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Chapter

Trapeziometacarpal Joint: A 
Mechanical Explanation of Total 
Prosthesis Failures
Victoria Spartacus

Abstract

Total prosthesis, which preserves strength and respects trapeziometacarpal 
(TMC) joint range of motion, is a surgical option considered for the TMC joint 
replacement. With the usual ball-and-socket design, patients obtain faster pain 
relief, stronger grip function, and shorter convalescence than with trapeziectomy. 
However, prostheses currently used have led to various early complications, espe-
cially in active and young patients. Revisions are most often due to the loosening of 
the trapezium cup and of the metacarpal stem and to the luxation of the first meta-
carpal bone. The short lifespan of these devices suggests the difficulty of designing 
a prosthesis that respects the complex anatomy and motions of the TMC joint. Early 
implant failure may reflect the fact that the current devices do not exactly replicate 
the true kinematics. The aim of this chapter will be to shed light mechanical expla-
nations for TMC prosthesis failures in regard to the complex kinematics of the joint.

Keywords: trapeziometacarpal joint, total prosthesis, failures

1. Introduction

The thumb column is composed of three bones: the scaphoid, trapezium, and 
first metacarpal (M1) (Figure 1).

The trapeziometacarpal (TMC) joint, composed of the trapezium and the M1, 
plays a capital role in strength and movement orientation of this column. This joint 
allows the opposition of the thumb and thus is highly solicited.

Arthrosis of the TMC joint, called rhizarthrosis, is the second most frequent 
arthritis of the hand [1]. It is prevalent among middle-aged and postmenopausal 
women [2]; one third of women over 55 are radiographically affected by rhizar-
throsis [3]. This painful and disabling pathology limits the range of motion and the 
strength of the thumb. It not only occurs mainly on the cartilage of the trapezium 
and the first metacarpal joint but can also affects the whole cartilaginous surface of 
the trapezium as defined by Dell [4] and Eaton and Littler [5] (Figure 2).

Its natural progression typically results in less pain, but hand function is reduced 
because of the Z-deformity of the thumb column. The base of the first metacarpal 
(M1) dislocates into adduction, in combination with hyperextension of the meta-
carpophalangeal (MCP) joint and contracture of the first web space. This natural 
progression toward pain relief often results in patients and surgeons taking in a 
wait-and-see approach. When conservative treatments fail, surgical options can 
be considered. The numerous surgical solutions proposed include trapeziectomy 
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with ligament interposition and arthrodesis [6]. Arthrodesis involves fusion of 
the trapezium and M1, to reduce pain by restraining movement. In trapeziectomy, 
the trapezium bone is removed and all the ligaments are sectioned. Trapeziectomy 
yields good pain results, but patients lack strength during movements [7]. These 
treatments do not respect the original anatomy of the joint and modify the kinemat-
ics of the TMC joint.

Another and more recent surgical option is total prosthesis, which preserves 
strength and respects TMC joint kinematics. With the usual ball-and-socket design, 
patients obtain faster and better pain relief, stronger grip function, and shorter 
convalescence than with trapeziectomy [8, 9]. However, there are also many reports 
of poor results [10]. Revisions are most often due to the loosening of the trapezium 
cup [11, 12] and of the metacarpal stem and to the luxation of the first metacarpal 
bone [13] (Figure 3).

The prostheses currently used have thus led to various early complications, 
especially in active young patients. The short lifespan of these devices suggests 
the difficulty of designing a prosthesis that respects the complex anatomy and 
motions of the TMC joint. Early implant failure may reflect the fact that current 
devices do not exactly replicate the true kinematics. Improved knowledge of TMC 
kinematics with implant could also enhance the design and consequently the 
lifespan of implants.

Figure 2. 
Rhizarthrosis of the trapeziometacarpal joint.

Figure 1. 
Thumb column.
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2. Trapeziometacarpal joint kinematics

A precise description of the TMC joint in an anatomic plane is complicated by 
the complexity of the joint anatomy. The TMC joint is 40° orientated with respect 
to the three anatomic planes (Figure 4). This joint is described according to four 
principal views:

• Palmar view: anterior view, observation of the palm of the hand

Figure 3. 
(A) Luxation of the first metacarpal bone by Klahn et al. [14] and (B) loosening of the trapezium cup by 
Lemoine et al. [15].

Figure 4. 
Thumb in resting position of a left hand. (A) Frontal plane and (B) sagittal plane.
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• Dorsal view: posterior view, observation in the dorsal face of the hand

• Ulnar view: a medial viewing angle (ulna side)

• Radial view: a lateral viewing angle (radius side)

In order to well understand the hand anatomy descriptive documents, certain 
criteria have to be taken into account. From the general view, the body is divided 
into two parts by vertical column. Then in anatomic study, the more the part of 
the body is close to the column, the more this part is medial. The more distant it 
is becoming from the column, the more lateral it is becoming from it. However, a 
difficulty arises with the human hand. The prono-supination movement gives to 
the thumb both possibilities according to the articular position of the wrist and the 
elbow. Thus a reference position has been established also called resting position. 
This position corresponds to the forearm in supination with the thumb in the lateral 
side, outwardly directed.

As it was mentioned previously, the TMC joint plays a fundamental role in the 
opposition mechanism of the thumb. It imparts a very high mobility, in regard 
to the M1 movement related to the trapezium. The TMC joint increasingly used, 
particularly with the appearance of the new technology, was a subject of interest.

The TMC joint is considered as a saddle-shape joint with two degrees of freedom 
(DOF) with nonorthogonal and nonintersected axes. This joint allows the thumb’s 
different movements: flexion/extension, abduction/adduction, axial rotation, and 
circumduction (Figure 5):

• Flexion: thumb movement in medial direction. The thumb fingertip draws 
near the palm of the hand.

• Extension: thumb movement in posterolateral direction. Opposite side of 
flexion.

• Abduction: thumb movement in anterolateral direction, perpendicular to the 
palm of the hand.

• Adduction: thumb movement in posteromedial direction, in the palm of the 
hand plane.

• Circumduction: combination of the flexion/extension and the abduction/
adduction movements.

• Axial rotation: rotation of the first metacarpal around his longitudinal axis.

The TMC joint is also a noncongruent joint with articular surface of the trape-
zium bigger than the M1 (Figure 6). This noncongruence of the articular surfaces 
implies translation of the M1 relatively to the trapezium.

Chèze et al. [16, 17] reported in their study values of M1 displacements in regard 
to the trapezium (Table 1).

Translations are considered to be negligible. Nevertheless, in regard to articu-
lar surface measurements, this conclusion is questionable [18, 19]. A study [18] 
realized measures on trapezium diameter. The results showed that the average 
diameter of the trapezium is 11.96 ± 1.32 mm. From these measurements it can 
be deduced that the M1 diameter is 34% larger than the trapezium diameter. In 
more recent study [19], the results show that the mean length of the trapezium 
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is 19.2 mm. From this value the M1 lateral displacement represents 25.5% of the 
trapezium surface that could not be negligible. In addition, in more recent study 
[20], displacement of the M1 was measured for different functional tasks as key 
pinch, jar grasp, and jar twist. In this study, the maximum radial/ulnar displace-
ment of the M1 is 5.7 mm. With this value the M1 displacement represents 47.7% of 
the trapezium diameter.

Moreover, the two DOF models are not precise enough. The dispersion in range 
of motion in the literature shows the difficulties to analyze with accuracy the 
kinematic of the TMC joint (Table 2).

Figure 6. 
Noncongruence of the TMC joint by Napier et al. [14].

Figure 5. 
Thumb movements by Dr Grégoire Chick.
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Several methods of thumb movement quantification have been established. 
These methods, including video technics [22, 23, 26], reflective markers [27, 28], 
and electromagnetic design [17, 29, 30], used different external markers as reference 
point. In 2001, Chèze et al. [17] elaborated an experimental protocol with a motion 
analysis system that allows to obtain the range of motion. In 2009, Goubier et al. 
[29] studied the movement with an optoelectronic system. These protocols used 
external markers to analyze the thumb kinematics. Then interference of soft tissue 
could influence the movements.

Tomographic imaging is an emerging method in thumb kinematics analysis. In 
vivo measurement has been established to evaluate axial rotation [25]. This rotation 
has been measured drawing reference lines in CT scan images. This study allows to 
measure the axial orientation of the M1.

In vivo studies, using CT scan methodology, based on TMC joint movement have 
been performed [31–34]. They described nonorthogonal and nonperpendicular 
axes, but they did not particularly described translations and axial rotation.

All previous studies aimed to characterize the thumb movement with different 
specific methods. However, they only considered the movement of healthy joint and 
not on pathologic one. Furthermore these studies did not focus on movement of the 
TMC prosthesis.

2.1 Material and methods

In order to analyze the movement of the TMC prosthesis, CT scans of the TMC 
joint under various postures of the thumb were performed with a general electric 
scanner light speed VCT64. The scan acquisition parameters were mAs 90, kV 120, 
slice thickness 0.625, and FOV small. Eight hands were obtained from six embalmed 
Caucasian cadaveric subjects, two males (three hands) and four females (five 
hands) with different degrees of rhizarthrosis according to the Dell classification 
[4] (Table 3). The subjects were divided into three groups: group 1, subjects with 
either no or stage 1 arthrosis; group 2, subjects with stage 2 and stage 3 arthrosis; 
and group 3, subjects with stage 4 arthrosis.

Three postures were chosen to cover the full range of thumb motion: commis-
sural closing (Figure 7(A)), grip (Figure 7(B)), and opposition (Figure 7(C)). 
Using Mimics® (Materialize 3D, Belgium), the DICOM data from the CT scans were 
used to develop 3D reconstructions of the TMC joint.

Kaplan 

[19]

Cooney 

et al. [20]

Chèze 

et al. 

(2001)[17]

Coert 

et al. 

[21]

Li et al. 

(2007) 

[24]

Cheema 

et al. (2006)

[25]

Axial 
rotation

17.5° 16.5° 38° 90° 45° 89°

Average range of movement of axial rotation.

Table 2. 
Example of disparity in range of movement of the thumb.

Medial/lateral displacement 1.7 mm, maximum 4.9 mm

Proximal/distal displacement 2.0 mm, maximum 5.9 mm

Anterior/posterior displacement 3.0 mm, maximum 6.3 mm

Table 1. 
Average displacement of the M1 by Chèze et al. [15]



7

Trapeziometacarpal Joint: A Mechanical Explanation of Total Prosthesis Failures
DOI: http://dx.doi.org/10.5772/intechopen.81318

CAD models of a currently used prosthesis (Figure 8) were coupled with the 3D 
reconstructions of the joint to provide numerical models of the TMC joint with a 
ball-and-socket implant. The CAD model, composed of three elements (stem, neck, 
and trapezium cup), was placed in the ATM using 3-Matic® (Materialize, Belgium).

Working from the 3D models, the commissural closing posture was the refer-
ence posture for the complex trapezium/cup and the complex M1/stem/neck. These 
complexes were superposed to the M1 and the trapezium in opposition and in grip 
posture, using a surface-based registration procedure based on the iterative closest 
point (ICP) [35] (Figure 9).

Thus for each posture, we determined the position of the complex M1/stem/
neck relative to the complex trapezium/cup. Then, for each hand, considering the 
complex trapezium/cup as fixed, the different postures were superposed using the 
same surface-based registration procedure. The method of superposition was previ-
ously described by Cerveri et al. [31] (Figure 10).

Potential translations of the head relative to the cup were determined by the 
distance between the center of the cup and the center of the head. This distance was 
calculated for grip and opposition posture (Figure 11). Zero distance is being taken 
as indicating none translation. A distance other than zero was taken as a sign of 
translation, with the head of the neck penetrating the cup. In this case, the intersec-
tion volume between the cup and the head was calculated in order to evaluate the 
percentage of the cup volume occupied by the head.

2.2 Results

Regarding the straight neck, the smallest distances between the cup and the 
head of the prosthesis in grip posture or in opposition posture are 1.3 and 0.8 mm, 
respectively. Regarding the angled neck, the smallest distances between the cup 

Subject 1.R 2.R 3.R 4.R 5.R 5.L 6.R 6.L

Gender M M F F F F F F

Age 82 90 92 84 94 94 94 94

Side Right Right Right Right Right Left Right Left

Stage of arthrosis 3 1 3 4 NA 4 2 2

NA, no arthrosis; Stage 1, subchondral sclerosis with no osteophytes or subluxation; Stage 2, small subluxation and 
small internal osteophytes; Stage 4, no remaining space between the bones.

Table 3. 
Summary of cadaveric subjects.

Figure 7. 
(A) Thumb in commissural closing posture, (B) thumb in grip posture and (C) thumb in opposition posture.
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Figure 8. 
CAD models of current prosthesis used in this study: cup in orange, neck in green, and stem in blue.  
(A) Prosthesis with a straight neck and (B) prosthesis with an angle neck.

Figure 9. 
Superposition procedure.

Figure 10. 
Superposition procedure for complex trapezium/cup and complex M1/stem/neck.
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and the head of the prosthesis in grip posture or in opposition posture are 0.6 and 
1.2 mm, respectively.

Thus, for both types of the neck, for each posture, distances are superior to 
zero. Thus for each of the three groups, the head of the prosthesis translates during 
movements and penetrates into the cup.

Regarding prosthesis with a straight neck, the intersection volume between 
cup and head varied from 0 to 24.4 mm3 (Table 4). When the volume is 0, the 
elements do not intersect. In this case, the head is completely out of the cup. When 
the volume is 24.4 mm3, the elements intersect. The intersecting volume represents 
67.6% of the cup volume.

Regarding prosthesis with an angled neck, the intersection volume between 
cup and head varied from 0 to 25.5 mm3 (Table 4). When the volume is 0, the 
elements do not intersect. In this case, the head is completely out of the cup. When 

Figure 11. 
Right: distance between cup and head center. Left: intersection volume between the cup and the head.

D1 

(mm)

V1 

(mm3)

D2 

(mm)

V2 

(mm3)

D3 

(mm)

V3 

(mm3)

D4 

(mm)

V4 

(mm3)

5.R 
G1

5.2 0.0 2.5 6.3 3.5 0.8 4.9 0.0

2.R 
G1

5.3 0.0 3.8 0.2 3.4 1.0 5.4 0.0

6.R 
G2

2.3 9.0 0.8 24.4 1.4 16.6 2.9 3.6

6.L 
G2

3.2 2.6 1.6 15.3 1.5 15.7 3.6 0.5

3.R 
G2

4.3 0.0 3.1 2.8 3.2 1.9 5.1 0.0

1.R 
G2

4.9 0.0 2.0 11.1 1.8 12.4 4.0 0.0

4.R 
G3

1.5 16.2 0.8 24.4 0.6 25.5 1.2 19.3

5.L 
G3

1.3 17.9 1.4 18.0 0.7 25.1 1.5 15.7

Table 4. 
For each subject, distances between the head gravity center of the straight neck and the center of the cup in grip 
posture (D1) and in opposition posture (D2). V1 is the theoretical intersection volume between the cup and the 
head of the straight neck in grip posture and V2 in opposition posture. Same results are observed for angled neck 
in D3, D4, V3, and V4.
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the volume is 25.5 mm3, the elements intersect. The intersecting volume represents 
70.8% of the cup volume.

2.3 Conclusion

The current total prosthesis, with the usual ball-and-socket design, preserves 
strength and respects TMC range of motion. However, they have led to various early 
complications, especially in active young patients. This study focused on the origin 
of the TMC prostheses failures to elucidate their mechanical explanation.

The CAD model of a ball-and-socket design prosthesis implanted in each 
different postures of each subject shows that the original kinematics of the joint is 
disturbed by the prosthetic elements. The displacements of the head of the prosthe-
sis between each posture are greater than those of the cup. We observe numerical 
penetration by the head of the prosthesis into the cup. This phenomenon could 
in vivo correspond to an overstress of prosthetic elements. This penetration sup-
ports the fact that the most frequent prosthesis revision is due to the loosening of 
the trapezium cup [11, 36]. Chakrabarti et al. [36] showed that 91% of prosthesis 
revisions are due to loosening of the cup.

Thus, the movement of the prosthesis does not fully respect the anatomical 
kinematics. The TMC joint is known to have nonintersecting and nonorthogonal 
rotation axes [31, 32]. Moreover, this joint allowed translations of the M1 over the 
trapezium [32, 37]. Then simplifying the TMC joint to a ball-and-socket articula-
tion could in vivo lead to an overstress of the prosthesis. The overstressing produced 
by this design could partly explain the short lifespan of current prostheses. In the 
light of this study’s findings, a review of the design of these prostheses appears 
warranted.
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