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Chapter

Remote Computing Cluster for the
Optimization of Preventive
Maintenance Strategies: Models
and Algorithms
Aleksandr Kirillov, Sergey Kirillov, Vitaliy Iakimkin

and Michael Pecht

Abstract

The chapter describes a mathematical model of the early prognosis of the state
of high-complexity mechanisms. Based on the model, systems of recognizing
automata are constructed, which are a set of interacting modified Turing machines.
The purposes of the recognizing automata system are to calculate the predictors of
the sensor signals (such as vibration sensors) and predict the evolution of hidden
predictors of dysfunction in the work of the mechanism, leading in the future to the
development of faults of mechanism. Hidden predictors are determined from the
analysis of the internal states of the recognizing automata obtained from wavelet
decompositions of time series of sensor signals. The results obtained are the basis
for optimizing the maintenance strategies. Such strategies are chosen from the
classes of solutions to management problems. Models and algorithms for
self-maintenance and self-recovery systems are discussed.

Keywords: turing machine, maintenance optimization, preventive maintenance,
remaining useful life, remote calculating cluster

1. Introduction

This chapter describes a mathematical model that allows to unify the multipli-
city of approaches to the creation of intelligent maintenance systems on the one
hand and also allows more to accurately formalize and then algorithmize the
optimization tasks of maintenance strategies.

Consideration of problems in the management of maintenance is useful to begin
with the formalization of the basic tasks of PHM. The main trend of today is the
development of prognostics and health management (PHM) in the sequence
condition-based maintenance (CBM)-predictive maintenance (PdM) [1]. This
concept may be called “CBM +” or “proactive management of materials degrada-
tion,” and then on the horizon, there are new concepts, bearing a semantic load, in
particular self-maintenance and self-recovery systems. However, all these concepts
need further formalization (mathematical). It should also be noted that the effec-
tiveness of any maintenance strategy depends on how reliably the PHM system is
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able to predict the state of technical objects of high complexity. Construction of the
effective maintenance strategies is possible on the basis of a reliable prognosis.

Let us dwell in more detail on this question. Any prognostic system is based on
the statistical processing of the signals received by sensors mounted on the technical
objects. This can be a variety of vibration sensors, sensors of pressure, and
measurement of currents and voltages. In this chapter, we will appeal to the
examples of prognosis of the technical state of rotating machinery and the recipro-
cating action mechanisms, demonstrating the commonality of models.

Also, the chapter will pay attention to medical applications, in particular, to
remote cardiac monitoring systems. Here, the task of the prognosis consists of three
sub-tasks: a prognosis of the state of the heart on the basis of wearable or implanted
in the body-miniaturized ECG recorders; construction of the management model of
the heart state with the help of variable parameters of implantable devices in the
human body, such as ICD and CRT devices; and prognosis and estimation of the
remaining useful life (RUL) of the implanted devices [2, 3]. It should be noted
that not only statistical methods are the basis of the prognosis, but also, more
importantly, in this basis, physical models of the monitored object and its
subsystems should be contained. Ultimately, we are talking about digital counter-
parts, that is, accounting for all components and processes occurring in a working
device is necessary.

Thus, there is a task of prognosis of the technical state of the object and a time
estimation under the general name remaining useful life (RUL). The prognosis of
the technical condition and RUL estimation are the bases for constructing cost-
effective maintenance strategies.

It is on the basis of the prognosis and RUL estimates is possible formalization of
the task of determining the cost-effective maintenance strategies, taking into
account the conditions of goal setting. Goal setting involves taking into account the
requirements for the technology and determining the ultimate goal of its operation.
For example, in monitoring vehicles, extending the time of operation with a
minimum change in operating parameters, for example, the engine and its
subsystems, is a natural requirement that determines the strategy for calculating
optimal operating conditions. Obviously, the calculated strategy is unsatisfactory
for military applications, since it will explicitly prohibit operation with violation of
optimal speed regimes and all kinds of extreme exploitation. When calculating
maintenance strategies for military systems, the goal setting conditions change,
where the determining strategy is the delivery of one’s own weapons to a given
point of space at any cost, taking into account the impact of enemy-striking factors.

The noted condition directly points to the fact that a maintenance strategy with
necessity must be determined in a number of cases in real-time conditions, while
the goal setting itself will change during operation. The transition to earlier predic-
tion methods that can be called the diagnosis or prognosis of the root causes, hidden
predictors of prognosis, etc. creates the conditions to search for more effective
maintenance strategies. And, finally, the creation of self-maintenance and
self-recovery systems requires the presence of a physical model of processes,
within which functional dependencies between the parameters of management of
process and its state are determined.

2. Basis

For precise algorithmized formulations of optimization tasks for maintenance
strategies, mathematically rigorous formalizations of the basic concepts of predic-
tion tasks and tasks of management of the state of technical object are necessary.

2

Maintenance Management



We will assume that the system is equipped with all the necessary sensors, register-
ing the vibration of the engine housing, the sensors of the angle of rotation of the
shaft or crankshaft, pressure sensors in high-pressure fuel lines and other necessary
sensors, most of which are included in the system of traditional onboard diagnostics
or control systems. It also means the possibility of transmitting sensor signals (time
series) to a remote computing cluster.

Further input to the computing cluster signals or time series is presented in the
form of their wavelet coefficients. The fixation of all indices of the wavelet coeffi-
cients except for the quasi-period index, that is, the current number of the cycle of
turbine engine, etc., determines the so-called cascades. The entire set of cascades is
considered. Their number is equal to the number of wavelet coefficients of the
decomposition of the time series multiplied by the number of sensors from which
signals are received. A set of finite segments of fixed cascade defines a state vector
in its sequence. The evolution of the state vector at successive change of segments
determines the vector of trajectory. The multi-trajectory is determined by the
vector of trajectories of all cascades, that is, a set of state vectors determines the
multistate or state of the entire system.

The first prognosis problem is reduced to the definition of the evolution equa-
tions describing the evolution of the state vector.

Depending on the properties of the process, these equations are known in the
sections of nonequilibrium thermodynamics called the “basic kinetic equation.” The
basic kinetic equation is reduced depending on the properties of the cascade
(stationarity, ergodicity, nonstationarity, Markovity, non-Markovity, etc.) and
reduces to equations such as the Fokker-Planck equation, the Schrodinger equation,
the balance equation, to single-step processes, etc. [4, 5].

The prognosis task is formulated as a definition of the probability of a transition
from the initial state vector to the final one and preassigned [6, 7], for example,
preassigned on the boundary of the failure region, on the boundary of the region of
the nucleation of failure predictor, or on the boundary of failure predictors. The
development or evolution of predictors or hidden predictors is also described by
evolutionary equations of the type listed above. Thus, there is a set of trajectories or
multi-trajectories of sequences of states of the system. Further formalization
requires the classification of trajectories in order to determine the trajectories lead-
ing to the boundaries of failure. The boundaries between classes of different trajec-
tories may not be physically observable. However, these boundaries affect the
trajectories, changing their characteristics. For example, in the case of interpreting
a trajectory as a random walk in a multidimensional lattice or its continual
counterpart, the evolution equations themselves and, consequently, the RUL
estimates change.

Thus, there arises the problem of classifying a set of physically feasible trajecto-
ries or the task of representing trajectories in the form of a set of classes and the task
of describing the boundaries between classes. Separation of the set of trajectories
into classes is a rather ambiguous task, and often there are problems with changing
the classification when changing the types of processes. However, it follows from
the constructed model that the separation of trajectories into classes is related to the
transformation of the topological characteristics of the state space and trajectory
spaces.

In the case under consideration, each class is characterized by its own group of
symmetries of the probability density of transitions between vectors and/or the
group of symmetries of the generating functional. Factorization of the symmetry
group by the isotropy subgroup, leaving the vector state in place, generates a
homogeneous space [8]. It is in this space that the vector process wanders. In the
process of operation of the mechanism and degradation of the material, the
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topology of the homogeneous space is changed; this change generates the boundary
between classes.

Let us return to the tasks of management. In the concepts defined above, the
task of management is formalized as follows in which variations of the controlled
parameters preserve the trajectory of the states of the system in the given class for
as long as possible. The following formulation concerns the estimates of RUL as an
estimate of the time to reach the class boundary when the controlled parameters are
varied. When crossing class boundaries, the task of evaluating the RUL and maxi-
mizing the time of stay in the class is solved again. In this case, the evolution
equations change.

The model described above makes it possible to formalize the problem of finding
optimal maintenance strategies as a task of determining control parameters or more
precisely determining the range of admissible control parameters under which the
trajectory is kept as long as possible in a given class.

3. Model

The search of a way to formalize maintenance management tasks and building
models and algorithms for searching for optimizing strategies is useful to start with
the formalization of the management process in an extremely general setting. The
approach presented here is rather complicated, but it is useful for the development
of further formalizations and construction of algorithms.

To do this, we will present the task of managing, using the following definitions.
Let the considered technical object have in its arsenal several parameters, the varia-
tion of which affects the state of the mechanism, changing all the permissible modes
of its operation. More precisely, the variation of the control parameters allows the
mechanism to be switched from one operating mode to another physically accept-
able mode. Next, consider some abstract mathematical space; often, these are

certain subsets of a multidimensional space RN
∗

. Further constructions show that

these subsets of space RN
∗

are topological manifolds with a complex topology.
Each point of such space determines the state of the mechanism at a fixed time;

the sequence of states defines a trajectory in the state space. We also accept, as an
empirically understandable assumption, that when the control parameters are
varied, the continuous trajectories change in the same way without discontinuities.
That is, a small perturbation of the parameters also causes a slight perturbation of
the trajectory; in other words, for small perturbations the new trajectory is in some
sense close to the original trajectory.

As a result, a continuous mapping from the parameter space to the state space is
determined. Figure 1 demonstrates the mapping of the management loop Ω,
consisting of two management parameters to the state space. It is assumed that all
values of the parameters inside the circuit are physically realizable. When mapping
the management interval I ¼ λif g≝ 0; 1½ �, the path is formed from the initial to the
final state in the state space. As a result, at the change of parameters and with
changes in the state of the mechanism during operation, many paths are generated.
The set of paths in the state space X defines a new space [9], designated as ΩX—the
loop space of space X. In this case, the next parameter determines already the
mapping of the management interval:

I ! ΩX (1)

thus defining a twofold loop space Ω2
X in the space X.
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Ω
2
X≝Ω ΩXð Þ (2)

Ω
k
X≝Ω

k�1
ΩXð Þ (3)

Further presentation will require some information from algebraic topology,
more precisely the homotopy theory. In view of the complexity of mathematical
constructions, one must sacrifice a mathematically rigorous exposition in favor of
simplification and clarity. Thus, the above arguments necessarily lead to an analysis
of the set of paths ΩX in the state space X defined by the mapping Eq. (1) for one
management parameter. With an increasing number of parameters, the path space
is generated in the path space of the previous parameter Eq. (3), and so on with the
growth of the number of control parameters. As a result, taking into account all
control parameters leads to consideration of the k-fold space of paths, more pre-
cisely to the k-fold loop space [9].

Returning to the basic concepts of homotopy theory, it should be noted that the
methods mentioned here were used in the 1970s in the physics of a condensed state
for the analysis of singularities in condensed media, including superconductors
(Abrikosov vortices), superfluid liquids, and liquid crystals. The methods of
homotopy topology are effective not only for general analysis and classification of
singularities of condensed media [10] but also transferred to the analysis of pro-
cesses expressed in the form of multiple spaces of loops. This fact can be explained
as follows. The management contour at the mapping to the state space defines a
contour in the state space itself or on the corresponding loop space, the multiplicity
of which is determined by the number of management parameters. The following

problem arises, solved by the homotopy theory methods. Can the image ∂Ik under
the mapping and defined by the contour in the state space or constructed Eq. (4, 5)

on it the loop space be continued from the boundary of the set Ik, ∂Ik, to its interior

Ik in a continuous manner? Or such continuation is impossible, that means the
presence of topological obstacles, expressed by the nontriviality of the topological
(homotopy) type of the state space, the loop space. In the case of obstacles, any
continuation will undergo a discontinuity in the corresponding topology of the loop
space. In the case when the mapping F to the loop space is topologically nontrivial,
that is, corresponds to a nontrivial element of the homotopy group of the state space
or loop spaces, then a discontinuity will occur when the management parameters
are varied. This means that it is not possible to continue the regularity from the

Figure 1.
Mapping the management loop X Rn � R1 in state space; λ1…λn;—Variable parameters, t-time.
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boundary of the management loop to its interior without discontinuities. Physically,
with small variations in the management parameters, a transition from the initial
process to the final process will take place abruptly. This, depending on the specific
physical content of the management model, leads to dramatic changes in the state of
the mechanism that is accompanied by a sharp change in the operating conditions
and extreme loads, leading to accelerated degradation of the material: the nucle-
ation and growth of microcracks, the development of abnormal wear in the
corresponding mechanical junction and other troubles, the precursor of creation of
avalanche changes in the material, and so on.

F : ∂Ik ! X (4)

Ik ¼ λi : i ¼ 1;…kf g≝
Y

k

0; 1½ � (5)

The above results need more precise definitions of the state space X, the space of
trajectories, and the identification of physical causes for the appearance of
homotopically nontrivial state space:It is appropriate here again to use the analogy
with topological defects of condensed media. It has already been noted above that
when using analogies of this kind, it is only necessary to redefine the notion of a
degeneracy space. The redefined degeneracy space in this case and thanks to the
work [9] is nothing more than a k-fold loop space.

Topological singularities in condensed media are provided by the homotopy
nontriviality of the so-called degeneracy space of the free energy functional of a
condensed medium. The presence of the degeneracy group of the free energy and
its further factorization with respect to the isotropy subgroup gives the required
degeneration space, in mathematics called the homogeneous space [10]. In the task
under consideration, the analog of the construction of the degeneracy space is in the
most general case the characteristic functional of the stochastic process. The sym-
metry groups of such a functional are considered in [11]. To understand the
methods of constructing degeneration spaces, one can consider the density of func-
tion of the distribution of the process. If we return to the cascades of the wavelet
coefficients of the observed signal and then to the vector processes, then we con-
sider the vector process or segments of length N or the set of such segments or
vectors under certain assumptions about the properties of the observed process, for
example, if the process reduces to a random walk in a multidimensional lattice or on
a continuum. In the example under consideration, the group of probability density
function (PDF) of the process has a Gaussian distribution, and hence the symmetry
group of such a process is the group SO Nð Þ:

For example, in the problem of walk of RN [6, 12], the Gaussian function for the

density of probability of falling into a point R∈R
N after traversing the path of

length L is the following:

G R;Lð Þ ¼
N

2πlL

� �N
2

exp �
N Rk k2

2lL

 !

: (6)

The subgroup of isotropy is in this case the subgroup of rotations of the vector
R about its axis, that is, SO N � 1ð Þ. The result of the factorization SO Nð Þ of the
group with respect to the subgroup SO N � 1ð Þ is the N-1-dimensional sphere:

SO Nð Þ=SO N�1ð Þ ffi SN�1 (7)
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Taking into account other symmetries existing in the observed process changes
the degeneracy space. For example, the vector processes under consideration can in
some cases have symmetry with respect to time reversal, and then the vector field
becomes a field of directors as in a nematic liquid crystal. In this case, the degener-
acy space is transformed from a sphere into a projective space of dimension:

SO Nð Þ=SO N�1ð Þ�Z2
ffi PRN�1 (8)

The presence of trends or dynamic predictors removes such degeneracy, and the
degeneracy space again becomes a sphere. The permutation group acting on the
components of the vectors, that is, changes their places, turns the sphere into an
even more complex homogeneous space, where the gluing takes place in the dis-
crete orbits of the group of permutations during factorization, generating a space
homotopically equivalent to a bouquet of spheres of different dimensions
(Figure 2):

DS ¼ SN�1⋁ if gS
1 (9)

The transition to space trajectories (spaces of k-fold loops) determines in the
final analysis ultimately a classification of trajectories, representing each class from
the set of admissible trajectories as a set of homotopy equivalent trajectories. The set
of homotopy classes of such spaces is denoted as in [9]. This set has a structure of
group as follows from the given examples.

Useful relations for computing homotopy groups of homogeneous spaces and
loop spaces are given below, along with examples of homotopy groups of spheres
and other homogeneous spaces:

W;ΩX½ � $ ΣW;X½ � (10)

πi ΩXð Þ ffi πiþ1 Xð Þ (11)

ΣW ≝ W � Ið Þð Þ= W � 0ð Þ∪ w_0� Ið Þ∪ W � 1ð Þð (12)

ΣW—cited superstructure over W;

πnþ15 Snð Þ ¼ Z480 ⊕Z2 (13)

π1 SOnð Þ ¼ Z2 (14)

Figure 2.
A bouquet of two-dimensional and two one-dimensional spheres.
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Part of the Hopf fibration is a mapping S3 ! S2 [13–15]. This mapping is the

generator of the homotopy group π3 S2
� �

¼ Z.
This is under the assumption that the degeneracy space does not change. When

the homotopy type of the degeneration space changes, the classification of trajecto-
ries also changes. The change in the topology of the degeneracy space is due to a
change in the symmetry groups of the process. There is a violation of symmetry due
to a change in the characteristic features of the process, as already noted, for
example, with the appearance of trends. Predictor of the trend is, in fact, a change
in the structure in the set of transition probabilities, as will be discussed below.

Symmetry breaking or removal of degeneracy by isotropy subgroups can occur
for various reasons. One such mechanism is associated with noise-induced transi-
tions. In [16] examples of this kind are given. The reason for removing the degen-
eracy and, consequently, changing the topological type of the degeneracy space is
the presence of multiplicative noise. As a result of the growth of the amplitude of
such noise, a change occurs in the characteristics of the process, in particular, the
density of the distribution function changes.

Returning to the tasks of management, the following should be noted. Thus, a
space of degeneracy for the system and constructed on it k-fold loop space that is
homotopy equivalent to the space of paths on the degeneracy space are defined
sufficient roughly. The classification of paths is determined by the set of classes of
homotopy equivalent paths. The transition from one class of paths to another class
of paths is accompanied by symmetry breaking. Very conditionally the process
of development of failure and dysfunctions of the mechanism can be shown in
Figure 3. The colored concentric rings represent different types of homogeneous
spaces on which it is necessary to keep the trajectory as long as possible. At the same
time, the time to reach the boundary of the RUL class is estimated.

That is, the process of the development of faults as a result of operation passes
from one class to another, reaching at the end of the failure field. In this case, the
intersection of the conditional boundary is determined by a violation of the sym-
metry of the process. Further, the degeneration space itself and the character of the
transition from one class to another change.

The mathematical model described above allows us to make the first step in the
formulation and formalization of optimization of the maintenance strategy. The
optimization task is reduced to determining the number of management parameters
and determining the image of the management loop in the state space or the k-fold
space of paths that hold the trajectory of the process in a given homotopy class or in
a given degeneracy space. If necessary, homotopic obstacles are overcome by

Figure 3.
Interpretation of optimization problem and maintenance strategies.
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increasing the dimension of the management loop, that is, by increasing the number
of management parameters. The operation of the restructuring of the degeneracy
space is inevitable, therefore with each new restructuring task literally
reformulated.

Restructuring degeneracy space is associated with symmetry breaking. To
explain all of the above, we can use a very simplified example. Consider the degen-
eration group SO(3) and the isotropy group SО(2) * Z2. Moreover, the degeneracy
space is a projective space RP2. Removing degeneracy by Z2 is associated with the
violation of time-reversal symmetry. Such loss of symmetry is possible with the
appearance of the trends of the initial cascade of wavelet coefficients of the
observed time series. In this case, the degeneracy space is transformed into a sphere.
Homotopy groups of projective space and spheres differ and are represented by
Eqs. (15) and (16):

π1 S2
� �

¼ 0 (15)

π1 RP2
� �

¼ Z2 (16)

The homotopy groups of k-fold loop spaces are represented by Eqs. (10) and
(11). The nontriviality of homotopy groups generates a classification of paths, that
is, their division into classes of homotopically nonequivalent paths in a management
task with two or three management parameters.

When removing degeneracy and the transformation of the degeneration space
itself into the space of another homotopy type, respectively, the homotopy classes
of paths also change. In this case, new hidden predictors of failure will appear. An
example is the predictors of turbine surging, described in [17]. It is noted that the
early predictor of surging is destroyed by the mixing of wavelet coefficients. In this
approach this means that in the observed process (the observed signal) from the
pressure sensor the violation symmetry with respect to the permutation group
occurred.

The above general model is based only on two statements that need concrete
implementation for the further use of such model in prognosis and management
tasks. Two said assumptions are as follows: there exists a space of states realized as a
vector multidimensional space then taking into account the symmetry groups the
set of states of the system, and the set of trajectories was represented in the form of
degeneracy space and multiple path spaces that take into account the management
parameters.

4. Review of the solutions of the prognosis and management task from
abstract models to implementation

The constructed model on the basis of the introduced assumptions using the
concepts of homotopy topology gives a general classification of admissible trajecto-
ries, their evolution. The model demonstrates the complexity of the prognosis in
view of the need to take into account symmetry breaking, in other words, the
removal of degeneracy by one or more subgroups of process symmetries or cascade
of wavelet coefficients. That is, the description of the topological transformation of
the degeneracy spaces and the association with its spaces of k-fold paths allow one
to look at the tasks of prognosis and management in a different interpretation. The
model allows us to describe all admissible types of topological transformations,
defines classes of admissible trajectories, determines all possible transformations of
classes of trajectories and subsets, and characterizes subsets in the state space and
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trajectory spaces related to regions of failure. Further, the same methods describe
the evolution of such regions, their interaction, and pair interaction on the basis of
the group structure of homotopy classes. Involving physical models from the phys-
ics of failure makes it possible to determine the physical meaning of topological
nontriviality and to connect topological obstacles and topological prohibitions with
physical mechanisms that ensure topological transformations.

The next step to the construction of computational algorithms for prognosis and
management is the transition from topological dynamics described above to the
construction of the evolution equations of trajectories and states and finally to the
construction of algorithms for prognosis and management. Moreover, the conclu-
sions and results of the homotopy model must be taken into account with necessity.

To do this, it is necessary to determine the specific content of the above concepts
such as the state space and path space. A detailed exposition of this construction is
contained in the works [18–23]. The observed signal is represented as the coeffi-
cients of its wavelet transformation:

k
HistW

N
i, j

n o
, N ¼ 1, 2, 3,…, N∗ (17)

N—number of cycle; i, j—indices of wavelet decomposition.
Hist—duration of cycles (unevenness of stroke) of histogram column index.
k—numbering of vectors from wavelet coefficients of dimension N∗:

This takes into account the fact that the mechanism under consideration is a
reciprocating or rotational mechanism for all fixed indices except that N is deter-
mined by stochastic process with discrete time, N cascade. Further, fixing the lim-
iting value N as N∗ is determined by a set of vectors of dimension N∗, chosen from
the consistent values of the process under consideration with discrete time. As a

result, the space RN
∗

is determined, consisting of all possible finite segments of
dimension размерности N∗.

The state space is defined as follows:

Rkf g≝ k
HistW

N
i, j: k N∗ ≤N ≤ kþ 1ð ÞN∗; k ¼ 0; 1; 2; 3…

n o
,Rk ∈R

N
∗

(18)

Thus, a vector space of dimension H is defined. The numerical value of H is not
yet specified. It is determined in the process of preprocessing. The task of prognosis
here reduces to determining the probability of transition from an initial vector to a
finite vector in j steps. In this case, such task is solvable either by an explicit solution
of the evolution equations or by calculating the moments, mainly of the dispersion,
that is, second moment. Similar calculations are given in [6] and are reduced in
most cases to the calculation of the Feynman integral along trajectories [6, 18–24] or
to the solution of evolution equations such as the Fokker-Planck equation. In this
case, the trajectory of states is represented as a walk along a multidimensional
lattice or its continual analog, that is, RN space [6], in those cases when the observed
process possesses certain properties, for example, the Chapman-Kolmogorov con-
dition, the Markov property, stationarity and ergodicity are hold. The above prop-
erties of the process determine the evolution equations for the transition probability
in the form of the Fokker-Planck equations already mentioned or Hamilton-Jacobi
type equations, Schrödinger equations, and so on.

Topological prohibitions, implying the existence of such prohibition by physical
mechanisms, determine other scenarios for the evolution of trajectories, that is, the
probability of transition from one vector to another for a fixed number of steps.
Moreover, in the interpretations of the process as a random walk on a lattice or
continuum, processes are realized with allowance for the prohibitions imposed by
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the nontriviality of the homotopy types of the degeneracy space. Evolution equa-
tions at the same time are complicated. And to obtain evolution equations, it is
required to introduce three-point, four-point, etc. density of the distribution func-
tion for transition probabilities. In the present, brief review of approaches should be
mentioned often; there are cases where the probability density function of the
process or the transition probabilities are not Gaussian but have a so-called heavy
tail in its distribution, expressed as

P R;Lð Þ �
L

Rk kαþ1 : (19)

Thus, the approaches described above lead to the evolution equations with
fractional derivative [25].

5. Construction of automata

This section is devoted to the description of a family of automata, analogs of
Turing machines, allowing to formalize and, ultimately, take into account the above
difficulties in the development of algorithms of reliable prognosis and numerical
estimates of RUL, without which it is sometimes impossible to build and optimize
the maintenance strategy and also implement the management task when choosing
a class of trajectories that optimize the operation modes of technical objects.

The transition from abstract models to the construction of recognizing and
predictive automata occurs in two stages. By recognizing automata in this case, we
mean a set of single-tape Turing machines. At the first stage, the state space
described in the previous section and in more detail in [7, 22] is constructed. The
second stage involves the construction of the symbolic space described in the work
[18–21]. For this, the transition from the initial state to the final state on the state
space is represented as the product of matrices of special form acting in the affine
space:

Ωi,k

n1

n2
:

ni

nk

1

0

BBBBBBBBBB@

1

CCCCCCCCCCA

≝

1 0

0 1

0 0

0 0

0 0

0 0

: :

0 0

: :

1 0

: :

0 1

0 0

0 0

0 0

0 0

1 �1

0 1

0

BBBBBBBBB@

1

CCCCCCCCCA

n1

n2
:

ni

nk

1

0

BBBBBBBBBB@

1

CCCCCCCCCCA

¼

n1

n2
:

ni þ 1

nk � 1

1

0

BBBBBBBBBB@

1

CCCCCCCCCCA

(20)

The product of such matrices eventually transforms the initial state vector into
the final state:

ΩN
∗ ≝

YN∗

1

Ωi, k

 !

for ∀ i; kð Þ (21)

The symbolic space in this case is a space P whose dimension is equal to the
number of columns of the frequency histogram of the vectors of the initial or final.
For definiteness, the dimension is increased by adding columns with zero values,
thereby encompassing the physically permissible range of values of the observed
signal. The successive multiplication of matrices of elementary steps
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(coordinatewise) with subsequent renormalization determines transition probabili-
ties in the form of a matrix bwk,m defined by the operator ΩN

∗ .
The equation describing the evolution of certain states of the Turing machine in

this way is a known balance equation [5]:

∂pm
∂t

¼ ∑
k

bwk,mpk � bwm,kpm
� �

(22)

or the basic kinetic equation [4].
The renormalization, which determines the transition from the frequency rep-

resentation to the probabilistic one, also allows us to interpret the change of states as

a walk in an N∗
—dimensional simplex ΣN∗

. Since each one-tap automaton processes
only one cascade of wavelet coefficients, then for the entire set of cascades, the
number of automata is equal to the number of wavelet coefficients of the signal in
one period. Since in the general case there is a scatter of periods over lengths, the set
of recognizing automata is determined for each interval in the histogram of the
lengths of the periods, depending on the values of the lengths of the elementary
intervals and the probable transition to packet wavelet decomposition. At a signal
sampling frequency of 2 kHz, the number of automata is estimated from below by a
number equal to 40 � 103. If vibration signals are analyzed in a wide frequency
range, then the number of automata is estimated by orders 106.

6. Accounting for topological dynamics and how the automata work

Thus, the operation of an automaton reduces to change in its internal state when
it shifts by one step in the input cascade of wavelet coefficients of the observed
signal. It is assumed here that the equations describing the changes in the state of
the automaton are independent of time, that is, the internal states of the automaton
are stationary. In practice, small deviations from stationarity in the Levy metric are
allowed [26]. The value of the permissible deviations is determined on the basis of
the chronological database. Thus, the quasi-stationary nature is verified by checking
the approximate fulfillment of the stationarity conditions of the basic kinetic equa-
tion Eq. (22):

bwk,m ¼ ∑
m
bwm,k (23)

If the quasi-stationary conditions are violated, for example, a trend appeared in
one of the columns of the histogram or in several columns, the prognosis of the
evolution of the internal states of the automaton is determined already by solving
the nonstationary basic kinetic equation. Meanwhile, under the quasi-stationary
conditions, the change in the internal states of the automaton is possible. As an
example, we can mention the noise-induced transitions [16]. In this case, the
change in the type of internal states is connected with a slow evolution of the
coefficients of polynomial approximation of stationary solutions of the basic equa-
tion [3, 20]. Thus, in the transition from the initial state vector in the state space or
in the symbol space introduced above, there are many transition paths in the
formalism of birth-death process. However, all paths under quasi-stationary condi-
tions reduce to permutations in the commutative subgroup of matrices of elemen-
tary transitions Ωi,k. That is, the transition from one vector to another takes place
under the condition that the form of the symbolic histogram is stationary or that
small deviations in the Levy metric are assumed. Moreover, the set of transition
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paths are in the same homotopy class of k-fold loops of the degeneracy space. The
scenario described is valid for Gaussian processes with zero correlation length over
the time variable. As noted in this case and taking into account the symmetry with
respect to time reversal, the degeneracy space is an m-dimensional projective space.
When time correlations of nonzero length appear, the degeneracy of the group Z2

occurred. When a trend appears in the signal, degeneration by subgroups of the
permutation group is removed. The admissible class of paths, on which the transi-
tion from one state vector to another takes place, is narrowed. Further dynamics of
the internal states of the automaton is associated with the creation of new filling
cells and the destruction of some old ones. At the same time, new ways of transition
from one state to another are determined. And with the appearance of new ways,
the estimate of the time to reach the class boundary or the field of the failure is
changed. A complete reconstruction of the whole class of paths occurs when the
homotopy type of the degeneracy space is reconstructed, for example, under noise-
induced transitions reminding the second-order phase transitions in condensed
media.

7. Reproduction and birth of automata with increasing complexity

However, the constructed set of automata is still not enough for an effective
prognosis. This deficiency is closely related to topological dynamics, in particular, to
the already mentioned effects of excluded volume. In other words, taking into
account the homotopy classes of paths, that is, in those important cases, when the
processes under consideration are not Markovian, the Chapman-Kolmogorov iden-
tity is not satisfied. In the analytic approach, three-particle and then many-particle
distribution functions are considered in such cases. Here, the system of equations
for these functions can have infinite dimension. Another analog of such equations is
the transition from evolution equations in PDF to equations in moments, where an
infinite-dimensional system of equations also appears. Most often, such equations
are solved by truncating in dimension, assuming that the finite-dimensional part of
the system of differential equations approximates an infinite chain of equations in
some sense. In the case when multiparticle distribution functions are introduced to
obtain solutions, it is assumed that, beginning with a certain number, many-particle
functions are assumed to be approximately Markovian, that is, are represented as a
product of multipoint functions of lower orders.

The examples given represent some analogies for completing the construction of
a set of automata. The family of constructed automata with the necessity for com-
plete account of topological dynamics must be supplemented by some additional
properties. The analogies described above demonstrate what properties a family of
automata should possess.

Additional properties of the family of automata:

1. Automata must be pairwise interacting.

2. In a number of cases, automata must analyze the described situations, that is,
construct automata by merging one-tape automata, thereby passing to
automata with increasing complexity.

A pair interaction between automata can be introduced in different ways,
depending on the language describing these automata in terms of evolution equa-
tions or in constructing the Feynman path integral. In this case, the simple way of
constructing interacting automata is to introduce interaction through a statistical
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interaction, taking into account this interaction from the first principles, when the
measure of interaction is d P;P0ð Þ [11, 26]:

d P;P0ð Þ ¼

ð:

Ω

ψ ωð Þ � ψ 0 ωð Þj j
2
dQ ωð Þ

� 	1=2

(24)

where P, P0 are two probability measures:

Q ¼
1

2
Pþ P0ð Þ (25)

ψ ¼
dP

dQ

� �1=2

ψ ¼
dP0

dQ

� �1=2

(26)

is the Radon-Nicodym density.
There are more complex forms of interaction by introducing a potential or some

vector field, as described in the work [6]. With the pair interaction between
automata taken into account, it becomes possible to construct a graph whose
automata are placed in 0-dimensional vertices. Since we are talking about automata
on the wavelet cascades, the resulting graph allows us to analyze the situation with
a root cause prognostics if the interaction is defined for automata with different
time indices. Or, if automata interact with different scaling indices, then an
analysis of multiscale processes or processes that occur at different scale levels and
are interconnected becomes available.

8. Conclusions

The result of the completed constructions is the family of predictive automata.
The set of automata is large, and depending on the sampling frequencies of incom-
ing signals from sensors installed on the mechanisms, it is estimated from 106 to
109. The automata themselves represent some analog of the Turing machine. In this
case, the set of automata interacts in pairs. The interaction leads to the construction
of more complicated automata and is an analogy of transitions to many-particle
distribution functions or their densities. Thus, the family of interacting automata
generates the next generation of automata with increased complexity. Many fea-
tures of the operation of automata and methods for constructing state spaces and
degeneration spaces remain outside the scope of this chapter. It is only necessary to
note that as the state space it is considered a sequence nested with respect to the
dimension of spaces, as is the sequence of path spaces whose multiplicity can tend
to infinity. In such limiting cases, infinite-dimensional symmetry groups appear.
And when implementing limit transitions, there are mathematical models that allow
us to algorithmize the problem in some sense.

The complexity of family of automata is determined by the complexity of topo-
logical dynamics. If we are talking about the observed signals, then the account of
symmetry groups, the appearance, and the removal of degeneracy in different sub-
groups are determined by the complexity of the signals themselves, reflecting in
turn the complexity of physicochemical processes occurring in complex mechanical
and electronic systems at various scale levels. Symmetry groups appear in all
existing time series. Most often the groups of symmetries of incoming signals are
caused by the concrete physical processes of the failure physics occurring in com-
plex mechanisms in the presence of friction, gas hydrodynamics, physical and
chemical processes, etc. In the overwhelming number of cases, the physical models
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of the failure physics confirm this fact. Turning to concrete implementations of the
family of prognostic automata, it should be noted that, in spite of the complexity of
topological dynamics, specific algorithms prescribe fully realizable requirements for
the costs of supporting their work in parallel architectures. In this case, as practice
has shown in the operation of automata, their structures are optimized.

In addition, in the optimization process, there are opportunities that allow some
automata to be transferred to the computing power of onboard computers when it
comes to, for example, monitoring of mobile objects, in particular, monitoring of all
kind of transport. At the same time, onboard automata perform not only signaling
functions but also are able to manage remote computing cores, thereby optimizing
the computational processes on the remote computing cluster. And to the contrary,
the automata of computing cluster can change the structure and functionality of
peripheral automata, located on onboard computers or other computational capac-
ities inherent in microcontrollers of onboard electronics. Returning to the complex-
ity of topological dynamics, it should be noted that the automata for prognosis that
support this complexity allow us to formalize and algorithmize the models of the
root cause prognosis and, in the end, algorithmize the tasks for the intellectual self-
maintenance and self-recovery systems.

From the model constructed above, a certain hierarchy of prognostic problems
also follows, since the set of physically acceptable trajectories is divided into the
classes of homotopic equivalence. In turn, the classes themselves are changed dur-
ing transformations of the space of degeneracy; other admissible trajectories and
their classes appear that differ from the previous ones and have their own pre-
dictors and time estimates of the RUL. This means that with each transformation of
the space of degeneration there is a change in the prognosis and changes in the RUL
estimates. Thus, with RUL estimates, it is necessary to take into account not only
the time to reach the class boundary but also the time to reach the moment when
the transformation of degeneration space begins, for example, the time to reach the
bifurcation set in the bifurcation tasks of the stationary solution of the Fokker-
Planck equation. Another example is the time to reach a certain critical value of the
amplitude of multiplicative noise. And each time the task of determining the RUL is
updated. A good example of such an update is the calculation of the probability
density of the transition from the original value to the preassigned one when
determining the RUL in the representation of the probability density of the transi-
tion for a fixed time in the form of the Feynman path integral. At the same time, a
change in the class of admissible transition trajectories, when the degeneracy by one
of the isotropy groups or by its subgroups is removed, changes the evolution
equation itself. In some cases, with the emergence of new topological obstacles, the
Smoluchowski-Chapman-Kolmogorov identity does not hold the system and
becomes non-Markov etc.; finally, an integro-differential equation appears as the
Fokker-Planck evolution equation. In this case, all the previous predictors are
changed, as well as all the time estimates. And so it happens with each new trans-
formation of the space of degeneration.

The family of interacting automata presented here changes traditional
approaches to the learning of automata in recognizing early predictors of failure, in
other words, in identifying the characteristics of the trajectories, the movement
along which leads to the boundaries of the failure regions. In the examples described
above and from the general model, it should be that learning is reduced to a set of
segments of wavelet coefficient cascades as long as the automaton output to the
quasi-stationary regime is not going to happen. For simple automata, the segment
length is estimated at about 1000 full cycles of the engine operation or the number
of revolutions of the turbine shaft. Further, the algorithm during monitoring ver-
ifies compliance with the conditions of quasi-stationarity. At the birth of more
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complex automata with an increase in their dimension, each added dimension
increases the length of the segments.

And in conclusion, it is necessary to say a few words about the set of early
predictors of failure. In accordance with the hierarchical construction of the prog-
nostic model, when removing the next degeneration by one of the isotropy sub-
groups in each new class of trajectories, their predictors are determined. That is, the
inheritance of predictors in the transition of the trajectory from one class to another
is not necessary. And this non-obligation is connected with the mapping of the
gopotopic groups of the previous space of degeneration into the space of degenera-
tion after its transformation. Part of the predictors may persist, another part may
disappear, and new predictors may appear. The listed mutations of the set of pre-
dictors are determined by the specific structure of the degeneration space, that is,
by the set of symmetry groups and isotropy groups. In this case, the trajectory itself
or its characteristics, for example, configurational entropy, can act as a predictor,
along with other types of the Kullback type of entropy.

Another type of predictor exists, and here again the analogy between the topo-
logical singularities of condensed media and the singularities of multiple loop spaces
is appropriate. We are talking about the structure of the singularity core.
Conducting the noted analogy, if the trajectory passes through the core of the
singularity, then the effect of changing the permissible number of trajectories gives
rise to changes, for example, of pointwise holder regularity of the trajectory.

In terms of the evolution of the internal states of a set of interacting automata,
the above conclusions are expressed as additional conditions imposed on the densi-
ties of the distribution functions and transition probabilities for automata in any
dimension.

This chapter is mainly devoted to the presentation of theoretical prognostic
models and the basic ideas of constructing predictive automata. Demonstration of
examples of the work of predictive automata and more detailed description of the
predictors of the early prognosis will be continued in the next edition of IntechOpen
book Prognostics edited by Prof. Fausto Pedro García Márquez.
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