, it is possible to 
estimate the stress variation over a wide period of time by making just a few measurements. 
 

 

 (a) Salivary cortisol levels    (b) Salivary α-amylase activity levels    (c) LF/HF ratios 

Fig. 4. Examples of measurement results 
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Fig. 5. Stress distribution obtained by exploiting the different stress response times of 
salivary constituents and acceleration pulse waveforms 
 

 

Fig. 6. Format of stress variation diagram 

Next, from the results of measuring the salivary constituents and acceleration pulse 
waveforms, we will discuss a method for plotting a stress variation diagram depicting the 
temporal variation in stress. Figure 6 shows the format of a stress variation diagram. The 
vertical axis shows the variation of stress, with larger numbers representing higher levels of 
stress and smaller numbers representing lower levels of stress. Since this diagram is more 
concerned with changes in stress levels, the absolute values are of no great significance. The 
horizontal axis represents time. The task starts at point D and ends at point F. Saliva and 
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acceleration pulse waveform data are acquired at points D and F. The stress quantities for 
CORBefore, CORAfter, AMYBefore, AMYAfter, LF/HFBefore and LF/HFAfter are plotted along axes 
A, B, C, E, D and F respectively, and are connected by lines. Here, tT is the task duration (25 
minutes), tC is the salivary cortisol reaction time, and tA is the salivary α-amylase reaction 
time. The acceleration pulse waveform is assumed to respond instantaneously. The stress 
variation diagram is drawn by following the four steps shown below. 
Step 1. Plot the salivary cortisol data  
With regard to the salivary cortisol values measured before and after the task, CORBefore 

represents the stress state 20 to 30 minutes before the task (axis A), and CORAfter represents 

the stress state 20 to 30 minutes before the end of the task (first half of the task) (axis B). 

In this stress variation diagram, the CORBefore value is taken as a reference point (100%) as a 

basis for expressing subsequent stress values. First, the value of CORBefore is plotted at the 

100% point 1 on axis A, and is denoted by ┛0 = 100%. Using Equation (1), the value of 

CORAfter is converted to a percentage taking that value of CORBefore as 100%. This converted 

value ┛ is plotted at point 2 on axis B. A line is then drawn between points 1 and 2. 

 0= ┛
COR

COR
┛

Before

After
  (1) 

Example: From Figure 4(a), the salivary cortisol value is 0.075 µg/dl before the operation 

and 0.090 µg/dl after the operation. From Equation (1), this corresponds to ┛ = 120% (a 20% 

increase), so the stress variation diagram starts out as shown in Figure 7. 

 

 

Fig. 7. Plotting the data from salivary cortisol measurements 
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Step 2. Plot the salivary α-amylase and LF/HF data obtained before surgery 
Before the task, the examinees were assumed to be in a relaxed state with a small stress 
amplitude, so the point where the line drawn in step 1 intersects with axis C is assumed to 
correspond to AMYBefore and is called intersection point 3. Similarly, the point where the line 
drawn in step 1 intersects with axis D is assumed to correspond to LF/HFBefore and is called 
intersection point 4. In this way, intersection points 3 and 4 are points that are automatically 
determined from the salivary cortisol data of step 1 and the positions of axes C and D. 
Therefore, the value ┙0 at intersection point 3 is given by Equation (2), and the value ┚0 at 
intersection point 4 is given by Equation (3). 

 ( )
00 -

-
+= ┛┛

t

tt
┛┙

T

AC

Before   (2) 

 ( )
00 -+= ┛┛

t

t
┛┚

T

C

Before    (3) 

Here, the values of ┙0 and ┚0 are liable to be affected by the stress state before the task, so it is 
important that a relaxed state is maintained before the task. 
 

 

Fig. 8. Plotting the α-amylase and LF/HF data before surgery 

Example: When the pre-surgery salivary α-amylase data AMYBefore and the pre-surgery 
LF/HF data LF/HFBefore are plotted, the stress variation diagram appears as shown in Figure 
8. Here, ┛0 = 100%, ┛ = 120%, tT (task duration) = 25 minutes, tC (salivary cortisol reaction 
time) = 20 minutes, tA (salivary α-amylase reaction time) = 5 minutes. Based on these values, 
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the value ┙Before at intersection point 3 from Equation (2) is 112.0%, and the value ┚Before at 
intersection point 4 from Equation (3) is 116.0%. 

Step 3. Plot the salivary α-amylase data obtained after surgery 
The salivary α-amylase data AMYAfter obtained after surgery represents the stress at point E 
within 10 minutes before the end of the task. This stress represents a stress quantity relative 
to the salivary α-amylase data AMYBefore obtained before surgery, so we can use Equation (4) 
to convert this into an increase or decrease ┙ with respect to the base point 1. This value ┙ is 
entered on axis E as intersection point 5. A line is drawn between intersection points 2 and 5. 

 0= ┙
AMY

AMY
┙

Before

After
  (4) 

Example: From Figure 4(b), the pre- and post-surgery salivary α-amylase data AMYBefore 
and AMYAfter have values of 45 and 71 KU/L respectively, and the value of ┙0 is 112.0%. 
Thus from Equation (4), the value of ┙ is 177.0%, and the resulting stress variation diagram 
is as shown in Figure 9. 
 

 

Fig. 9. Plotting the salivary α-amylase after surgery 

Step 4. Plot the LF/HF data after surgery 
The post-surgery LF/HF data LF/HFAfter represents the stress level at the end of the task 
(point F). 
This stress level represents an amount of stress relative to the pre-surgery LF/HF data 
LF/HFBefore, so Equation (5) is used to transform LF/HFAfter into an increase or decrease ┚ 
relative to the base point 1. This value ┚ is entered on axis F as intersection point 6. A line is 
drawn between intersection points 5 and 6. 
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 0

Before

After

LF/HF

LF/HF
= ┚┚   (5) 

Example: From Figure 4(c), the pre-surgery LF/HF data LF/HFBefore has a value of 10, the 
post-surgery acceleration pulse waveform data LF/HFAfter has a value of 8, and the value of 
┚0 is 116.0%. Thus according to Equation (5), ┚ is equal to 92.8%, and the stress variation 
diagram appears as shown in Figure 10. 
 

 

Fig. 10. Plotting the LF/HF data after surgery 

By following the above procedure of steps 1 through 4, it is possible to draw a stress 
variation diagram. 
The axes A, C and D in the stress variation diagram represent the stress values before the 
start of the task, axes D, B and E represent the intermediate stress levels after the start of the 
task, and axes E and F represent the stress levels in the second half of the task. 
In the example shown in Figure 10, there is a gentle increase in stress before the start of the 
task, and a clear increase in stress from the beginning through to the middle of the task, but 
this stress is eliminated in the second half of the task. 

5. A practical example of psychological stress evaluation 

In this section, to illustrate how the stress variation diagrams described in section 4 can be 
used in practice, we show how this technique can be used in the evaluation of a laparoscopic 
robot. In this example, surgeons performed in-vitro laparoscopic cholecystectomy 

www.intechopen.com



 Advances in Human-Robot Interaction 

 

154 

simulations using pig livers (which have an anatomically similar structure to that of human 
organs). These operations were performed with a laparoscope operated by a laparoscope 
robot, and with a laparoscope operated by a human assistant. By analyzing the surgeons’ 
LF/HF ratio and salivary cortisol and α-amylase levels before and after each surgery, we 
conducted a multilateral and objective evaluation of their biological stress responses. 

5.1 Laparoscope robot 
For the laparoscope robot, we used the automatic laparoscope positioning system proposed 
by Nishikawa et al. (Nishikawa et al., 2006), which includes the ability to plan the 
workspace before the operation begins. This laparoscope robot is a fully autonomous system 
that uses a robot to hold and automatically position the laparoscope instead of a human 
camera assistant. The position of the laparoscope and the image zoom factor to be used 
during surgery are set up just before the surgery by preoperative planning whereby the 
surgeon selects several working area at the operation site, while at the same time 
determining the best image zoom factor (i.e., the distance from the working area to the 
laparoscope tip) for working at this position, and stores this information on a PC. Once the 
operation has started, the robot tracks the surgical instrument in three dimensions so that 
the tip of the surgical instrument remains in the center of the laparoscope image. When the 
tip of the surgical instrument has been positioned at the working area determined during 
preoperative planning, the zoom factor of the laparoscope image is automatically adjusted 
according to the preoperative planning. Figure 11 shows the hardware configuration of the 
laparoscope robot, and Figure 12 shows the control flow. The laparoscope robot consists of a 
manipulator, an optical three-dimensional position-measuring device (Polaris Accedo®, 
made by NDI Corporation), a control PC (Linux-based), a scan converter and a television 
monitor. The manipulator has a parallel link mechanism that uses three motors to perform 
positioning with three degrees of freedom. When the field of view moves to the left or right 
and up or down, the longitudinal position of the laparoscope camera can be adjusted to 
enlarge or reduce the field of view. 
 

 

Fig. 11. Hardware configuration of laparoscope robot 
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Fig. 12. Control flow of laparoscope robot 

5.2 In-vitro tests 
Surgeons were asked to perform in-vitro laparoscopic cholecystectomy simulations on pig 

livers, using either a human camera assistant or a laparoscope robot to operate the 

laparoscope. Before and after each operation, the surgeon’s saliva was sampled and the 

acceleration pulse waveform was measured. The salivary cortisol and salivary α-amylase 

constituents of the saliva were measured. The salivary cortisol was measured by the ELISA 

method using reagents made by Salimetrics, and the salivary α-amylase was measured by 

the Caraway method using reagents made by Wako Pure Chemical Industries Ltd. The 

acceleration pulse waveform was measured using an Artett C acceleration pulse waveform 

meter made by U - Medica Inc. 

For the in-vitro laparoscopic cholecystectomy simulations performed using pig livers, a 

fresh pig liver was placed inside a test box to represent the abdomen, and the surgeon 

performed a mock cholecystectomy (Figure 13). This operation is performed by the 

following procedure: (1) move the field of view to Calot’s triangle, (2) expose and cut the 

cystic duct, (3) detach the gallbladder from the liver (Figure 14). 

The examinees were two right-handed clinicians with extensive experience in laparoscopic 

cholecystectomy simulations (examinees A and B). The examinees had no previous 

experience in the use of laparoscope robots. In total, they performed the operation 14 times 

over a period of four days. The surgeon and laparoscope operator in each operation were as 

follows: 
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Fig. 13. Set-up of tests conducted with a laparoscope robot 
 

 
                            (a)                                                                          (b)                                                

Fig. 14. Laparoscope view. (a) Moving the field of view to Calot’s triangle and 
exposing/cutting the cystic duct. (b) Detaching the gallbladder from the liver 

Day 1 

(1) Surgeon: examinee A, laparoscope operator: laparoscope robot 
(2) Surgeon: examinee A, laparoscope operator: examinee B 
(3) Surgeon: examinee B, laparoscope operator: laparoscope robot 
(4) Surgeon: examinee B, laparoscope operator: examinee A 
In operations (1) and (3), we sampled the surgeon’s saliva before and after the 
operation, and in operations (2) and (4) we sampled the saliva of both the surgeon and 
camera assistant. Acceleration pulse waveform measurements were not performed in 
operation (1). 

Day 2 

(5) Surgeon: examinee A, laparoscope operator: examinee B 
(6) Surgeon: examinee B, laparoscope operator: laparoscope robot 
(7) Surgeon: examinee B, laparoscope operator: examinee A 
(8) Surgeon: examinee A, laparoscope operator: laparoscope robot 

In each operation, saliva samples and acceleration pulse waveform measurements were 
taken from the surgeon. 
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Day 3 

(9) Surgeon: examinee B, laparoscope operator: examinee A 
(10) Surgeon: examinee A, laparoscope operator: laparoscope robot 
(11) Surgeon: examinee A, laparoscope operator: examinee B 
(12) Surgeon: examinee B, laparoscope operator: laparoscope robot 
In operations (9) and (11) we obtained saliva samples and acceleration pulse waveform 
measurements from the camera assistant, and in operations (10) and (9) we obtained 
saliva samples and acceleration pulse waveform measurements from the surgeon. 

Day 4 

(13) Surgeon: examinee B, laparoscope operator: examinee A 
(14) Surgeon: examinee A, laparoscope operator: examinee B 
In the operations performed on day 4, we obtained saliva samples and acceleration 
pulse waveform measurements from the surgeon. 

The above test schedule was planned to take into consideration the circadian rhythm in the 
substances used to evaluate psychological stress. By scheduling operations (1), (5) and (9) at 
the same time of day, it was possible to acquire data at the same time of day for examinee A 
performing the operation with a laparoscope robot and with a human camera assistant, so 
when making a comparative study of the data from each operation, there was no need to 
take into consideration the effects of circadian rhythm in the substances used to evaluate 
psychological stress. Similarly, operations (3), (7) and (11) were performed at the same time 
of day by examinee B, operations (2), (6), (10) and (13) were performed at the same time of 
day by both examinees, and operations (4), (8), (12) and (14) were performed at the same 
time of day by both examinees so that data could be collected in the same way. 
The results of salivary cortisol measurements on examinees A and B before and after 
surgery are shown in Figures 15 and 18, and the results of salivary α-amylase measurements 
are shown in Figures 16 and 19. Since the results of measurements of salivary constituents 
were obtained by taking circadian rhythm of stress evaluation substances into consideration, 
the data was all processed together. Figures 17 and 20 show the results of LF/HF 
measurements from examinees A and B before and after the operations. Note that Figures 15 
through 20 only show the data for the surgeon. The duration of the operations performed by 
examinees A and B are shown in Table 1 as supplementary material. 

 
Fig. 15. Salivary cortisol levels (Examinee A) 
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Fig.16. Salivary α-amylase activity levels (Examinee A) 

 

Fig. 17. LF/HF ratios (Examinee A) 

 

Fig. 18. Salivary cortisol levels (Examinee B) 
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Fig. 19. Salivary α-amylase activity levels (Examinee B) 

 
Fig. 20. LF/HF ratios (Examinee B) 
 

  With Surgical With Camera 

  Assistant System Assistant 

Examinee A Ave. 28’ 13″ 25’ 47″ 
 S.D. 6’  20″ 7’    5″ 
 Max. 34’ 37″ 36’ 13″ 
 Min. 21’ 57″ 21’   5″ 
Examinee B Ave. 20’ 48″ 24’   5″ 
 S.D. 3’  35″ 7’  20″ 
 Max. 24’ 53″ 34’ 25″ 
 Min. 18’   6″ 17’   0″ 

Table 1. Operating times 

We plotted stress variation diagrams based on the results of measuring saliva constituents 
and acceleration pulse waveforms shown in Figures 15 through 20 (Figures 21 and 22). Here, 
the task duration tT was set to 25 minutes, the salivary cortisol reaction time was set to 20 
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Fig. 21. Stress variation diagram for examinee A 

 

Fig. 22. Stress variation diagram for examinee B 
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minutes, and the salivary α-amylase reaction time tA was set to 5 minutes. The task duration 
tT can be taken as the average duration for each task as shown in Table 1. Figure 21 shows 
the stress variation diagrams for examinee A. This Figure shows the stress variation 
measured when using the laparoscope robot and when using a human camera assistant to 
operate the laparoscope. Figure 22 shows the corresponding results for examinee B. The line 
graphs shown in these Figures allow the comparative evaluation to be made between 
surgery with a laparoscope robot and surgery with a human camera assistant. 
First of all we will consider the results for examinee A (Figure 21). Examinee A was not 
stressed before the operation or during the middle stages of the operation, but became 
stressed at the end of the operation. Examinee A was also slightly more stressed when 
performing the operation with a camera assistant than when performing the operation with 
a robot. The same can also be said of the raw data shown in Figures 15 through 17. From the 
salivary cortisol and salivary α-amylase results for examinee A (Figures 15 and 16), 
examinee A had no pronounced stress reaction in either operation. Next, from the LF/HF 
results (Figure 17), examinee A had a greater predominance of sympathetic nerve activity in 
the second half of the operation than in the first half, and tended to be slightly more 
stressed. 
Next we will consider the results for examinee B. As Figure 22 shows, examinee B felt 
stressed before the operation and during the first half of the operation when using the 
laparoscope robot, but this stress reduced during the second half of the operation. On the 
other hand, when performing the operation with a human camera assistant, examinee B was 
not stressed before the operation, but the stress level increased as the operation began and 
there was no reduction of stress during the operation. Looking at the data of Figures 18 
through 20 separately, in the salivary cortisol results for examinee B (Figure 18), a stress 
reaction occurred before the operation when using the laparoscope robot. Also, from the 
salivary α-amylase results (Figure 19), there was a slight stress reaction during all the 
operations, and the largest stress reactions were observed in operations where the 
laparoscope was operated by a camera assistant. When using the laparoscope robot, 
according to the LF/HF results (Figure 20), the sympathetic nerves are predominant around 
the start of the operation and suppressed at the end of the operation. On the other hand, 
when performing surgery using a camera assistant, the sympathetic nerves are more 
predominant at the end of the surgery. In other words, examinee B tended to be more 
stressed (tense or agitated) at the end of the operation than at the start of the operation when 
using a camera assistant, but tended to be more stressed at the start of the operation when 
using a laparoscope robot. 
From the operation times shown in supplementary table 1, the style of operation was found 
to cause no difference in operation times, and we found it impossible to evaluate stress in 
terms of how long the operation took to perform. 
Thus by analyzing saliva constituents and acceleration pulse waveforms, we were able to 
objectively evaluate the stress experienced by surgeons when performing laparoscopic 
surgery with a laparoscope operated by a human camera assistant and with a laparoscope 
operated by a laparoscope robot. 

6. Conclusion 

We have described a method for objectively evaluating the psychological stress experienced 

by people performing a task with a robot for about 25 minutes by analyzing their saliva 
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constituents and acceleration pulse waveforms before and after the task. In particular, in this 

study we investigated an example where highly skilled examinees (surgeons) engaged in 

high-level interaction with a functionally enhanced robot (laparoscope robot) to perform a 

particular task (laparoscopic surgery) in a particular environment (operating theatre). A 

laparoscope robot is a good example of where humans and robots can interact successfully. 

Methods for objectively evaluating the psychological stress of humans due to interactions 

with robots will become increasingly important as robots become more commonplace in 

society. Further research will be needed to investigate stress evaluation methods that are 

simpler, less invasive and cheaper to implement. In the future, we plan to investigate a 

method for using the human herpes virus (HHV6) to evaluate long-term and chronic fatigue 

in surgeons, and to study an integrated stress evaluation method that combines subjective 

and objective stress evaluation methods. 
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