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Chapter

Utilization of Deep Convolutional
Neural Networks for Remote
Sensing Scenes Classification

Chang Luo, Hanqiao Huang, Yong Wang and Shigiang Wang

Abstract

Deep convolutional neural networks (CNNs) have been widely used to obtain
high-level representation in various computer vision tasks. However, for the task of
remote scene classification, there are no sufficient images to train a very deep CNN
from scratch. Instead, transferring successful pre-trained deep CNNs to remote
sensing tasks provides an effective solution. Firstly, from the viewpoint of general-
ization power, we try to find whether deep CNNs need to be deep when applied for
remote scene classification. Then, the pre-trained deep CNNs with fixed parameters
are transferred for remote scene classification, which solve the problem of time-
consuming and parameters over-fitting at the same time. With five well-known
pre-trained deep CNNs, experimental results on three independent remote sensing
datasets demonstrate that transferred deep CNNs can achieve state-of-the-art
results in unsupervised setting. This chapter also provides baseline for applying
deep CNNs to other remote sensing tasks.

Keywords: convolutional neural network, remote sensing, scene classification,
deep learning, generalization power

1. Introduction

Remote sensing image processing achieves great advances in recent years, from
low-level tasks, such as segmentation, to high-level ones, such as classification.
[1-7] However, the task becomes incrementally more difficult as the level of
abstraction increases, going from pixels, to objects, and then scenes. Classifying
remote scenes according to a set of semantic categories is a very challenging prob-
lem, because of high intra-class variability and low interclass distance. [5-9] There-
fore, the more representative and higher-level representations are desirable and will
certainly play a dominant role in scene-level tasks. The deep convolutional neural
network (CNN), which is acknowledged as the most successful and widely used
deep learning model, attempts to learn high-level features corresponding to high
level of abstraction [10]. Its recent impressive results for classification and detec-
tion tasks bring dramatic improvements beyond the state-of-the-art records on a
number of benchmarks [11-14]. In theory, considering the subtle differences
among categories in remote scene classification, we may attempt to form high-level
representations for remote scenes from CNN activations. However, the acquisition
of large-scale well-annotated remote sensing datasets is costly, and it is easy to
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over-fit when we try to train a high-powered deep CNN with small datasets in
practice [15]. In other words, with limited remote sensing dataset, deep CNNs work
perfectly on the training data but do not generalize well to test data, resulting in
poor performance eventually.

ImageNet" is a large-scale dataset, which offers a very comprehensive database
of more than 1.2 million categorized natural images of 1000+ classes [16]. Deep
CNN models trained upon this dataset serve as the backbone for many segmenta-
tion, detection, and classification tasks on other datasets. Moreover, some very
recent works have demonstrated that the representations learned from deep CNNs
pre-trained on large datasets such as ImageNet can be transferable to image classi-
fication task [17]. Some works also start to apply them to remote sensing field and
obtain state-of-the-art results for some specific datasets [15, 18, 19]. However, the
generalization power of features learned from deep CNNs fades evidently when the
features of remote sensing images become different with that of natural images in
the ImageNet dataset [15, 18]. Therefore, to solve the problem discussed above, the
generalization power of deep CNNs plays the key role. We find that the generaliza-
tion power of a deep CNN is relative to its depth. A deeper architecture trained by
large-scale dataset may lead to a more general hypothesis for remote scenes. To our
surprise, features learned from deeper layers are more general than that learned
from shallower layers in a deep CNN when we transfer them for remote scene
classification. This overturns the traditional view that features in shallow layers of a
deep CNN are composed of basic visual patterns (e.g., salient edges and borders)
and they are more general for test data. Inspired by this, we evaluate the generali-
zation power of transferred deep CNN for remote scenes in different conditions and
explore the proper way to apply deep CNNs to remote scene classification with
limited remote sensing data.

We conduct extensive experiments with transferred deep CNN and evaluate the
generalization power of it on different remote sensing datasets that vary in space
information. The results show that the depth of CNNs contributes to the generali-
zation power of them. Features from deeper layers are more general for test data
and brings better performance in remote scene classification. Then, we conduct
extensive experiments with different pre-trained deep CNNs such as CaffeNet [13],
GoogLeNet [20], and ResNet [21]. This chapter hardly contains any deep or new
techniques, and our study so far is mainly empirical. However, a thorough report on
generalization power of deep CNNs for remote scene classification has tremendous
value for applying deep CNNs to remote sensing images. A satisfied answer to this
question would not only help to make features of remote scenes more interpretable
in deep CNNS, but it might also lead to more principled and reliable deep architec-
ture design. Our main contributions are summarized as follows:

1. We thoroughly investigate how transferred deep CNNs work for remote scene
classification with limited remote sensing data and how the generalization
power of them affect their performance.

2. This chapter challenges the classical view of features learned in deep CNNs by
showing that high-level features learned in deeper layers are more general than
basic features (e.g., salient edges and borders) learned in shallower layers.
Features learned in shallow layers of deep CNNs are not general enough for
remote scenes. This leads us to believe that depth of CNNs enhances the

! http://www.image-net.org/challenges/LSVRC/
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generalization power of the learned features and it is essential for remote scene
classification.

3.Based on various pre-trained deep CNNs, we evaluate our proposed method on
different remote sensing datasets that vary in space and spectrum. The results
show that our proposed method can learn better features for remote scenes.
With “unsupervised settings,” our proposed method achieves state-of-the-art
performance on some public remote scene datasets.

The rest of the chapter is organized as follows. Section 2 presents successful
pre-trained deep CNNs nowadays and the way to transfer them for remote scene
classification. Section 3 analyzes the generalization power of features in different
layers of transferred deep CNN. Experiments are presented in Section 4, and we
conclude the chapter in Section 5.

2. Transferred deep CNNs for remote scene classification

Convolutional neural networks are generally presented as systems of
interconnected processing units which can compute values from inputs leading to
an output that may be used on further units. The typical architecture of a deep CNN
is composed of multiple cascaded layers with various types.

Among the different types of layers, the convolutional one is the responsible for
capturing the features from the images. The first layers usually obtain low-level
features (like edges, lines, and corners), while the others get high-level features (like
structures, objects, and shapes). The process made in this type of layer can be
decomposed into two phases: (i) the convolution step, where a fixed-size window runs
over the image, with some stride, defining a region of interest and (ii) the processing
step that uses the pixels inside each window as input for the neurons that, finally,
perform the feature extraction from the region. The continuous form and discrete
form of convolutional operation can be expressed as Egs. (1) and (2), respectively:

h(x,y) = isk(x,y) = Joooo rooo i(u,v)k(x —u,y —v)dudv (1)
H(x,y) =I+K(x,y) = Y., 2., (m,n)K(x —m,y —n) (2)

As to the input map, the convolutional operation can be further illustrated by
Figure 1:

Conventionally, a nonlinear function is provided after the convolutional opera-
tion, which is usually called activation function. There are a lot of alternatives for
activation function, such as sigmoid function ; +1e*x and tanh function f;jrg The
most popular activation function nowadays is called rectified linear unit (ReLU).
ReLU has several advantages when compared to others: (i) works better to avoid
saturation during the learning process, (ii) induces the sparsity in the hidden units,
and (iii) does not face gradient vanishing problem as with sigmoid and tanh func-
tion. The mathematic form of the ReLU can be shown as follows:

z, if z>0
a:{ f =

0, otherwise

< a=f(z) = max(0,z2) (3)

Typically, after obtaining the convolved feature activations, we would next like
to aggregate statistics of these features at various locations, and this aggregation
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Figure 1.
Convolutional operation.
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Figure 2.
Pooling operation.

operation is called pooling operation. Pooling operation within the pooling region
translates convolved feature activations into pooled features, which are much lower
in dimension and can improve classification results (i.e., less over-fitting). Pooling
regions are usually contiguous areas in the convolved feature maps, and the pooled
features are usually generated from the same filter. Then these pooled features
would be “translation invariant.” Although several novel pooling approaches have
been proposed, max pooling and average pooling are still the most commonly used
approaches as shown in Figure 2.

After several convolutional and pooling layers, there are the fully connected
ones, which take all neurons in the previous layer and connect them to every single
neuron in its layer. Since a fully connected layer occupies most of the parameters,
over-fitting can easily happen. To prevent this, the dropout method was employed
as shown in Figure 3. This technique randomly drops several neuron outputs, which
do not contribute to the forward pass and backpropagation anymore. This neuron
drops are equivalent to decreasing the number of neurons of the network,
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Figure 3.
Dropout method. (a) No dropout and (b) dropout.
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Figure 4.
Evolution of the structure of deep CNNG.

improving the speed of training, and making model combination practical, even for
deep networks.

Finally, after all the convolution, pooling, and fully connected layers, a classifier
layer may be used to calculate the class probability of each instance.

Based on the typical architecture of deep CNN, AlexNet [11], CaffeNet [13],
VGG-VD [14], MSRA-Net [22], NIN [23], GoogLeNet [20], Inception V3 [24],
Inception V4 [25], and ResNet [21] all proved to be effective in detection or classi-
fication tasks and achieve state-of-the-art performance.

In summary, we demonstrate the evolution of deep CNNs’structure in Figure 4:
However, these successful deep CNNs discussed above do not achieve good
performance as we expected, when we directly apply them for remote scene classi-
fication. An effective solution, recently explored in [15, 18, 20], is to transfer deep

features trained on ImageNet dataset to remote sensing images. Deep CNNs pre-
trained by ImageNet dataset can be treated as fixed feature extractors. In a
feedforward way, they extract global feature representation of the remote sensing
images. With the global representation, a simple classifier can implement remote
scene classification. Taking a step further, fine-tuning strategy is usually used for
deeper layers of transferred deep CNNs to further improve the performance of
them for remote scene classification. Typically, the first few layers are frozen,
because low-level features can better fit remote scenes, and deeper layers are
allowed to keep learning by training them with remote sensing images. Taking
AlexNet, for example, we show the fine-tuning strategy in Figure 5.
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Strategy of fine-tuning deeper layers of AlexNet.

Although the strategy of fine-tuning deeper layers of transferred deep CNNs
with remote sensing images achieves near-perfect performance in remote scene
classification [18], we challenge the theory basis of this strategy by showing that not
all low-level features in shallow layers are general enough for remote scenes; some
of them even shows very poor generalization power in transferring process. We
find that the depth of transferred CNNs enhances the generalization power of them
and guarantees a general hypothesis for remote scene classification. The detailed
results are discussed in Section 3. This find in transferred deep CNNs gives an
answer to the very recent discussion about whether generalization power of deep
CNNs comes from sheer memorization or available hypothesis.

3. Generalization power of features in different layers of transferred
deep CNN

As mentioned in Section 2, when transferring deep CNNs pre-trained by
ImageNet for remote scene classification, we typically assume that features
(e.g., salient edges and borders) in the shallow layers are generic, while features in
the deep layers are more specific to the dataset used for pre-training and thus need
to be fine-tuned by the target dataset. Therefore, the traditional strategy of trans-
ferring pre-trained deep CNNs for remote scene classification is to freeze the shal-
low layers and fine-tune the last deep layers. However, this assumption drives us to
the question that how the “depth” of transferred deep CNNs affect the features of
remote scenes in the transferring process. To answer this question, we take
CaffeNet pre-trained by ImageNet, for example, and thoroughly analyze features of
remote scenes in different layers of it when we transfer it for remote scene classifi-
cation on UC Merced dataset?,

Firstly, we take a close look into features of remote sensing image in the first
convolutional layer of the pre-trained CaffeNet. In Figure 6, we visualize the
convolutional filters of the first convolutional layer. These convolutional filters are
learned by pre-training the CaffeNet with ImageNet dataset. We can see that the
former filters are learned for extracting edges in different directions and the later
filters are learned for extracting different colors. For example, the first, fifth, and
ninth filters are mainly used to extract features in the right lower oblique direction,

* http://vision.ucmerced.edu/datasets/landuse.html
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Figure 6.
Feature maps of (a) one remote sensing image and (b) another one within the same remote scene class extracted
by convolutional filters in the first layer of pre-trained CaffeNet.

while the second, sixth, and eighth filters are mainly used to extract features in the
left lower oblique direction. Based on the architecture of pre-trained CaffeNet, we
can obtain 96 feature maps in the first convolutional layer by applying these
convolutional filters to remote sensing image. In Figure 6(a), we find that the first,
fifth, and ninth feature maps contain features of the input image in the right lower
oblique direction, while the second, sixth, and eighth feature maps contain features
of the input image in the left lower oblique direction. However, in Figure 6(b), we
cannot see obvious features in these two directions in the corresponding feature
maps. The input images in Figure 6(a) and (b) belong to the same remote scene
class. However, features of them extracted by filters in the first convolutional layer
of pre-trained CaffeNet are very different from each other. Compared with daily
optical images in ImageNet dataset, remote sensing images are much more sophis-
ticated. Some convolutional filters in shallow layers of pre-trained CaffeNet may be
effective for some remote sensing image while affecting little about some other
remote sensing images. Not all features in shallow layers of pre-trained CaffeNet are
general for remote sensing images.

Furthermore, we try to visualize features of the input remote sensing image
learned in deeper layers of the pre-trained CaffeNet. However, as we can see in
Figure 7, feature maps of the remote sensing image become increasingly fuzzy from
the second convolutional layer. With the increase of depth, representations of
remote scene become more and more abstract. In order to reveal how the depth of
pre-trained CaffeNet affects the generalization power of features in it, we intui-
tively reflect the distribution of features learned from the two input remote sensing
images in Figure 8 by using the t-SNE algorithm. [26, 27] In Figure 8, we use the
t-SNE algorithm to visualize feature maps in different convolutional layers by
giving each datapoint a location in a 2-D map.

Figure 8 shows the separability of features learned in different convolutional
layers of pre-trained CaffeNet when we apply it on two different remote sensing
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Figure 8

2-D visualization of feature maps in (a) the first convolutional layer, (b) the second convolutional layer,
(c) the third convolutional layer, (d) the fourth convolutional layer, and (e) the fifth convolutional layer of
pre-trained CaffeNet. The t-SNE algorithm proposed in [26, 27] is used to visualize the high-dimensional
vepresentations.

images that belong to the same remote scene class. In Figure 8(a), the 2-D features
of the two input images are separated to each other obviously in the first
convolutional layer. Notably, from Figure 8(a)-(e), the deeper the layer, the more
overlap between features of the two remote sensing images we can observe. There-
fore, in contrast to common belief that features in shallow layer are more generic,
they are susceptible to changes in input remote sensing images. Indeed, filters of the
first convolutional layer are similar to HOG, SURF, or SIFT (edge detectors, color
detectors, texture, etc.). They give representative information for different input
images. However, this information also conveys the specific characteristics of the
dataset used to pre-train the CaffeNet. As a result, features extracted in shallow
layers of pre-trained CaffeNet may be not general enough for remote scene classi-
fication in the transferring process. On the other hand, it seems that the depth of
pre-trained CaffeNet enhances the generalization power of features in it. Regardless
of the specific meaning of edges or colors, high-level features in deeper layer
represent the sematic meaning of the input remote sensing image. Based on this
analysis of features in pre-trained CaffeNet, we believe that depth of pre-trained
CNNs brings general hypothesis for remote scene classification. It plays an impor-
tant role when we apply pre-trained CNNss to the task of remote scene classification.

4. Experiments

The main objective of this chapter is to evaluate different deep CNNs trans-
ferred for remote scene classification. Therefore, we organize the experiments for
transferred deep CNNs with various deep CNN architectures and various remote
sensing datasets. We try to explore the answer for the problem where the general-
ization power comes from in deep CNNs and find the proper way to apply deep
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CNN s for remote scene classification. All the developed codes rely on the
MatConvNet® framework which provides a complete deep learning toolkit for
training and testing models. In addition, it should be noted that all the experiments
are performed on HP z820 with two Intel (R) Xeon (R) CPUs with 2.60 GHz of
clock and 32GB of RAM memory. NVIDIA Quadro K2000 series is used as graphic
processing units.

4.1 Experimental setup

In this section, we carry out a number of experiments based on different archi-
tectures of deep CNNs. To evaluate the effectiveness of pre-trained deep CNNs
transferred for remote scene classification, we conduct experiments on three
remote sensing datasets. These three datasets are different in spatial and spectral
information. We compare the performance of pre-trained deep CNNs with the
state-of-the-art results in these three datasets. We must note that except learning
the classifier, all the experiments are unsupervised.

The three publicly available datasets used in our experiments are as follows:

UC merced land use dataset. This dataset is composed of 2100 overhead scene
images divided into 21 land use scene classes. Each class consists of 100 aerial
images measuring 256 x 256 pixels, with a spatial resolution of 0.3 m per pixel in
the red-green-blue color space. The example images for each class are shown in
Figure 9. This dataset was extracted from aerial orthoimagery downloaded from the
United States Geological Survey (USGS) National Map of the following US regions:
Birmingham, Boston, Buffalo, Columbus, Dallas, Harrisburg, Houston, Jacksonville,
Las Vegas, Los Angeles, Miami, Napa, New York, Reno, San Diego, Santa Barbara,
Seattle, Tampa, Tucson, and Ventura. So far, this dataset is the most popular and
has been widely used for the task of remote scene classification and retrieval. [28]

WHU-RS dataset*. Collected from Google Earth, this dataset is composed of 950
aerial scene images with 600 x 600 pixels, which are uniformly distributed in 19

Figure 9.

One example image for each class of the UC Merced land use dataset. (a) Agricultural; (b) airplane;

(c) baseball diamond; (d) beach; (e) buildings; (f) chaparral; (g) dense residential; (h) forest; (i) freeway;
(j) golf course; (k) harbor; (1) intersection; (m) medium vesidential; (n) mobile home park; (o) overpass;
(p) parking lot; (q) river; (v) runway; (s) sparse residential; (t) storage tanks; (u) tennis court.

3 http://www.vlfeat.org/matconvnet/

* http://www.tsi.enst.fr/~xia/satellite_image_project.html.
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Figure 10.

One example image for each class of the WHU-RS dataset. (a) Airport; (b) beach; (c) bridge; (d) commercial;
(e) desert; (f) farmland; (g) football field; (h) forest; (i) industrial; (j) meadow; (k) mountain; (1) park;
(m) parking lot; (n) pond; (o) port; (p) railway; (q) residential; (v) river; (s) viaduct.

scene classes, 50 for each class. With spatial resolution up to 0.5 m and spectral
bands of red, green, and blue, the example images for each class are shown in
Figure 10. This dataset is challenging due to the high variations in resolution, scale,
orientation, and illuminations of the images.

Brazilian coffee scenes dataset. This dataset consists of only two scene classes
(coffee class and non-coffee class), and each class has 1438 image tiles with a size
of 64 x 64 pixels cropped from SPOT satellite images over four counties in the State
of Minas Gerais, Brazil: Arceburgo, Guaranesia, Guaxupe, and Monte Santo. This
dataset considered the green, red, and near-infrared bands because they are the
most useful and representative ones for distinguishing vegetation areas. Figure 11
shows three example images for each of the coffee and non-coffee classes in false
colors.

In the experiments, we divide all the datasets in fivefolds. For UC Merced
dataset, WHU-RS dataset, and Brazilian coffee scenes dataset, each of the five folds
contains 420 images, 190 images, and 600 images, respectively. Then, the classifi-
cation accuracy and standard deviation are calculated with fivefold cross-
validation. Five well-known pre-trained deep CNNs (AlexNet [11], CaffeNet [13],
VGG-VD16 [14], GoogLeNet [20], and ResNet [21]) descripted in Section 2 are
used to test the effectiveness of pre-trained deep CNNs in the experiments. As we
analyzed before, all the experiments are in unsupervised framework except learning
the classifier.

4.2 Experiment results of remote scene classification

We evaluate transferred deep CNNs for the task of remote scene classification
based on the five well-known deep CNN architectures (AlexNet, CaffeNet,
VGG-VD16, GoogLeNet, and ResNet) pre-trained by ImageNet. For the strategy
of transferring deep CNNs for remote scene classification, we use the five pre-
trained deep CNNs to extract high-level features from input images. These input
images are resized to 227 x 227 for pre-trained AlexNet and CaffeNet and 224 x 224
for pre-trained VGG-VD16, GoogLeNet, and ResNet by down-sampling or up-
sampling operation. Linear SVM is used as classifier.

5 www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-dataset/

10
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(@) (b) (© (d) ()
Figure 11.

Example images of the Brazilian coffee scene dataset in false colors. (a)-(c) coffee class; (d)—(f) non-coffee
class.

Pre-trained deep CNN UC merced WHU-RS Brazilian coffee scenes

Ac (%) SD Ac (%) SD Ac (%) SD
AlexNet 94.51 0.94 94.57 0.61 85.14 1.26
CaffeNet 94.12 1.05 94.67 0.75 84.97 1.54
VGG-VD16 94.43 0.68 94.76 0.72 84.12 0.97
GoogLeNet 94.57 0.98 94.68 1.01 84.06 1.16
ResNet-50 74.14 5.89 75.12 5.36 60.54 7.22
ResNet-101 72.36 5.96 72.85 5.09 59.39 6.68
ResNet-152 72.48 4.35 72.81 4.42 59.62 6.81

Table 1

Remote scene classification results of the five well-known pre-trained deep CNNs on three different remote
sensing datasets.

With various pre-trained deep CNN models and remote sensing datasets, the
remote scene classification performances are shown in Table 1. In Table 1, Ac and
SD denote accuracy and standard deviation, respectively.

In the experiment, pre-trained deep CNNs are directly used as feature extractors
in an unsupervised manner. By removing the last fully connected layer, the rest
parts of pre-trained deep CNNs extract high-dimensional feature vectors of remote
sensing images. These feature vectors are considered as final image representation
followed by a linear SVM classifier. From Table 1, we can see that all transferred
deep CNNs generated from AlexNet, CaffeNet, VGG-VD16, and GoogLeNet
achieve state-of-the-art performance. Pre-trained deep CNNs show strong general-
ization power in the transferring process. In addition to our surprise, the most
successful deep CNNs to date, ResNets fail to obtain a good experiment result, no
matter their layers are 50, 101, or 152. In ResNets, shortcut connections bring less
parameters and make the network much easier to optimize. At the same time, the
direct connection between input and output brings poor generalization ability when
we transfer them for other tasks. On the other hand, as shown in Figure 11, the
spatial information of remote sensing images in the Brazilian coffee scene dataset is
very simple. However, these remote sensing images are not optical (green-red-
infrared). In Table 1, the relatively poor performance on this dataset comes from
the difference in spectral information when we are transferring pre-trained deep
CNN s for remote scene classification.

In order to test the performance of transferred deep CNNs for each remote scene
class, in Figure 12, we draw the confusion matric of the experiment results on UC
Merced dataset based on pre-trained CaffeNet.

In Figure 12, the experiment results in perfect or near-perfect accuracy for most
of the scene categories. The relatively lower classification accuracy lies in the
categories of building, dense residential, medium residential, and tennis court.

11



Advanced Remote Sensing Technology for Synthetic Aperture Radar Applications, Tsunami...

However, all these classes have some very “close” neighbors. Taking dense residen-
tial as example, it suffers the presence of very close classes, like buildings and
medium residential, which we cannot even distinguish by eyes. Taking pre-trained
CaffeNet, for example, Figure 13 shows the detail changes of an optical remote
sensing image.

Abbreviated as “conv” and “fc,” reconstructions of convolutional feature maps
in the former network layers and that of fully connected layers are shown in
Figure 13. Figure 13 shows that the representations of convolutional layers are still
photographically similar with the remote sensing image to some extent, although
they become fuzzier and fuzzier from “convl” to “conv5.” In addition, the fully
connected layers rearrange the information from lower layers to generate represen-
tations that are more abstract. They compose of parts (e.g., the wings of airplanes)
similar but not identical to the ones found in the original image.

In Table 2, we compare our best result achieved via transferred deep CNNs with
various state-of-the-art methods on the UC Merced dataset. With a straightforward
and simple framework, transferred deep CNN achieves outstanding performance
on this dataset. We must note that our proposed method just provides basic
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Figure 12.
Confusion matrices of classification accuracies on UC Merced dataset based on pre-trained CaffeNet.
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Figure 13.
Reconstruction of deep CNN activations from different layers of transferred CaffeNet. The method presented in
[29] is used for visualization.
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Method Reference Accuracy (%)
SCK [28] 72.52
SPCK++ [30] 77.38
BRSP [31] 77.80
UFL [5] 81.67
CCM-BOVW [32] 86.64
mCENTRIST [33] 89.90
MSIFT [34] 90.97
COPD [35] 91.33
Dirichlet [36] 92.80
VLAT [10] 94.30
MCMI-based [37] 88.20
PSR [38] 89.10
UFL-SC [39] 90.26
Partlets [40] 91.33
Sparselets [41] 91.46
FBC [42] 85.53
LPCNN [43] 89.90
MTJSLRC [44] 91.07
SSBEFC [45] 91.67
CTS [46] 93.08
Transferred GoogLeNet — 94.57
Table 2

Classification accuracy (%) of reference and transferred deep CNN on the UC Merced dataset.

framework to directly transfer pre-trained deep CNNs for remote scene classifica-
tion in an unsupervised manner. The effectiveness of fine-tuning approach is much
dependent on the amount of images in remote sensing dataset, and the computation
time of it is more demanding compared with our proposed strategy [15].

5. Discussion

To solve the problem that deep CNNs tend to over-fit when trained with limited
remote sensing dataset, generalization power of deep CNNs plays the key role. In
this chapter, we try to transfer deep CNNs pre-trained by daily images for remote
scene classification and provide an insight for the generalization power of features
in the transferred deep CNNs. From the extensive experiments above, the deep
architecture of CNNs, which extracts semantic features of remote scenes, has been
proven to be critical for remote scene classification. Specifically, several practical
observations from the experiments and some limitations of our study are summa-
rized as follows:

From Table 1, we can see that with our proposed method the classification
accuracies of UC Merced dataset and WHU-RS dataset can both achieve state-of-
the-art results which are near 95%. In addition, small standard deviation of
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classification accuracy suggests that our proposed method is stable when applied for
remote scene classification. To our surprise, the most successful deep CNNs to date,
ResNets, fail to obtain good experiment result when we transfer it for remote scene
classification, no matter their layers are 50, 101, or 152. Shortcut connections in
ResNets bring poor generalization ability when we transfer them to remote scenes.
[21] This phenomenon indicates that not all successful deep CNNs are suitable for
transferring to the task of remote scene classification.

Different from the traditional view that all basic features (e.g., salient edges and
borders) in shallow layers of a deep CNN are more general than that learned in deep
layers, we find some features in shallow layer of deep CNNs show poor generaliza-
tion power when we transfer them for remote scene classification. High-level fea-
tures learned in deeper layers of transferred deep CNNs are more general than these
basic features.

In the remote sensing field, the scale of remote sensing datasets will be larger
and larger. On the other hand, the structure of deep CNN will be optimized, and the
parameters in it will be less and less. [47] Therefore, we could get more and more
useful information from remote sensing datasets, which provide a priori knowledge
for pre-trained deep CNNs and result in better generalization power.

Based on our study, the future research directions of applying deep CNNs for
remote scene classification may be as follows. Firstly, as we discussed above, when
transferring the most successful ResNet for remote scene classification, it does not
work as we expected. What is the proper architecture of deep CNN that is suitable
to transfer to remote scenes? Secondly, instead of directly transferring pre-trained
deep CNNs for remote scene classification, could we replace some basic features
that show poor generalization power in shallow layers of transferred deep CNN?
Finally, with more and more remote sensing information coming into our sight,
how can we use these a priori knowledge when we apply deep CNNs for remote
scene classification?

6. Conclusion

In this chapter, we have presented a framework to investigate the effectiveness
of transferred deep CNNs for remote scene classification. We test transferred deep
CNNs s for different remote sensing datasets and take a close look into the generali-
zation power of features in them.

The two main conclusions of this work are that (1) without shortcut connections
in the deep architecture as ResNet dose, most CNNs transferred from well-known
pre-trained deep CNNs achieve state-of-the-art performance in remote scene clas-
sification. (2) We further confirm the conclusion in the background of remote scene
classification that the generalization power derived from deep architectures brings
general hypothesis. Compared with basic features (e.g., salient edges and borders),
features in deeper layers are more general for remote scenes. Experiments on three
remote sensing datasets with different image resolutions have provided insightful
information. Transferred deep CNN improves the classification accuracy of remote
scenes on UC Merced dataset with a gain up to 1.49% compared with other
methods. High-level feathers in deeper layers of transferred deep CNNs are more
general for remote scene classification and result in satisfied performance in
unsupervised setting.

We believe our work in this chapter provides a thorough analysis about the
generalization power of transferred deep CNNs for remote scene classification. It
can serve as a good baseline for people to apply deep CNNs to other remote sensing
datasets.
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