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Chapter

A Probabilistic Interpretation of
Nonlinear Integral Equations
Isamu Dôku

Abstract

We study a probabilistic interpretation of solutions to a class of nonlinear inte-
gral equations. By considering a branching model and defining a star-product, we
construct a tree-based star-product functional as a probabilistic solution of the
integral equation. Although the original integral equation has nothing to do with a
stochastic world, some probabilistic technique enables us not only to relate the
deterministic world with the stochastic one but also to interpret the equation as a
random quantity. By studying mathematical structure of the constructed func-
tional, we prove that the function given by expectation of the functional with
respect to the law of a branching process satisfies the original integral equation.

Keywords: nonlinear integral equation, branching model, tree structure,
star-product, probabilistic solution

AMS classification: Primary 45G10; Secondary 60 J80, 60 J85, 60 J57

1. Introduction

This chapter treats a topic on probabilistic representations of solutions to a
certain class of deterministic nonlinear integral equations. Indeed, this is a short
review article to introduce the star-product functional and a probabilistic construc-
tion of solutions to nonlinear integral equations treated in [1]. The principal parts
for the existence and uniqueness of solutions are taken from [1] with slight modifi-
cation. Since the nonlinear integral equations which we handle are deterministic,
they have nothing to do with random world. Hence, we assume that an integral
formula may hold, which plays an essential role in connecting a deterministic world
with a random one. Once this relationship has been established, we begin with
constructing a branching model and we are able to construct a star-product func-
tional based upon the model. At the end we prove that the function provided by the
expectation of the functional with respect to the law of a branching process in
question solves the original integral equations (see also [2–4]).

More precisely, in this chapter we consider the deterministic nonlinear integral
equation of the type:

eλt xj j2u t; xð Þ ¼ u0 xð Þ þ
λ

2

ðt

0
ds eλs xj j2

ð

p s; x; y; uð Þn x; yð Þdy

þ
λ

2

ðt

0
eλs xj j2 f s; xð Þds:

(1)
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One of the reasons why we are interested in this kind of integral equations
consists in its importance in applicatory fields, especially in mathematical physics.
For instance, in quantum physics or applied mathematics, a variety of differential
equations have been dealt with by many researchers (e.g., [5, 6]), and in most cases,
their integral forms have been discussed more than their differential forms on a
practical basis. There can be found plenty of integral equations similar to Eq. (1)
appearing in mathematical physics.

The purpose of this article is to provide with a quite general method of giving a
probabilistic interpretation to deterministic equations. Any deterministic represen-
tation of the solutions to Eq. (1) has not been known yet in analysis. The main
contents of the study consist in derivation of the probabilistic representation of the
solutions to Eq. (1). Our mathematical model is a kind of generalization of the
integral equations that were treated in [7], and our kernel appearing in Eq. (1) is
given in a more abstract setting. We are aiming at establishment of new probabilis-
tic representations of the solutions.

This paper is organized as follows: In Section 2 we introduce notations which are
used in what follows. In Section 3 principal results are stated, where we refer the
probabilistic representation of the solutions to a class of deterministic nonlinear
integral equations in question. Section 4 deals with branching model and its treelike
structure. Section 5 treats construction of star-product functional based upon those
tree structures of branching model described in the previous section. The proof of
the main theoremwill be stated in Sections 6 and 7. Section 6 provides with the proof
of existence of the probabilistic solutions to the integral equations. We also consider
∗-product functional, which is a sister functional of the star-product functional. This
newly presented functionals play an essential role in governing the behaviors of star-
product functionals via control inequality. Section 7 deals with the proof of unique-
ness for the constructed solutions, in terms of the martingale theory [8].

We think that it would not be enough to derive simply explicit representations
of probabilistic solutions to the equations, but it is extremely important to make use
of the formulae practically in the problem of computations. We hope that our result
shall be a trigger to further development on the study in this direction.

2. Notations

Let D0 ≔R
3 0f g and Rþ ≔ 0;∞½ Þ. For every α, β∈C

3, the symbol α � β means the
inner product, and we define ex ≔ x=∣x∣ for every x∈D0. We consider the following
deterministic nonlinear integral equation:

eλt xj j2u t; xð Þ ¼ u0 xð Þ þ
λ

2

ðt

0
ds eλs xj j2

ð

p s; x; y; uð Þn x; yð Þdy

þ
λ

2

ðt

0
eλs xj j2 f s; xð Þs, for ∀ t; xð Þ∈Rþ �D0:

(2)

Here, u � u t; xð Þ is an unknown function: Rþ �D0 ! C
3, λ.0, and

u0 : D0 ! C
3 are the initial data such that u t; xð Þjt¼0 ¼ u0 xð Þ. Moreover, f t; xð Þ:

Rþ �D0 ! C
3 is a given function satisfying f t; xð Þ= xj j2 ¼: ~f ∈L1

Rþð Þ for each
x∈D0. The integrand p in Eq. (2) is actually given by

p t; x; y; uð Þ ¼ u t; yð Þ � ex u t; x� yð Þ � ex u t; x� yð Þ � exð Þf g: (3)

2
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Suppose that the integral kernel n x; yð Þ is bounded and measurable with respect
to x� y. On the other hand, we consider a Markov kernel K: D0 ! D0 �D0.
Namely, for every z∈D0, Kz x; yð Þ lies in the space P D0 �D0ð Þ of all probability
measures on a product space D0 �D0. When the kernel k is given by

k x; yð Þ ¼ i xj j�2n x; yð Þ, then we define Kz as a Markov kernel satisfying that for any
positive measurable function h ¼ h x; yð Þ on D0 �D0,

ðð

h x; yð ÞKz x; yð Þ ¼

ð

h x; z� xð Þk x; zð Þdx: (4)

Moreover, we assume that for every measurable functions f , g.0 on R
þ,

ð

h jzjð Þν zð Þ

ð

g jxjð ÞKz x; yð Þ ¼

ð

g jzjð Þν zð Þ

ð

h jyjð ÞKz dx;dyð Þ (5)

holds, where the measure ν is given by ν dzð Þ ¼ zj j�3dz.
The equality (Eq. (4)) is not only a simple integral transform formula. In fact, in

the analytical point of view, it merely says that the double integral with respect to
Kz is changed into a single integral with respect to x just after the execution of
iterative integration of h x; yð Þ with respect to the second parameter y. However, our
point here consists in establishing a great bridge between a deterministic world and
a stochastic world. The validity of the assumed equality (Eq. (5)) means that a sort
of symmetry in a wide sense may be posed on our kernel K.

3. Main results

In this section we shall introduce our main results, which assert the existence
and uniqueness of solutions to the nonlinear integral equation. That is to say, we
derive a probabilistic representation of the solutions to Eq. (2) by employing the
star-product functional. As a matter of fact, the solution u t; xð Þ can be expressed as
the expectation of a star-product functional, which is nothing but a probabilistic
solution constructed by making use of the below-mentioned branching particle
systems and branching models. Let

M
u0;fh i
⋆ ωð Þ ¼

Y

⋆ x ~m½ �Ξ
m1
m2:m3

u0; f½ � ωð Þ, (6)

be a probabilistic representation in terms of tree-based star-product functional
with weight u0; fð Þ (see Section 5 for the details of the definition). On the other

hand, M U;Fh i
∗ ωð Þ denotes the associated ∗-product functional with weight U;Fð Þ,

which is indexed by the nodes xmð Þ of a binary tree. Here, we suppose that
U ¼ U xð Þ (resp. F ¼ F t; xð Þ) is a nonnegative measurable function on D0 (resp.

Rþ �D0), respectively, and also that F �; xð Þ∈L1
Rþð Þ for each x. Indeed, in con-

struction of the ∗-product functional, the product in question is taken as ordinary
multiplication ∗ instead of the star-product ★ in the definition of star-product
functional.

Theorem 1. Suppose that ∣u0 xð Þ∣⩽U xð Þ for every x and ∣ ~f t; xð Þ∣⩽F t; xð Þ for every
t, x and also that for some T.0 (T. . 1, sufficiently large)

ET,x M U;Fh i
∗ ωð Þ

� �

<∞, a:e:� x (7)
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holds. Then, there exists a u0; fð Þ-weighted tree-based star ★-product functional

M
u0;fh i
★

ωð Þ, indexed by a set of node labels accordingly to the tree structure which a

binary critical branching process ZKx tð Þ determines. Furthermore, the function

u t; xð Þ ¼ Et,x M
u0;fh i
★

ωð Þ
h i

(8)

gives a unique solution to the integral equation (Eq. (2)). Here, Et,x denotes the

expectation with respect to a probability measure Pt,x as the time-reversed law of ZKx tð Þ.

4. Branching model and its associated treelike structure

In this section we consider a continuous time binary critical branching process

ZKx tð Þ on D0 [9], whose branching rate is given by a parameter λ xj j2, whose
branching mechanism is binary with equiprobability, and whose descendant
branching particle behavior is determined by the kernel Kx (cf. [10]). Next, taking

notice of the tree structure which the process ZKx tð Þ determines, we denote the
space of marked trees

ω ¼ t; tmð Þ; xmð Þ; ηmð Þ;m∈Vð Þ (9)

by Ω (see [11]). We also consider the time-reversed law of ZKx tð Þ being a
probability measure on Ω as Pt,x ∈P Ωð Þ. Here, t denotes the birth time of common
ancestor, and the particle xm dies when ηm ¼ 0, while it generates two descendants
xm1, xm2 when ηm ¼ 1. On the other hand,

V ¼ ⋃
ℓ≥0

1; 2f gℓ

is a set of all labels, namely, finite sequences of symbols with length ℓ, which
describe the whole tree structure given [12]. For ω∈Ω we denote by N ωð Þ the
totality of nodes being the branching points of tree; let Nþ ωð Þ be the set of all nodes
m being a member of V \ N ωð Þ, whose direct predecessor lies in N ωð Þ and which
satisfies the condition tm ωð Þ.0, and let N� ωð Þ be the same set as described above
but satisfying tm ωð Þ⩽0. Finally, we put

N ωð Þ ¼ Nþ ωð Þ∪N� ωð Þ: (10)

5. Star-product functional

This section treats a tree-based star-product functional. First of all, we denote by
the symbol Projz �ð Þ a projection of the objective element onto its orthogonal part of

the z component in C
3, and we define a ★-product of β, γ for z∈D0 as

β★ z½ �γ ¼ �i β � ezð ÞProjz γð Þ: (11)

Notice that this product ★ is noncommutative. This property will be the key
point in defining the star-product functional below, especially as far as the unique-
ness of functional is concerned. We shall define Θm ωð Þ for each ω∈Ω realized as

follows. When m∈Nþ ωð Þ, then Θ
m ωð Þ ¼ ~f tm ωð Þ; xm ωð Þð Þ, while

Θ
m ωð Þ ¼ u0 xm ωð Þð Þ if m∈N� ωð Þ. Then, we define

4
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Ξ
m1
m2:m3

ωð Þ � Ξ
m1
m2,m3

u0; f½ � ωð Þ≔Θ
m2 ωð Þ★ xm1½ �Θ

m3 ωð Þ, (12)

whereas for the product order in the star-product ★, when we write m≺m0

lexicographically with respect to the natural order ≺, the term Θ
m labeled by m

necessarily occupies the left-hand side, and the other Θm0

labeled by m0 occupies the
right-hand side by all means. And besides, as abuse of notation, we write

Ξ
∅
m,∅ ωð Þ � Ξ

∅
m,∅ u0; f½ � ωð Þ≔Θ

m ωð Þ, (13)

especially when m∈V is a label of single terminal point in the restricted tree
structure in question.

Under these circumstances, we consider a random quantity which is obtained by
executing the star-product ★ inductively at each node in N ωð Þ, we call it a tree-
based ★-product functional, and we express it symbolically as

M★
u0;fh i ωð Þ ¼ Π★ x ~m½ �Ξ

m1
m2�m3

u0; f½ � ωð Þ, (14)

where m1 ∈N ωð Þ and m2, m3 ∈N ωð Þ, and by the symbol
Q

★ (as a product
relative to the star-product), we mean that the star-products ★’s should be
succeedingly executed in a lexicographical manner with respect to x ~m such that
~m ∈N ωð Þ∩ j ~mj ¼ ℓ� 1gf when ∣m1∣ ¼ ℓ. At any rate it is of the extreme importance
that once a branching pattern ω ∈Ωð Þ is realized, its tree structure is uniquely
determined, and there can be found the unique explicit representation of the

corresponding star-product functional M
u0;fh i
★

ωð Þ.
Example 2. Let us consider a typical realization ω∈Ω. Suppose that we have

N ω2ð Þ ¼ ϕ; 1; 2; 11; 12; 22f g, Nþ ω2ð Þ ¼ 21; 112; 221f g, and
N� ω2ð Þ ¼ 111; 121; 122; 222f g. This case is nothing but an all-the-members partici-
pating type of game. For the case of particle located at x111 and x112 (with nodes of
the level ∣m∣ ¼ ℓ ¼ 3) with its pivoting node x11, we have

Ξ
11
111;112 ω2ð Þ ¼ Θ

111 ω2ð Þ★ x11½ �Θ
112 ω2ð Þ

¼ u0 x111 ω2ð Þð Þ★ x11½ �
~f t112 ω2ð Þ; x112 ω2ð Þð Þ:

Similarly, for the pair of particles x121 and x122, we have

Ξ
12
121;122 ω2ð Þ ¼ Θ

121 ω2ð Þ★ x12½ �Θ
122 ω2ð Þ

¼ u0 x121 ω2ð Þð Þ★ x12½ �u0 x122 ω2ð Þð Þ:

For the pair of particles x221 and x222, we also have

Ξ
22
221;222 ω2ð Þ ¼ Θ

221 ω2ð Þ★ x22½ �Θ
222 ω2ð Þ

¼ ~f t221 ω2ð Þ; x221 ω2ð Þð Þ★ x22½ �u0 x222 ω2ð Þð Þ:

Next, when we take a look at the groups of particles with nodes of the level
∣m∣ ¼ ℓ ¼ 2. For instance, as to a pair of particles located at x11 and x12 with its
pivoting node x1, we get an expression

Ξ
1
11,12 ω2ð Þ ¼ Θ

11 ω2ð Þ★ x1½ �Θ
12 ω2ð Þ

¼ Ξ
11
111;112 ω2ð Þ★ x1½ �Ξ

12
121;122 ω2ð Þ

¼ u0 x111ð Þ★ x11½ �
~f ðt112; x112Þ

� �

★ x1½ � u0 x121ð Þ★ x12½ �u0 x122ð Þ
� �

:
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Therefore, it follows by a similar argument that the explicit representation of
star-product functional for ω2 is given by

M
u0;fh i
★

ω2ð Þ ¼ u0 x111ð Þ★ x11½ �
~f ðt112; x112Þ

� �

★ x1½ � u0 x121ð Þ★ x12½ �u0 x122ð Þ
� �

n o

★ xϕ½ �
~f t21; x21ð Þ★ x2½ � u0 x221ð Þ★ x22½ �u0 x222ð Þ

� �

n o

6. The ∗-product functional and existence

In this section we first begin with constructing a U;Fð Þ-weighted tree-based
∗-product functional M U;Fh i

∗ ωð Þ, which is indexed by the nodes xmð Þ of a binary tree.
Recall that U ¼ U xð Þ (resp. F ¼ F t; xð Þ) is a nonnegative measurable function on D0

(resp. Rþ �D0), respectively, and also that F �; xð Þ∈L1
Rþð Þ for each x. Moreover, in

construction of the functional, the product is taken as ordinary multiplication ∗

instead of the star-product ★.
In what follows we shall give an outline of the existence in Theorem 1. We need

the following lemma, which is essentially important for the proof.

Lemma 3. For 0⩽ t⩽T and x∈D0, the function V t; xð Þ ¼ Et,x M U;Fh i
∗ ωð Þ

� �

satisfies

eλt xj j2V t; xð Þ ¼ U xð Þ þ
Ð t
0 ds

xj j2

2
eλs xj j2 F s; xð Þ þ

ð

V s; yð ÞVðs; zÞKxðdy; zÞ

�

:

	

(15)

Proof of Lemma 3. By making use of the conditional expectation, we may
decompose V t; xð Þ as follows:

V t; xð Þ ¼ Et,x MU,F
∗ ωð Þ

� �

¼ Et,x M U;Fh i
∗ ωð Þ; tϕ ⩽0

� �

þ Et,x M U;Fh i
∗ ωð Þ; tϕ.0

� �

¼ Et,x MU,F
∗ ωð Þ; tϕ ⩽0

� �

þ Et,x M U;Fh i
∗ ωð Þ; tϕ.0; ηϕ ¼ 0

� �

þ Et,x M U;Fh i
∗ ωð Þ; tϕ.0; ηϕ ¼ 1

� �

:

(16)

We are next going to take into consideration an equivalence between the events
tϕ ⩽0 and T∉ 0; t½ �. Indeed, as to the first term in the third line of Eq. (16), since the
condition tϕ ⩽0 implies that T never lies in an interval 0; t½ �, and since
m ¼ ϕ∈N� ωð Þ leads to a nonrandom expression

M∗ ¼ Θ
ϕ ¼ U xð Þ,

the tree-based ∗-product functional is allowed to possess a simple representation:

Et,x M U;Fh i
∗ ; tϕ ⩽0

� �

¼ Et,x M U;Fh i
∗ � 1 tϕ ⩽ ⩽0f g

h i

¼ U xð Þ � Pt,x tϕ ⩽0
� �

¼ U xð Þ � P T∉ 0; t½ �ð Þ ¼ U xð Þ � P T ∈ t;∞ð Þð Þ

¼ U xð Þ

ð∞

t
f T sð Þds ¼ U xð Þ

ð∞

t
λ xj j2e�λs xj j2ds

¼ U xð Þ � exp �λt xj j2
n o

:

(17)

As to the third term, we need to note the following matters. A particle generates
two offsprings or descendants x1, x2 with probability 1

2 under the condition ηϕ ¼ 1;

since tϕ.0, when the branching occurs at tϕ ¼ s, then, under the conditioning

6
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operation at tϕ, the Markov property [13] guarantees that the lower tree structure
below the first-generation branching node point x1 is independent to that below the
location x2 with realized ω∈Ω; hence, a tree-based ∗-product functional branched
after time s is also probabilistically independent of the other tree-based ∗-product
functional branched after time s, and besides the distributions of x1 and x2 are
totally controlled by the Markov kernel Kx. Therefore, an easy computation pro-
vides with an impressive expression:

Et,x M U;Fh i
∗ ; tϕ.0; ηϕ ¼ 1

� �

¼
1

2

ðt

0
dsλ xj j2e�λ xj j2 t�sð Þ�

�
ÐÐ

Es,x1 M∗½ � � Es,x2 M∗½ �Kx dx1;dx2ð Þ:

Note that as for the second term, it goes almost similarly as the computation of
the above-mentioned third one. Finally, summing up we obtain

V t; xð Þ ¼ Et,x M U;Fh i
∗ ωð Þ

� �

¼ U xð Þr�λt xj j2 þ
Ð t
0

λ xj j2

2
e�λ xj j2 t�sð ÞF s; xð Þd s

þ
Ð t
0

λ xj j2

2
e�λ xj j2 t�sð Þ

ðð

V s; yð ÞV s; zð ÞKx dy; dzð Þds:

(18)

On this account, if we multiply both sides of Eq. (18) by exp λt xj j2
n o

, then the

required expression Eq. (15) in Lemma 3 can be derived, which completes the
proof. □

By a glance at the expression Eq. (15) obtained in Lemma 3, it is quite obvious

that, for each x∈D0, the mapping 0;T½ �∍t↦eλ xj j2tV t; xð Þ∈Rþ is a nondecreasing
function. Taking the above fact into consideration, we can deduce with ease that

Et,x M U;Fh i
∗ ωð Þ

� �

<∞ (19)

holds for ∀t∈ 0;T½ � and x∈Ec, where the measurable set Ec denotes the totality

of all the elements x in D0 such that ET,x M U;Fh i
∗

� �

<∞ holds for a.e.‐x, namely, it is
the same condition Eq. (7) appearing in the assertion of Theorem 1. Another
important aspect for the proof consists in establishment of the M∗-control
inequality, which is a basic property of the star-product ★. That is to say, we have.

Lemma 4. (M∗-control inequality) The following inequality

∣M
u0;fh i
★

ωð Þ∣⩽M U;Fh i
∗ ωð Þ: (20)

holds Pt,x-a.s.
This inequality enables us to govern the behavior of the star-product functional

with a very complicated structure by that of the ∗-product functional with a rather
simplified structure. In fact, the M∗-control inequality yields immediately from a
simple fact:

∣w★ x½ �v∣⩽ ∣w∣ � ∣v∣ for every w, v∈C
3 and every x∈D0:

Next, we are going to derive the space of solutions to Eq. (2). If we define

u t; xð Þ≔
Et,x M

u0;fh i
⋆ ωð Þ

h i

, on Ec,

0, otherwise,

(
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then u t; xð Þ is well defined on the whole space D0 under the assumptions of the
main theorem (Theorem 1). Moreover, it follows from the M∗-control inequality
(Eq. (20)) that

∣u t; xð Þ∣⩽V t; xð Þ on 0;T½ � �D0: (21)

On this account, from Eq. (15) in Lemma 3, by finiteness of the expectation of

tree-based ∗-product functional M U;Fh i
∗ ωð Þ, by the M∗-control inequality, and from

Eq. (21), it is easy to see that

ðT

0
ds

ð

∣u s; yð Þ∣ � ∣u s; zð Þ∣Kx dy;dzð Þ <∞ for x∈Ec: (22)

Hence, taking Eq. (22) into consideration, we define the space D of solutions to
Eq. (2) as follows:

D≔



φ : Rþ �D0 ! C
3; φ is continuous in t

and measurable such that
Ð∞
0 ds

Ð

eλ xj j2s∣φ s; yð Þ∣ � ∣ s; zð Þ∣Kx dy;dzð Þ <∞

holdsa:e:� x
�

(23)

By employing the Markov property [13] with respect to time tϕ and by a similar
technique as in the proof of Lemma 3, we may proceed in rewriting and calculating
the expectation for ∀t.0 and x∈Ec:

u t; xð Þ ¼ Et,x M
u0;fh i
★

ωð Þ
h i

¼ Et,x M
u0;fh i
★

ωð Þ; tϕ ⩽0
h i

þ Et,x M
u0;fh i
★

ωð Þ tϕ.0
h i

¼ Et,x M
u0;fh i
★

ωð Þ; tϕ ⩽0
h i

þ Et,x M
u0;fh i
★

ωð Þ tϕ.0; ηϕ ¼ 0
h i

þ Et,x M
u0;fh i
★

ωð Þ tϕ.0 ηϕ ¼ 1
h i

¼ e�t xj j2u0 xð Þ þ
Ð t
0 s xj j2e� t�sð Þ xj j2

�
1

2
~f s; xð Þ þ

ðð

Es,x1 M★½ �★ x½ �Es,x2 M★½ �Kxðdx1;dx2Þ

	 �

:

(24)

Furthermore, we may apply the integral equality Eq. (4) in the assumption on
the Markov kernel for Eq. (24) to obtain

Et,x M
u0;fh i
★

ωð Þ
h i

¼ e�λt xj j2u0 xð Þ þ

ðt

0
dsλ xj j2e�λ t�sð Þ xj j2

�
1

2
~f s; xð Þ þ

ðð

Es,x1 M★½ �★ x½ �Es,x2 M★½ �Kxðdx1;dx2Þ

	 �

¼ e�λt xj j2u0 xð Þ þ

ðt

0
ds λ xj j2e�λ t�sð Þ xj j2

�
1

2
~f s; xð Þ þ

ðð

uðs; yÞ★ x½ �uðs; zÞKxðdy;dzÞ

	 �

¼ e�λt xj j2 u0 xð Þ þ
λ

2

ðt

0
eλs xj j2 f ðs; xÞds þ

λ

2

ðt

0
ds

ð

eλs xj j2p s; x; y; uð Þnðx; yÞdy

�

,

	

(25)

8
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because in the above last equality we need to rewrite its double integral
relative to the space parameters into a single integral. Finally, we attain that

u t; xð Þ ¼ Et,x M
u0;fh i
★

ωð Þ
h i

satisfies the integral equation Eq. (2), and this u t; xð Þ is a

solution lying in the space D. This completes the proof of the existence.

7. Uniqueness

First of all, note that we can choose a proper measurable subset F0 ⊂D0 with

m Fc
0

� �

¼ m D0 \ F0ð Þ ¼ 0 (meaning that its complement Fc
0 is a null set with respect

to Lebesgue measure m xð Þ), such that

Et,x M U;Fh i
∗ ωð Þ

� �

<∞ on F0 (26)

and

ðT

0
d s

ðð

eλ xj j2s∣u s; yð Þ∣ � ∣u s; zð Þ∣Kx dy;dzð Þ, for ∀T.0,

is convergent for a.e.-x ∈ F0ð Þ, and u t; xð Þ satisfies the nonlinear integral equa-
tion (Eq. (2)) for a.e.‐x∈ F0. Suggested by the argument in [7], we adopt here a
martingale method in order to prove the uniqueness of the solutions to Eq. (2). The
leading philosophy for the proof of uniqueness consists in extraction of the martin-
gale part from the realized tree structure and in representation of the solution u in
terms of martingale language. In so doing, we need to construct a martingale term
from the given functional and to settle down the required σ-algebra with respect to
which its constructed term may become a martingale. Let Ωþ be the set of all the
elements ω's corresponding to time tm ωð Þ.0 for the label m. Next, we consider a
kind of the notion like n-section of the set of labels for n∈N0 ≔N∪ 0f g. We define
several families of Ω in what follows, in order to facilitate the extraction of its

martingale part from our star-product functional M
u0;fh i
★

ωð Þ. For each realized tree

ω, ~N n ωð Þ is the totality of the labels

m∈ ⋃
0⩽ℓ⩽ n

1; 2f gℓ

satisfying tm ωð Þ.0 and ηm ωð Þ ¼ 1. Namely, this family ~N n ωð Þ is a subset of
labels restricted up to the nth generation and limited to the nodes related to

branching at positive time. Moreover, let ~Nn ωð Þ be the set of labels lying in

N \ ~N n ωð Þ whose direct predecessor belongs to ~N n ωð Þ. By convention, we define
~Nn ωð Þ ¼ ∅f g if ~N n ωð Þ ¼ ∅. We shall introduce a new family ~N

cut

n ωð Þ of cutoff
labels, which is determined by the set of labels m∈V whose direct predecessor

belongs to ~N n ωð Þ and has length ∣m∣ ¼ n, and we call this family ~N
cut

n ωð Þ the cutoff

part of ~Nn ωð Þ, while �Nnnct ωð Þ is the non-cutoff part of ~Nn ωð Þ, which is defined by

�Nnnct ωð Þ≔ ~Nn ωð Þ \  ~N
cut

n ωð Þ: (27)

We are now in a position to introduce a new class M
n, u0;f ;uh i
★

ωð Þ of ★-product
functional, which should be called the n-section of the star-product functional. In
fact, by taking the above argument in Example 2 into account, we can define its
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n-section as follows. In fact, if the label m is a member of the cutoff family ~N
cut

n ωð Þ,

the input data of the functional attached tom is given by u tp mð Þ ωð Þ; xm ωð Þ
� �

instead of

the usual initial data u0 xm ωð Þð Þ or ~f tm ωð Þ; xm ωð Þð Þ, where p mð Þ indicates the direct
ancestorm0 ofm having length n. On the other hand, ifm lies in the non-cutoff family
�Nnnct ωð Þ, then the input data of the functional attached to m is completely the same

as before with no change, that is, we use u0 xmð Þ if tm ⩽0 and use ~f tm; xmð Þ if tm.0.

In such a way, we can construct a new★-product functionalM
n, u0;f ;uh i
★

ωð Þ by the
almost sure procedure, and we call it the n-section★-product functional. Similarly,

we can also define the corresponding n-section★-product functionalMn, U;F;Vh i
∗ ωð Þ.

Simply enough, to get the ∗-product counterpart, we have only to replace those

functions u0,~f and u by U, F and V in the definition of★-product functional. As
easily imagined, we can also derive an n-section version ofMn

∗-control inequality:
Lemma 5. (Mn

∗-control inequality) The following inequality

∣M
n, u0;f ;uh i
★

ωð Þ∣⩽Mn, U;F;Vh i
∗ ωð Þ (28)

holds Pt,x-a.s.
because of the domination property: ∣u t; xð Þ∣⩽V t; xð Þ for 0;T½ � �D0,

∣u0 xð Þ∣⩽U xð Þ for ∀x, ∣~f t; xð Þ∣⩽F t; xð Þ for ∀t, x, and a simple inequality

∣w★ x½ �v∣⩽ ∣w∣ � ∣v∣ for ∀w, v∈C
3 and ∀x∈D0.

Let us now introduce a filtration F nf g for n∈N0 on Ωþ, according to the
discussion in Example 2. As a matter of fact, we define

F n ≔ σ ~N n ωð Þ; tm; xmð Þ;m∈ ~N n ωð Þ∪ �N
nct

n ωð Þ; ηmð Þ;m∈ ~N
cut

n
ωð Þ

� �

(29)

for each n∈N0. Notice that ~N n ωð Þ itself determines the other two families
~N

cut

n ωð Þ and �Nnnct ωð Þ. Then, it is readily observed that both functionals

M
n, u0;f ;uh i
★

ωð Þ and Mn, U;F;Vh i
∗ ωð Þ are F n-adapted.

Lemma 6. For each n∈N0, the equality

Mn, U;F;Vh i
∗ ωð Þ ¼ Et,x M U;Fh i

∗ ωð ÞjF n

� �

(30)

holds Pt,x-a.s. for every t∈ 0;T½ � and every x∈F0.
Proof. By its construction, we can conclude the equality of Eq. (30) from the

strong Markov property [13] applied at times tmð Þs for m∈V of length n on the set

m∈ ~N n ωð Þ
n o

∈ Fn. □

Moreover, an application of Lemma 6 with the n-section Mn
∗-control inequality

(Eq. (28)) shows the Pt,x-integrability of M
n, u0;f ;uh i
★

ωð Þ for every t∈ 0;T½ � and every
x∈F0. Actually, it proves to be true that a martingale part, in question, extracted by
the star-product functional relative to those n-section families, is given by the n-

section ★-product functional M
n, u0;f ;uh i
★

ωð Þ.

Lemma 7. The n-section M
n, u0;f ;uh i
★

ωð Þ of ★-product functional with weight
functions u0 and f is an F nf g-martingale [8].

Proof. When we set ¼ Et,x Mn
★

ωð ÞjFn

� �

, then ξn turns out to be a F nf g-
martingale, since

Et,x ξnjFn�1½ � ¼ Et,x Et,x Mn
★
jFn

� �

Fn�1j � ¼ Et,x Mn
★

� �

�

n�1

h i

¼ ξn�1
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by virtue of the inclusion property of the σ-algebras. Consequently, it suffices to
show that

Et,x M
u0;fh i
★

ωð ÞjFn

h i

¼ M
n, u0;f ;uh i
★

ωð Þ (31)

holds a.s. By employing the representation formula (Eq. (8)), an conditioning
argument leads to Eq. (31), because the establishment is verified by the Markov

property applied at tm and on the event m∈ ~N ng
n

being Fn-measurable. □

Finally, the uniqueness yields from the following assertion.
Proposition 8.When u t; xð Þ is a solution to the nonlinear integral equation (Eq. (2)),

then we have

u t; xð Þ ¼ Et,x M
u0;fh i
★

ωð Þ
h i

(32)

holds for every t∈ 0;T½ � and for a.e.‐x.
Proof. Our proof is technically due to a martingale method. We need the follow-

ing lemma.

Lemma 9. Let M
n, u0;f ;uh i
★

ωð Þ be the n-section of ★-product functional, and let u t; xð Þ

be a solution of the nonlinear integral equation (Eq. (2)). Then, we have the following
identity: for each n∈N0

u t; xð Þ ¼ Et,x M
n, u0;f ;uh i
★

ωð Þ
h i

(33)

holds for every t 0⩽ t⩽Tð Þ and every x∈F0.

Proof of Lemma 9. Recall that M
n, u0;f ;uh i
★

ωð Þ is a martingale relative to Fnf g. For
n ¼ 0, it follows from the identity (Eq. (31)) and by the martingale property that

Et,x M
0, u0;f ;uh i
★

ωð Þ
h i

¼ Et,x Et,x M
u0;fh i
★

ωð ÞjF0

h ih i

¼ Et,x M
u0;fh i
★

ωð Þ
h i

¼ u t; xð Þ:
(34)

Next, for the case n ¼ 1, by the same reason, we can get

Et,x M
1, u0;f ;uh i
★

ωð Þ
h i

¼ Et,x Et,x M
u0;fh i
★

ωð ÞjF 1

h ih i

¼ Et,x M
u0;fh i
★

ωð Þ
h i

¼ u t; xð Þ:
(35)

We resort to the mathematical induction with respect to n∈N0. If we assume
the identity (Eq. (33)) for the case of n, then the case of nþ 1 reads at once

Et,x M
nþ1, u0;f ;uh i
★

ωð Þ
h i

¼ Et,x Et,x M
nþ1, u0;f ;uh i
★

ωð ÞjF n

h ih i

¼ Et,x M
n, u0;f ;uh i
★

ωð Þ
h i

¼ u t; xð Þ,
(36)

where we made use of the martingale property in the first equality and
employed the hypothesis of induction in the last identity. This concludes the
assertion. □
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To go back to the proof of Proposition 8. We define an Fn-measurable event An

as the set of ω∈Ωþ such that ~N n ωð Þ contains some label m of length n. From the
definition, it holds immediately that

M
u0;fh i
★

ωð Þ ¼ M
n, u0;f ;uh i
★

ωð Þ on Ωþ An: (37)

Hence, for every x∈ F0 and 0⩽ t⩽T and ∀n∈N0, we may apply Lemma 9 for
the expression below with the identity (Eq. (31)) to obtain

∣u t; xð Þ � Et,x M
u0;fh i
★

ωð Þ
h i

∣

¼ ∣Et,x M
n, u0;f ;uh i
★

ωð Þ
h i

� Et,x M
u0;fh i
★

ωð Þ
h i

∣

⩽ ∣Et,x M
n, u0;f ;uh i
★

ωð Þ �M
u0;fh i
★

ωð Þ;An

h i

∣

þ∣Et,x M
n, u0;f ;uh i
★

ωð Þ �M
u0;fh i
★

ωð Þ;Ac
n

h i

∣

¼ ∣Et,x M
n, u0;f ;uh i
★

ωð Þ �M
u0;fh i
★

ωð Þ
� �

� 1An

h i

∣

(38)

where the symbol Et,x X ωð Þ;A½ � denotes the integral of X ωð Þ over a measurable
event A with respect to the probability measure Pt,x dωð Þ, namely,

Et,x X ωð Þ;A½ � ¼ Et,x X ωð Þ � 1A½ � ¼

ð

A

X ωð ÞPt,x dωð Þ:

Furthermore, we continue computing

38ð Þ⩽ ∣Et,x M
n, u0;f ;uh i
★

ωð Þ1An

h i

∣þ ∣Et,x M
u0;fh i
★

ωð Þ1An

h i

∣

¼ ∣Et,x Et,x M
u0;fh i
★

ωð ÞjFn

h i

1An

h i

∣þ ∣Et,x M
u0;fh i
★

ωð Þ1An

h i

∣

¼ 2∣Et,x M
u0;fh i
★

ωð Þ1An

h i

∣:

(39)

Since ∩nAn ¼ ∅ by the binary critical tree structure [12], and since we have an
natural estimate

∣M
u0;fh i
★

ωð Þ1An
ωð Þ∣ <M U;Fh i

★
ωð Þ, a:s:

and lim
n!∞

M
u0;fh i
★

ωð Þ1An
ωð Þ ¼ 0, a:s:

(40)

it follows by the bounded convergence theorem of Lebesgue that

lim
n!∞

∣Et,x M
u0;fh i
★

ωð Þ1An

h i

∣ ¼ 0: (41)

Consequently, from Eq. (39) and Eq. (41), we readily obtain

∣u t; xð Þ � Et,x M
u0;fh i
★

ωð Þ
h i

∣ ! 0 as n ! ∞ð Þ (42)

holds for every t; xð Þ∈ 0;T½ � � F0. Thus, we attain that u t; xð Þ ¼ Et,x M
u0;fh i
★

ωð Þ
h i

,

a.e.‐x∈F0. This finishes the proof of Proposition 8. □

Concurrently, this completes the proof of the uniqueness.
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