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Chapter

Optical Propagation in
Magneto-Optical Materials
Licinius Dimitri Sá de Alcantara

Abstract

Magneto-optical materials present anisotropy in the electrical permittivity con-
trolled by a magnetic field, which affects the propagation characteristics of light and
stands out in the design of nonreciprocal devices, such as optical isolators and
circulators. Based on Maxwell’s equations, this chapter focuses on the wave propa-
gation in magneto-optical media. The following cases are covered: The propagation
of a plane wave in an unbounded magneto-optical medium, where the phenomenon
of Faraday rotation is discussed, and the guided propagation in planar magneto-
optical waveguides with three and five layers, highlighting the phenomenon of
nonreciprocal phase shift and its potential use on the design of nonreciprocal optical
devices.

Keywords: magneto-optical media, light propagation, Faraday rotation,
nonreciprocal phase shift, optical devices

1. Introduction

A material is classified as magneto-optical (MO) if it affects the propagation
characteristics of light when an external magnetic field is applied on it. For ferro-
magnetic materials, which are composed by magnetically ordered domains, MO
phenomena may also occur in the absence of an external magnetic field. A great
number of magneto-optical phenomena are the direct or indirect outcome of the
splitting of energy levels in an external or spontaneous magnetic field [1].

The MO effect depends on the polarization of the magnetic field. It also depends
on the polarization of the light and on its propagation direction, so it is an aniso-
tropic phenomenon, which has attracted great attention from researchers in optical
devices. The MO materials can have their anisotropy controlled by a magnetostatic
field (HDC), and this behavior can be exploited on the design of nonreciprocal
devices. By nonreciprocal devices or structures, it means that waves or guided
modes supported by them have their propagation characteristics altered when the
wave propagation sense is reversed. Optical isolators and circulators can be
highlighted as examples of such devices. Isolators are designed to protect optical
sources from reflected light and are present in optical amplification systems. The
circulators are employed as signal routers and act in devices that extract wave-
lengths in WDM systems.

The design of optical devices with MO materials is addressed in several works
such as [2–5]. The challenges for the design of such devices are the development of
MO materials with high-induced anisotropy and high transparency at the optical
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spectrum. Therefore, research activities on the improvement of MO materials and
structures have also great relevance and are covered in works such as [6–10].
Integration of MO materials and structures with other optical system components,
with reduction of insertion losses, is also a target for researches in optical devices.
Research of MO effects in optical structures such as photonic crystals has also been
addressed [11–13].

This chapter presents analytical formalisms derived from Maxwell’s and wave
equations to analyze the propagation characteristics of transverse electromagnetic
(TEM) waves in unbounded magneto-optical material. The guided propagation
characteristics of transverse magnetic (TM) modes in three- and five-layered planar
magneto-optical waveguides are also formalized and discussed. The analytical for-
malism is versatile so that each layer can be set as magneto-optical or isotropic in
the mathematical model.

2. Wave propagation characteristics

This section focuses on the optical propagation analysis in magneto-optical
media using Maxwell’s equations as starting point. In a magnetized MO media,
cyclotron resonances occur at optical frequencies, if the wave is properly polarized.
This physical phenomenon induces a coupling between orthogonal electric field
components in the plane perpendicular to the applied magnetostatic field HDC,
which affects the wave polarization. Depending on the orientation of the magneto-
static field, the configuration of the electric permittivity tensor changes. If HDC is
oriented along one of the Cartesian axes, the relative electric permittivity assumes
the form

εr ¼
n2 0 0

0 n2 jδ

0 �jδ n2

2

6

4

3

7

5
, for HDC k x� axis; (1)

εr ¼
n2 0 jδ

0 n2 0

�jδ 0 n2

2

6

4

3

7

5
, for HDC k y� axis; (2)

εr ¼
n2 jδ 0

�jδ n2 0

0 0 n2

2

6

4

3

7

5
, for HDC k z� axis: (3)

where n is the refractive index of the material and δ is the magneto-optical
constant. The MO constant is proportional to HDC. If the sense of HDC is reversed,
δ(-HDC) = �δ(HDC), and for HDC = 0, the off-diagonal components of the electric
permittivity tensor are zero [14, 15].

2.1 TEM wave in an unbounded magneto-optical medium

Let us consider a TM wave propagating in an unbounded MOmedium, as shown
in Figure 1.

From Maxwell’s equations, the vectorial Helmholtz equation for anisotropic
media and for the electric field E x; y; zð Þ can be written as

ω2μ0ε0εrEþ ∇
2E� ∇ ∇ � E

� �

¼ 0, (4)
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where ω is the angular frequency in rad/s, μ0 is the magnetic permeability of the
vacuum in H/m, and ε0 is the electric permittivity of the vacuum in F/m.

To develop a plane wave solution for MO media, it is assumed that HDC is
parallel to the y-axis and εr is given by Eq. (2) from now on. This assumption does
not imply on lack of generality because it is assumed that the wave propagates at an
arbitrary direction, with the electric field vector given by

E ¼ E0 exp jωtð Þ exp �j γxxþ γyyþ γzz
� �h i

: (5)

where γ ¼ γx i
!
þγy j

!
þγzk

!
is the propagation constant vector.

From Gauss’ law for a medium with equilibrium of charges, ∇: ε0εrE
� �

¼ 0, we
obtain:

∇ � E ¼ j
δ

n2
∂Ex

∂z
� ∂Ez

∂x

� �

: (6)

Substituting Eq. (6) into Eq. (4) leads to

ω2μ0ε0εrEþ ∇
2E� j

δ

n2
∇

∂Ex

∂z
� ∂Ez

∂x

� �

¼ 0: (7)

Expanding Eq. (7) in the Cartesian coordinates results in

ω2μ0ε0 n2Ex þ jδEz

� �

þ ∂
2Ex

∂x2
þ ∂

2Ex

∂y2
þ ∂

2Ex

∂z2
� j

δ

n2
∂
2Ex

∂x∂z
� ∂

2Ez

∂x2

� �

¼ 0, (8)

ω2μ0ε0n
2Ey þ

∂
2Ey

∂x2
þ ∂

2Ey

∂y2
þ ∂

2Ey

∂z2
� j

δ

n2
∂
2Ex

∂y∂z
� ∂

2Ez

∂x∂y

� �

¼ 0, (9)

Figure 1.
TEM wave in an unbounded magneto-optical medium.
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ω2μ0ε0 �jδEx þ n2Ez

� �

þ ∂
2Ez

∂x2
þ ∂

2Ez

∂y2
þ ∂

2Ez

∂z2
� j

δ

n2
∂
2Ex

∂z2
� ∂

2Ez

∂x∂z

� �

¼ 0: (10)

The spatial derivatives in Eqs. (8)–(10) are now calculated by considering
Eq. (5):

ω2μ0ε0n
2 � γj j2 � j

δ

n2
γxγz

� �

Ex þ jδ ω2μ0ε0 �
1
n2

γ2x

� �

Ez ¼ 0 (11)

ω2μ0ε0n
2 � γj j2

� �

Ey þ j
δ

n2
γyγzEx � γxγyEz

� �

¼ 0, (12)

�jδ ω2μ0ε0 �
1
n2

γ2z

� �

Ex þ ω2μ0ε0n
2 � γj j2 � j

δ

n2
γxγz

� �

Ez ¼ 0, (13)

where γj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2x þ γ2y þ γ2z

q

.

2.1.1 TEM wave with electric field vector parallel to HDC

By observing Eqs. (11–13), we note that when the electric field of the electro-
magnetic wave is polarized along the y-axis and is parallel to HDC, so that
Ex = Ez = 0, the magneto-optical constant δ related to HDC will have no effect on the
propagation characteristics of the wave. In this case, from Eq. (12), the propagation
constant modulus would be

γj j ¼ nω
ffiffiffiffiffiffiffiffiffiffi

μ0ε0
p

, (14)

which is the same expression for a traveling wave in an isotropic material. Note
that when the electric field is polarized along the y-axis, the wave is traveling in the
plane xz, so that γy = 0.

2.1.2 The general expression for the propagation constant

In a general case, by solving the system formed by Eqs. (11) and (13), we obtain
the following equation

ω2μ0ε0n
2 � γj j2 � j

δ

n2
γxγz

� �2

� δ2 ω2μ0ε0 �
1
n2

γ2x

� �

ω2μ0ε0 �
1
n2

γ2z

� �

¼ 0: (15)

Solving Eq. (15) for |γ|, we obtain:

γj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2μ0ε0n
2 � j

δ

n2
γxγz � δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2μ0ε0 �
1
n2

γ2x

� �

ω2μ0ε0 �
1
n2

γ2z

� �

s

v

u

u

t : (16)

Note that when the MO constant δ = 0, Eq. (16) reduces to Eq. (14).
The parameters γx and γz are projections of the propagation constant vector

along the x and the y-axis, respectively.

2.1.3 TEM wave propagating parallel to HDC

If the TEM wave is propagating along the HDC direction (y-axis), so that
γx = γz = 0, Eq. (16) assumes the simpler form:
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γj j ¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0ε0 n2 � δð Þ
p

, (17)

and from Eq. (5), the electric field vector becomes

E ¼ E0x i
!
þE0zk

!� �

exp j ωt� yω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0ε0 n2 � δð Þ
p

� �h i

: (18)

From Eq. (11), we see that the electric field components are connected by

E0x ¼ �jδ
ω2μ0ε0

ω2μ0ε0n
2 � γj j2

� �E0z: (19)

Substituting Eq. (17) in Eq. (19), we obtain:

E0x ¼ �jE0z: (20)

Therefore, substituting Eq. (20) in Eq. (18), and given that �j = exp(�jπ/2), the
electric field components can be written as

Ex ¼ E0z exp j ωt� yω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0ε0 n2 � δð Þ
p

� π=2
� �h i

, (21)

Ez ¼ E0z exp j ωt� yω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0ε0 n2 � δð Þ
p

� �h i

: (22)

Eqs. (21) and (22) represent a circular polarized wave, which can be dismem-
bered into two circular polarized eigenmodes propagating along the y-axis with
different propagation constants. If the plus sign (in “�”) is adopted for Eqs. (21)
and (22), we obtain a counterclockwise (CCW) circular polarized eigenmode. Oth-
erwise, if the minus sign is adopted, we obtain a clockwise (CW) circular polarized
eigenmode, as shown in Figure 2. From Eq. (17), it is possible to associate an
equivalent refractive index to each eigenmode:

nþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ δ
p

, for the CCW circular polarized eigenmode;
n� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � δ
p

, for the CW circular polarized eigenmode.

A linear polarized wave propagating along the y-axis may be decomposed into
two opposite circular polarized waves in the xz plane, as shown in Figure 2. Since
these eigenmodes propagate with distinct propagation constants, the linear

Figure 2.
Decomposition of a linear polarized TEM wave into two circular polarized components. The circular polarized
components travel with distinct propagation constants in a MO medium.
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polarization will rotate in the xz plane as the wave propagates along the y-axis, in a
phenomenon known as Faraday rotation, which is depicted in Figure 3.

When the sense of the magnetostatic field HDC is reversed, the magneto-optical
constant δ changes its signal, and the values of n+ and n� are interchanged, and the
sense of rotation of a linear polarized wave in the MO media will change.

The Faraday rotation angle (ϕF) may be calculated (in radians) as a function of
the propagation distance y by

ϕF ¼ 1
2

ϕþ � ϕ�ð Þ ¼ 1
2

nþ
2π
λ0

y� n�
2π
λ0

y

� �

¼ π

λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ δ
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � δ
p� �

y, (23)

where λ0 is the optical wavelength in vacuum. The Faraday rotation effect is
responsible for a periodic power transfer between the transverse components, in
this case, Ex and Ez. This phenomenon in MO materials may be exploited for the
design of optical isolators based on Faraday rotation.

When a MO waveguide, with HDC applied along its longitudinal direction,
supports degenerate orthogonal quasi TEM modes, the power transfer between
these modes will be maximized. Figure 4 shows a MO rib waveguide [16], where
layers 1 and 2 are composed of bismuth yttrium iron garnet (Bi-YIG) grown on top
of a gadolinium gallium garnet (GGG) substrate with nSR = 1.94. For the Bi-YIG
layers, the relative permittivity tensor has the form of Eq. (2), with δ = 2.4 � 10�4,

Figure 3.
Faraday rotation of a linear polarized TEM wave in a MO medium. The propagation direction is parallel to
the magnetostatic field HDC.

Figure 4.
Magneto-optical rib waveguide.
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n1 = 2.19, and n2 = 2.18. The waveguide dimensions are w = 8 μm, h = 0.5 μm,
t1 = 3.1 μm, and t2 = 3.4 μm. The optical wavelength is λ0 = 1.485 μm.

Figure 5 shows numerical results for the power transfer between the transverse
components along the propagation direction. These results were obtained using a
finite difference vectorial beam propagation method (FD-VBPM) [17]. We observe
that the length for maximum energy transfer is around 6800 μm. In practice, as
observed in [16], the device length must be set at half that length (�3400 μm) so
that a 45° rotation is achieved at the output port. Therefore, if a reflection occurs at
this point, the reflected field will complete a 90° rotation at the input port, which
can then be blocked with a polarizer without affecting the input field, so that an
optical isolator is obtained.

In Eq. (23), by adopting δ = 2.4 � 10�4, n = n1 = 2.19, λ0 = 1.485 μm, and
ϕF = π/4 (45°), we obtain y = 3388 μm, which is a propagation length that
converges with the FD-VBPM result.

2.1.4 TEM wave propagating along the diagonal of an imaginary cube

Before finishing this section, let us consider another particular case of propaga-
tion direction—suppose, in Figure 1, that γx = γy = γz = γu, with γu 6¼ 0. This case
corresponds to a TEM wave propagating along the diagonal of an imaginary
cube, adjacent to the Cartesian axes. From Eq. (16), we obtain:

γj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2μ0ε0n
2 � j

δ

n2
γ2u � δ ω2μ0ε0 �

1
n2

γ2u

� �

s

: (24)

From the relation γj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2x þ γ2y þ γ2z

q

we can also obtain:

γj j ¼ γu
ffiffiffi

3
p

: (25)

Equaling Eqs. (24)–(25) and solving for γu result in

γu ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0ε0 n2 � δð Þ
3� δ

n2 þ j δ
n2

s

: (26)

Figure 5.
Normalized intensity evolution of the transverse field components along the propagation direction (y-axis) of
the MO waveguide.
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Substituting Eq. (26) in Eq. (25), we obtain the propagation constant:

γj j ¼ ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0ε0 n2 � δð Þ
1� δ

3n2 þ j δ
3n2

s

: (27)

The corresponding electric field vector can be retrieved by substituting the
results of Eqs. (26)–(27) in Eq. (11) to obtain

Ex ¼ �jEz: (28)

However, for the considered propagation direction, the Ey component is not
zero. From Eq. (12) we obtain:

Ey ¼ � n2 � δþ j3 δ� n2ð Þ
5n2

Ez: (29)

By using the results of Eqs. (26)–(29) in Eq. (5), we can express the electric field
vector for this particular case by

E ¼ �j i
!
� n2 � δþ j3 δ� n2ð Þ

5n2
j
!
þ k

!
� �

E0z exp j ωt� ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ0ε0 n2 � δð Þ
3� δ

n2 þ j δ
n2

s

xþ yþ zð Þ
 !" #

,

(30)

where i, j, and k are the unit vectors along the x-, y-, and z-axis, respectively.
As in the previous case of propagation, Eq. (30) provides two eigenmodes for

TEM propagation. From Eq. (28) we can observe that, when projected in the xz
plane, the electric field vector of each eigenmode is circular polarized. The combi-
nation of these eigenmodes will result in a wave with linear polarization progres-
sively rotated as it propagates. The Ey component has the role of projecting the
Faraday rotation to the plane perpendicular to the propagation direction (the diag-
onal of the cube), since the wave is TEM regarding this propagation direction.
Figure 6 shows a simulation of the TEM wave eigenmodes along the diagonal of an
imaginary cube.

The simulations presented in Figure 6 were performed for f = 193.4145 THz,
n = 2, and δ = 0.2. Note that both eigenmodes present losses as they propagate. This
is due the complex characteristic of the propagation constant expressed by Eq. (27),
where the imaginary part depends on the magneto-optical constant δ. It was
observed that increasing δ enhances the Faraday rotation but also increases the
losses for diagonal propagation.

Equivalent refractive indexes for the circular polarized eigenmodes can be
obtained from Eq. (27), which leads to the following equation to compute the
Faraday rotation for diagonal propagation:

ϕF ¼ π

λ0
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ δ

1þ δ
3n2 þ j δ

3n2

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 � δ

1� δ
3n2 þ j δ

3n2

s !

d, (31)

where d is the propagation distance along the diagonal.
For n = 2, δ = 0.2, and λ0 = 1.55 μm, we obtain ϕF/d = 0.27046 rads/μm.

Comparing with the case for propagation along the y-axis (parallel to HDC), by
using Eq. (23), we obtain ϕF/y = 0.40549 rads/μm. These results show that we can
obtain a better Faraday rotation when the propagation direction is aligned with the
magnetostatic field, when considering TEM waves.
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2.2 TM mode in a planar magneto-optical waveguide

Figure 7 presents a planar MO waveguide, which is composed by three MO
layers. The magnetostatic field HDC is applied along the y-axis. The propagation
direction is now the z-axis. The planar waveguide supports transversal electric, TE,
modes (Hx, Ey, Hz components) and transversal magnetic, TM, modes (Ex, Hy, Ez

components). As discussed in Section 2.1.1, if HDC is parallel to the electric field
vector of the wave, then MO constant δ does not affect the propagation character-
istics of the mode. Therefore, for the TE modes, no MO effect will be observed. For
TM modes, however, the electric field components are perpendicular to HDC, and

Figure 6.
TEM eigenmodes for diagonal propagation where γx = γy = γz. The trajectory of the electric field vector is
represented by red lines.

Figure 7.
Longitudinal section of a planar MO waveguide.
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nonreciprocal propagation characteristics will take place. In this section, mathe-
matical expressions to calculate the propagation constants for TM modes in a MO
planar waveguide will be derived. For the occurrence of guided modes in the
structure shown in Figure 7, n1 > n2 and n1 > n3.

Defining ξ as the inverse of the electric permittivity tensor of Eq. (2), we have:

ξ ¼ ε
�1
r ¼

n2

n4 � δ2
0 � jδ

n4 � δ2

0
n2

n4 � δ2
0

jδ

n4 � δ2
0

n2

n4 � δ2

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

¼
ξxx 0 �ξzx

0 ξyy 0

ξzx 0 ξzz

2

6

4

3

7

5
: (32)

From Maxwell’s equations at the frequency domain, considering TM modes (Ex,
Hy, Ez components) and no field spatial variations along the y-axis, we obtain:

jωμHy ¼ jβEx þ
∂Ez

∂x
, (33)

Ex ¼
1
ε0

ξxx
β

ω
Hy þ j

ξzx

ω

∂Hy

∂x

� �

, (34)

Ez ¼
1
ε0

ξzx
β

ω
Hy � j

ξzz

ω

∂Hy

∂x

� �

, (35)

where β is the propagation constant of the guided TM mode in radians per
meter.

Substituting Eqs. (34)–(35) in Eq. (33), we obtain the following wave equation
for nonreciprocal media in terms of the Hy component:

∂
2Hy

∂x2
þ k20 � ξxxβ

2

ξzz

 !

Hy ¼ 0, (36)

where k0 ¼ ω
ffiffiffiffiffiffiffi

με0
p

.
The solution for Hy is expressed for each waveguide layer as.

Hy ¼ C exp �ζxð Þ, for x≥0: (37)

Hy ¼ C cos κxð Þ þD sen κxð Þ, for–d≤ x≤0: (38)

Hy ¼ C cos κdð Þ �D sen κdð Þ½ � exp γ xþ dð Þ½ �, for x≤ � d: (39)

The solution for the component Ez at each layer is obtained by substituting the
corresponding solution for Hy in Eq. (35), resulting in.

Ez ¼
C

ωε0
ξ 3ð Þ
zx β þ jζξ 3ð Þ

zz

� �

exp �ζxð Þ, for x≥0: (40)

Ez ¼
1

ωε0
C ξ 1ð Þ

zx β cos κxð Þ þ jκξ 1ð Þ
zz sen κxð Þ

h i

þD ξ 1ð Þ
zx βsen κxð Þ � jκξ 1ð Þ

zz cos κxð Þ
h in o

, for–d≤ x≤0:

(41)

Ez ¼
C cos κdð Þ �Dsen κdð Þ

ωε0
ξ 2ð Þ
zx β � jγξ 2ð Þ

zz

� �

exp γ xþ dð Þ½ �, for x≤ � d: (42)

The superscripts between parentheses on the inverse permittivity tensor ele-
ments identify the corresponding waveguide layer, as specified in Figure 7. The
continuity of Ez at x = 0 and at x = �d leads to the following system:
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C ξ 3ð Þ
zx � ξ 1ð Þ

zx

� �

β þ jζξ 3ð Þ
zz

h i

þD jκξ 1ð Þ
zz

� �

¼ 0, (43)

C ξ 1ð Þ
zx � ξ 2ð Þ

zx

� �

β þ jγξ 2ð Þ
zz

h i

cos κdð Þ � jκξ 1ð Þ
zz sen κdð Þ

n o

þD ξ 2ð Þ
zx � ξ 1ð Þ

zx

� �

β � jγξ 2ð Þ
zz

h i

sen κdð Þ � jκξ 1ð Þ
zz cos κdð Þ

n o

¼ 0:
(44)

After solving this system formed by Eqs. (43)–(44), we obtain:

tan κdð Þ ¼ κξ 1ð Þ
zz ζξ 3ð Þ

zz þ γξ 2ð Þ
zz � j ξ 3ð Þ

zx � ξ 2ð Þ
zx

� �

β
	 


κξ 1ð Þ
zz

� �2 � ξ 3ð Þ
zx � ξ 1ð Þ

zx

� �

β þ jζξ 3ð Þ
zz

	 


ξ 2ð Þ
zx � ξ 1ð Þ

zx

� �

β � jγξ 2ð Þ
zz

	 


: (45)

The constants ζ, κ, and γ can be determined by substituting Eq. (37), Eq. (38), or
Eq. (39), respectively, in Eq. (36), resulting in

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ 3ð Þ
xx β

2 � k20
ξ 3ð Þ
zz

s

, (46)

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 � ξ 1ð Þ
xx β

2

ξ 1ð Þ
zz

s

, (47)

γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ 2ð Þ
xx β

2 � k20
ξ 2ð Þ
zz

s

, (48)

where k0 = 2π/λ0, and λ0 is the optical wavelength.
From the roots of Eq. (45) for β, the dispersion curve for TM modes in MO

waveguides can be retrieved. Assuming that n1 = 2.26, n2 = 2.0, n3 = 2.23, d = 1 μm,
and only the layer 3 is magneto-optical with δ = 0.019, the dispersion curve for the
fundamental and a superior TM mode is shown in Figure 8. We observe that the
effective index profile changes when the propagation direction is reversed, which
opens the possibility to the design of nonreciprocal devices. This phenomenon is
known as nonreciprocal phase shift. If the magnetostatic field is not applied (δ = 0),
the effective index profile becomes reciprocal and converges to the dashed line

Figure 8.
Dispersion curves of the fundamental TM0 mode and the superior TM1 mode.
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shown in Figure 8. The TMmodes reach cutoff for optical wavelengths at which the
effective index reaches the minimum value of 2.23. For greater optical wavelengths,
the mode becomes irradiated and escapes through layer 3.

Figure 9 shows the transversal distributions of the Hy component at two distinct
optical wavelengths. For this waveguide design, λ0 = 1.55 μm is near cutoff, and the
mode is highly distributed in the MO layer, which increases the nonreciprocal phase
shift. Note from Figure 8 that the difference between the effective indexes of the
counter propagating TM modes are greater for optical wavelengths near cutoff, but
as the wavelengths decreases, the mode becomes more confined at the waveguide
core, and its interaction with the MO layer decreases, resulting in a decrease of the
nonreciprocal phase shift effect, considering this waveguide configuration.

2.3 TM mode in a planar magneto-optical directional coupler

Now let us consider a five-layered MO planar structure as shown in Figure 10.

Figure 9.
Transversal distribution of the Hy component of the fundamental TM0 mode at λ0 = 1.31 μm and at
λ0 = 1.55 μm.

Figure 10.
Longitudinal section of the five-layered MO planar structure.
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The solutions for Eq. (36) in each layer, making use of the proper radiation
conditions, are [18]

Hy ¼ A1 exp �γ1 x� S3 � d2ð Þ½ �, for x≥ S3 þ d2,

Hy ¼ A2 cos κ2 x� S3 � d2=2ð Þ½ � þ A3 sin κ2 x� S3 � d2=2ð Þ½ � for S3 ≤ x≤ S3 þ d2,

Hy ¼ A4 exp �γ3xð Þ þ A5 exp γ3xð Þ, for –S3 ≤ x≤ S3,

Hy ¼ A6 cos κ4 xþ S3 þ d4=2ð Þ½ � þ A7 sin κ4 xþ S3 þ d4=2ð Þ½ �, for –S3–d4 ≤ x≤ –S3,

Hy ¼ A8 exp γ5 xþ S3 þ d4ð Þ½ �, for x≤ –S3–d4,

where A1 through A8 are constants to be determined, κi and γj are given by.

κi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k20 � ξ ið Þ
xxβ

2

ξ ið Þ
zz

s

, i ¼ 2,4, (49)

γj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ξ jð Þ
xx β

2 � k20
ξ jð Þ
zz

s

, j ¼ 1, 3, 5, (50)

where k0 = 2π/λ0, and λ0 is the optical wavelength.
The electric field components Ex and Ez can be directly obtained with Eq. (34)

and Eq. (35), respectively. Applying the boundary conditions for the tangential
components Hy and Ez, one obtains a system of eight equations and eight
unknowns, which can be conveniently written in matrix form as follows:

M βð Þ½ �A ¼ 0: (51)

Here, [M(β)] is an 8�8 matrix that depends on the unknown longitudinal
propagation constant β and A = [A1 A2 … A8]

T. The propagation constant can be
easily found by solving the equation Det([M(β)]) = 0. The nonzero elements of the
matrix [M(β)] are listed below:

M11 ¼ 1;M12 ¼ � cos κ2d2=2ð Þ;M13 ¼ � sin κ2d2=2ð Þ;
M21 ¼ �jξ 1ð Þ

zx β þ γ1ξ
1ð Þ
zz ;M22 ¼ jξ 2ð Þ

zx β cos κ2d2=2ð Þ � κ2ξ
2ð Þ
zz sin κ2d2=2ð Þ;

M23 ¼ �jξ 2ð Þ
zx β sin k2d2=2ð Þ þ k2ξ

2ð Þ
zz cos k2d2=2ð Þ;

M32 ¼ cos κ2d2=2ð Þ;M33 ¼ � sin κ2d2=2ð Þ;M34 ¼ � exp �γ3S3ð Þ;M35 ¼ � exp γ3S3ð Þ;
M42 ¼ �jξ 2ð Þ

zx β cos κ2d2=2ð Þ � κ2ξ
2ð Þ
zz sin κ2d2=2ð Þ;

M43 ¼ jξ 2ð Þ
zx β sin κ2d2=2ð Þ � κ2ξ

2ð Þ
zz cos κ2d2=2ð Þ;

M44 ¼ jξ 3ð Þ
zx β � ξ 3ð Þ

zz γ3
� �

exp �γ3S3ð Þ;M45 ¼ jξ 3ð Þ
zx β þ ξ 3ð Þ

zz γ3
� �

exp γ3S3ð Þ;
M54 ¼ exp γ3S3½ �;M55 ¼ exp �γ3S3½ �;M56 ¼ � cos κ4d4=2ð Þ;M57 ¼ � sin κ4d4=2ð Þ;
M64 ¼ � jξ 3ð Þ

zx β þ ξ 3ð Þ
zz γ3

� �

exp γ3S3½ �;M65 ¼ � jξ 3ð Þ
zx β þ ξ 3ð Þ

zz γ3
� �

exp �γ3S3½ �;

M66 ¼ jξ 4ð Þ
zx β cos κ4d4=2ð Þ � ξ 4ð Þ

zz κ4 sin κ4d4=2ð Þ;
M67 ¼ jξ 4ð Þ

zx β sin κ4d4=2ð Þ þ ξ 4ð Þ
zz κ4 cos κ4d4=2ð Þ;

M76 ¼ cos κ4d4=2ð Þ;M77 ¼ � sin κ4d4=2ð Þ;M78 ¼ �1;

M86 ¼ �jξ 4ð Þ
zx β cos κ4d4=2ð Þ � ξ 4ð Þ

zz κ4 sin κ4d4=2ð Þ;
M87 ¼ jξ 4ð Þ

zx β sin κ4d4=2ð Þ � ξ 4ð Þ
zz κ4 cos κ4d4=2ð Þ;

M88 ¼ jξ 5ð Þ
zx β þ ξ 5ð Þ

zz γ5;
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As an example, Table 1 shows the material parameters and layer thicknesses for
each layer. Layers 1 and 5 are unbounded, and their thicknesses are theoretically
infinite for the analytical model. The optical wavelength is λ0 = 1.55 μm.

Figure 11 shows a plot of guided supermodes that occurs in the planar structure
for forward propagation (along +z). The guided propagation along the five-layered
structure, as well the periodical energy exchange of light between the two wave-
guides, can be expressed as a linear combination of these supermodes. The coupling
length for the structure is given by Lπ = π/|β1 – β2|, where β1 and β2 are the propaga-
tion constants of the supermodes obtained from the roots of Det([M(β)]) = 0. The
computed coupling length, which refers to the propagation along the +z axis, is
Lþ
π ¼ 1389:84 μm.
Figure 12 shows the plot of the supermodes, now considering backward propa-

gation of the TM mode (along -z). The computed coupling length, which refers to
the backward propagation along the z-axis, is L�

π ¼ 689μm.

Layer Parameters

n δ Thickness (μm)

1 2.23 �0.019 ∞

2 2.26 0 1.20

3 2.00 0 0.75

4 2.26 0 1.23

5 2.23 �0.019 ∞

Table 1.
Material and geometric parameters of the MO directional coupler.

Figure 11.
Transversal distribution of the supermodes (Hy component) for forward propagation (+z).
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Considering both propagation senses, when the condition L ¼ Lþ
π ¼ 2L�

π for the
length of the directional coupler is achieved, we obtain an optical isolator calibrated
for the given optical wavelength. The operation of the optical isolator is depicted in
Figure 13. If an optical source is placed at the port 1 of the waveguide A, all optical
power will be coupled into port 3 of the waveguide B, if the length of the directional
coupler is L ¼ Lþ

π . If some light is reflected at port 3, since L ¼ 2L�
π , all optical

power is directed to the port 4. Therefore, the optical source at port 1 becomes
isolated from the reflected light. Figures 14, 15 show simulations of the forward and
backward optical propagation in the MO directional coupler via a propagation
projection of a linear combination of the corresponding supermodes.

The MO directional coupler of Figure 10 also acts as an optical circulator,
considering the following sequence of input and output ports: 1 to 3; 3 to 4; 4 to 2;
and 2 to 1.

Figure 12.
Transversal distribution of the supermodes (Hy component) for backward propagation (�z).

Figure 13.
Operation of an optical isolator based on nonreciprocal phase shift.
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3. Conclusions

The propagation characteristics of optical waves in magneto-optical media and
in planar waveguides with three and five MO layers were exposed. The effects of
Faraday rotation and nonreciprocal phase shift were discussed with mathematical

Figure 15.
Backward propagation simulation of the TM mode component Hy excited at port 3 (P3) of the five-layered
structure. The light exits through port 4 (P4). The starting transversal Hy field was supermode 1 minus
supermode 2 of Figure 12.

Figure 14.
Forward propagation simulation of the TM mode component Hy excited at port 1 (P1) of the five-layered
structure. The light exits through port 3 (P3). The starting transversal Hy field was supermode 1 plus supermode
2 of Figure 11.
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background to support the analyses. The propagation of TEM waves in unbounded
MO media was discussed, where it was shown that the Faraday rotation is maxi-
mized when the propagation occurs in the same direction of the applied magneto-
static field. It was also mathematically shown that if there is no such alignment,
losses may be added to the wave propagation. A planar MO waveguide and a
directional coupler were also analyzed in the context of their nonreciprocity. For
these structures, nonreciprocity is observed for TM-guided modes. The theoretical
analyses confirm that magneto-optical materials have great potential to be
employed on the design of nonreciprocal optical devices, such as isolators and
circulators.
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