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Chapter

An Overview of Stress-Strain
Analysis for Elasticity Equations
Pulkit Kumar, Moumita Mahanty

and Amares Chattopadhyay

Abstract

The present chapter contains the analysis of stress, analysis of strain and
stress-strain relationship through particular sections. The theory of elasticity
contains equilibrium equations relating to stresses, kinematic equations relating to
the strains and displacements and the constitutive equations relating to the stresses
and strains. Concept of normal and shear stresses, principal stress, plane stress,
Mohr’s circle, stress invariants and stress equilibrium relations are discussed in
analysis of stress section while strain-displacement relationship for normal and
shear strain, compatibility of strains are discussed in analysis of strain section
through geometrical representations. Linear elasticity, generalized Hooke’s law and
stress-strain relations for triclinic, monoclinic, orthotropic, transversely isotropic,
fiber-reinforced and isotropic materials with some important relations for elasticity
are discussed.

Keywords: analysis of stress, analysis of strain, Mohr’s circle, compatibility of
strain, stress-strain relation, generalized Hooke’s law

1. Introduction

If the external forces producing deformation do not exceed a certain limit, the
deformation disappears with the removal of the forces. Thus the elastic behavior
implies the absence of any permanent deformation. Every engineering material/
composite possesses a certain extent of elasticity. The common materials of
construction would remain elastic only for very small strains before exhibiting
either plastic straining or brittle failure. However, natural polymeric composites
show elasticity over a wider range and the widespread use of natural rubber and
similar composites motivated the development of finite elasticity. The mathema-
tical theory of elasticity is possessed with an endeavor to decrease the computation
for condition of strain, or relative displacement inside a solid body which is liable to
the activity of an equilibrating arrangement of forces, or is in a condition of little
inward relative motion and with tries to obtain results which might have been
basically essential applications to design, building, and all other helpful expressions
in which the material of development is solid.

The elastic properties of continuous materials are determined by the underlying
molecular structure, but the relation between material properties and the molecular
structure and arrangement in materials is complicated. There are wide classes of
materials that might be portrayed by a couple of material constants which can be
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determined by macroscopic experiments. The quantity of such constants relies
upon the nature of the crystalline structure of the material. In this section, we give a
short but then entire composition of the basic highlights of applied elasticity having
pertinence to our topics. This praiseworthy theory, likely the most successful and
best surely understood theory of elasticity, has been given numerous excellent and
comprehensive compositions. Among the textbooks including an ample coverage of
the problems, we deal with in this chapter which are discussed earlier by Love [1],
Sokolnikoff [2], Malvern [3], Gladwell [4], Gurtin [5], Brillouin [6], Pujol [7],
Ewing, Jardetsky and Press [8], Achenbach [9], Eringen and Suhubi [10], Jeffreys
and Jeffreys [11], Capriz and Podio-Guidugli [12], Truesdell and Noll [13] whose
use of direct notation and we find appropriate to avoid encumbering conceptual
developments with component-wise expressions. Meriam and Kraige [14] gave an
overview of engineering mechanics in theirs book and Podio-Guidugli [15, 16]
discussed the strain and examples of concentrated contact interactions in simple
bodies in the primer of elasticity. Interestingly, no matter how early in the history of
elasticity the consequences of concentrated loads were studied, some of those went
overlooked until recently [17–22]. The problem of the determination of stress and
strain fields in the elastic solids are discussed by many researchers [23–33]. Belfield
et al. [34] discussed the stresses in elastic plates reinforced by fibers lying in
concentric circles. Biot [35–38] gave the theory for the propagation of elastic waves
in an initially stressed and fluid saturated transversely isotropic media. Borcherdt
and Brekhovskikh [39–41] studied the propagation of surface waves in viscoelastic
layered media. The fundamental study of seismic surface waves due to the theory of
linear viscoelasticity and stress-strain relationship is elaborated by some notable
researchers [42–46]. The stress intensity factor is computed due to diffraction of
plane dilatational waves by a finite crack by Chang [47], magnetoelastic shear
waves in an infinite self-reinforced plate by Chattopadhyay and Choudhury [48].
The propagation of edge wave under initial stress is discussed by Das and Dey [49]
and existence and uniqueness of edge waves in a generally anisotropic laminated
elastic plates by Fu and Brookes [50, 51]. The basic and historical literature about
the stress-strain relationship for propagation of elastic waves in kinds of medium
is given by some eminent researchers [52–57]. Kaplunov, Pichugin and Rogersion
[58–60] have discussed the propagation of extensional edge waves in in
semi-infinite isotropic plates, shells and incompressible plates under the influence
of initial stresses. The theory of boundary layers in highly anisotropic and/or
reinforced elasticity is studied by Hool, Kinne and Spencer [61, 62].

This chapter addresses the analysis of stress, analysis of strain and stress-strain
relationship through particular sections. Concept of normal and shear stress,
principal stress, plane stress, Mohr’s circle, stress invariants and stress equilibrium
relations are discussed in analysis of stress section while strain-displacement
relationship for normal and shear strain, compatibility of strains are discussed in
analysis of strain section through geometrical representations too. Linear elasticity
generalized Hooke’s law and stress-strain relation for triclinic, monoclinic,
orthotropic, transversely isotropic and isotropic materials are discussed and some
important relations for elasticity are deliberated.

2. Analysis of stress

A body consists of huge number of grains or molecules. The internal forces act
within a body, representing the interaction between the grains or molecules of the
body. In general, if a body is in statically equilibrium, then the internal forces are
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equilibrated on the basis of Newton’s third law. The internal forces are always
present even though the external forces are not active.

To examine these internal forces at a point O in Figure 1(a), inside the body,
consider a plane MN passing through the point O. If the plane is divided into a
number of small areas, as in the Figure 1(b), and the forces acting on each of
these are measured, it will be observed that these forces vary from one small area
to the next. On the small area ∆A at point O, a force ∆F will be acting as shown in
Figure 1(b). From this the concept of stress as the internal force per unit area can
be understood. Assuming that the material is continuous, the term “stress” at any
point across a small area ∆A can be defined by the limiting equation as below.

Stress σð Þ ¼ lim
ΔA!0

ΔF

ΔA
(1)

where ∆F is the internal force on the area ∆A surrounding the given point.
Forces which act on an element of material may be of two types:

i. body forces and

ii. surface forces.

Body forces always act on every molecule of a body and are proportional to the
volume whereas surface force acts over the surface of the body and is measure in
terms of force per unit area. The force acting on a surface may resolve into normal
stress and shear stress. Normal stress may be tensile or compressive in nature. Positive
side of normal stress is for tensile stress whilst negative side is for compressive.

2.1 Concept of normal stress and shear stress

Figure 2(a) shows the rectangular components of the force vector ∆F referred
to corresponding axes. Taking the ratios ΔFx=ΔAx,ΔFy=ΔAx,ΔFz=ΔAx, three
quantities that set up the average intensity of the force on the area ∆Ax When the
limit ΔA ! 0, the above ratios are characterized as the force intensity acting on
X-face at point O. These values associated with three intensities are defined as the
“Stress components” related with the X‐face at point O. The stress component
parallel to the surface are called “Shear stress component,” is indicated by τ: The

a) b)

Figure 1.
Forces acting on a (a) body, (b) cross-section of the body.
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shear stress component acting on the X‐face in the Y-direction is identified as τxy:
The stress component perpendicular to the face is called “Normal Stress” or “Direct
stress” component and is denoted by σ.

From the above discussions, the stress components on the X‐face at point O are
defined as follows in terms of force intensity ratios

σx ¼ lim
ΔAx!0

ΔFx

ΔAx

τxy ¼ lim
ΔAx!0

ΔFy

ΔAx

τxz ¼ lim
ΔAx!0

ΔFz

ΔAx

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

(2)

and the above stress components are illustrated in Figure 2(b).

2.2 Stress components

Threemutually perpendicular coordinate axes x, y, z are taken.We consider the
stresses act on the surface of the cubic element of the substance.When a force is applied,
as mean that the state of stress is perfectly homogeneous throughout the element and
that the body is in equilibrium as shown inFigure 3. There are nine quantitieswhich are
acting on the faces of the cubic and are known as the stress components.

In matrix notation, the stress components can be written as

σx τxy τxz

τyx σy τyz

τzx τzy σz

0

B

@

1

C

A
(3)

which completely define the state of stress in the elemental cube. The first suffix
of the shear stress refers to the normal to the plane on which the stress acts and the
second suffix refer to the direction of shear stress on this plane. The nine stress
components which are derived in matrix form are not all independent quantities.

2.3 Principal stress and stress invariants

Let us consider three mutually perpendicular planes in which shear stress is zero
and on these planes the normal stresses have maximum or minimum values. These

a) b)

Figure 2.
(a) Force components of ΔF acting on small area centered at point O and (b) stress components at point O.
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normal stresses are referred to as principal stresses and the plane in which these
normal stresses act is called principal plane.

Invariants mean those amounts that are unexchangeable and do not differ under
various conditions. With regards to stress components, invariants are such quanti-
ties that don’t change with rotation of axes or which stay unaffected under trans-
formation, from one set of axes to another. Subsequently, the combination of
stresses at a point that don’t change with the introduction of co-ordinate axis is
called stress invariants.

2.4 Plane stress

Numerous metal shaping procedures include biaxial condition of stress. On the
off chance that one of the three normal and shear stresses acting on a body is zero,
the state of stress is called plane stress condition. All stresses act parallel to x and y
axes. Plane pressure condition is gone over in numerous engineering and forming
applications. Regularly, slip can be simple if the shear stress following up on the slip
planes is adequately high and acts along favored slip direction. Slip planes may be
inclined with respect to the external stress acting on solids. It becomes necessary to
transform the stresses acting along the original axes into the inclined planes. Stress
change ends up essential in such cases.

2.4.1 Stress transformation in plane stress

Consider the plane stress condition acting on a plane as shown in Figure 4. Let
us investigate the state of stresses onto a transformed plane which is inclined at an
angle θ with respect to x, y axes.

Let by rotating of the x and y axes through the angle θ, a new set of axes X’ and Y0

will be formed. The stresses acting on the plane along the new axes are obtained
when the plane has been rotated about the z axis. In order to obtain these
transformed stresses, we take equilibrium of forces on the inclined plane both
perpendicular to and parallel to the inclined plane.

Thus, the expression for transformed stress using the direction cosines can be
written as

Figure 3.
Stress components acting on cube.
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σx0 ¼ l2x0xσx þ l2x0yσy þ 2lx0xlx0yτxy

¼ 2 cos 2θσx þ 2sin2θσy þ 2 cos θ sin θτxy
(4)

Similarly, write for the y’ normal stress and shear stress.
The transformed stresses are given as

σx0 ¼
σx þ σy

2
þ
σx � σy

2
cos 2θ þ τxy sin 2θ

σy0 ¼
σx þ σy

2
�
σx � σy

2
cos 2θ � τxy sin 2θ

and

τx0y0 ¼
σy � σx

2
sin 2θ þ τxy cos 2θ

(5)

where σx0 and τx0y0 are respectively the normal and shear stress acting on the
inclined plane. The above three equations are known as transformation equations
for plane stress.

In order to design components against failure the maximum and minimum
normal and shear stresses acting on the inclined plane must be derived. The maxi-
mum normal stress and shear stress can be found when we differentiate the stress
transformation equations with respect to θ and equate to zero. The maximum and
minimum stresses are known as principal stresses and the plane of acting is named
as principal planes.

Maximum normal stress is given by

σ1, σ2 ¼
σx þ σy

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σx � σy

2

� �2
þ τ2xy

r

(6)

and maximum shear stress is

τmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σx � σy

2

� �2
þ τ2xy

r

(7)

with τmax ¼
σ1 � σ2

2
: (8)

Figure 4.
Representation of stresses on inclined plane.
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The plane on which the principal normal stress acts, the shear stress is zero and
vice versa. The angle corresponding to the principal planes can be obtained from

tan 2θ ¼
τxy

σx�σy
2

for the principal normal planes and tan 2θ ¼
τxy

σx�σy
2

is for the principal

shear plane.

2.4.2 Mohr’s circle for plane stress

The transformation equations of plane stress which are given by Eq. (5) can be
represented in a graphical form (Figure 5) by Mohr’s circle. The transformation
equations are sufficient to get the normal and shear stresses on any plane at a point,
with Mohr's circle one can easily visualize their variation with respect to plane
orientation θ.

2.4.2.1 Equations of Mohr’s circle

Rearranging the terms of Eq. (5), we get

σx0 �
σx þ σy

2
¼

σx � σy

2
cos 2θ þ τxy sin 2θ

and
(9.1)

τx0y0 ¼ �
σx � σy

2

� �

sin 2θ þ τxy cos 2θ (9.2)

Figure 5.
Mohr’s circle diagram.
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Squaring and adding the Eqs. (9.1) and (9.2), result in

σx0 �
σx þ σy

2

� �2

þ τ2x0y0 ¼
σx � σy

2

� �2
þ τ2xy (10)

For simple representation of Eq. (10), the following notations are used

σav ¼
σx þ σy

2
, r ¼

σx � σy

2

� �2
þ τ2xy

� �1=2

(11)

Thus, the simplified form of Eq. (10) can be written as

σx0 � σavð Þ2 þ τ2x0y0 ¼ r2 (12)

Eq. (12) represents the equation of a circle in a standard form. This circle has σx0
as its abscissa and τx0y0 as its ordinate with radius r. The coordinate for the center of
the circle is σav;0ð Þ.

Mohr’s circle is drawn by considering the stress coordinates σx as its abscissa and
τxy as its ordinate, and this plane is known as the stress plane. The plane on the
element bounded with xy coordinates in the material is named as physical plane.
Stresses on the physical plane M is represented by the point M on the stress plane
with σx and τxy coordinates.

Stresses on the physical plane which is normal to i.e. N, is given by the point N
on the stress plane with σy and τyx: O is the intersecting point of line MN and which
is at the center of the circle and radius of the circle is OM. Now, the stresses on a
plane, making θ inclination with x axis in physical plane can be determined as
follows.

An important point to be noted here is that a plane which has a θ inclination in
physical plane will make 2θ inclination in stress plane M. Hence, rotate the line OM
in stress plane by 2θ counter clockwise to obtain the planeM0. The coordinates ofM0

in stress plane define the stresses acting on plane M0 in physical plane and it can be
easily verified.

σx0 ¼ POþ r cos 2θp � 2θ
	 


(13)

where PO ¼
σxþσy

2 , r ¼
σx�σy

2

	 
2
þ τ2xy

h i1=2
, cos 2θp ¼

σx�σy

2r , sin 2θp ¼
τxy

2r .

On simplifying Eq. (13)

σx0 ¼
σx þ σy

2
þ
σx � σy

2
cos 2θ þ τxy sin 2θ (14)

Eq. (14) is same as the first equation of Eq. (5).
This way it can be proved for shear stress τx0y0 on plane M0 (do yourself).

2.4.3 Stress equilibrium relation

Let σx, τyx, τzx are the stress components acting along the x-direction, τxy, σy, τzy
are the stress components acting along the y-direction and τxz, τyz, σz are the stress
components acting along the z-direction. The body forces Fx, Fy, Fz acting along x,
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y, z direction respectively. Then the stress equilibrium relation or equation of
motion in terms of stress components are given by

∂σx

∂x
þ

∂τyx

∂y
þ

∂τzx

∂z
þ Fx ¼ 0,

∂τxy

∂x
þ

∂σy

∂y
þ

∂τzy

∂z
þ Fy ¼ 0,

∂τxz

∂x
þ

∂τyz

∂y
þ

∂σz

∂z
þ Fz ¼ 0:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(15)

3. Analysis of strain

While defining a stress it was pointed out that stress is an abstract quantity which
cannot be seen and is generally measured indirectly. Strain differs in this respect from
stress. It is a complete quantity that can be seen and generally measured directly as a
relative change of length or shape. In generally, stress is the ratio of change in original
dimension and the original dimension. It is the dimensionless constant quantity.

3.1 Types of strain

Strain may be classified into three types; normal strain, shear strain and volu-
metric strain.

The normal strain is the relative change in length whether shearing strain relative
change in shape. The volumetric strain is defined by the relative change in volume.

3.2 Strain-displacement relationship

3.2.1 Normal strain

Consider a line element of length Δx emanating from position (x, y) and lying in
the x-direction, denoted by AB in Figure 6. After deformation the line element
occupies A0B0, having undergone a translation, extension and rotation.

The particle that was originally at x has undergone a displacement ux x; yð Þ and
the other end of the line element has undergone a displacement ux xþ Δx; yð Þ: By
the definition of normal strain

εxx ¼
A0B∗ � AB

AB
¼

ux xþ Δx; yð Þ � ux x; yð Þ

Δx
: (16)

In the limit Δx ! 0, Eq. (16) becomes

εxx ¼
∂ux
∂x

(17)

This partial derivative is a displacement gradient, a measure of how rapid the
displacement changes through the material, and is the strain at (x, y). Physically, it
represents the (approximate) unit change in length of a line element.

Similarly, by considering a line element initially lying in the y-direction, the
strain in the y-direction can be expressed as

εyy ¼
∂uy
∂y

: (18)
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3.2.2 Shear strain

The particles A and B in Figure 6 also undergo displacements in the y-direction
and this is shown in Figure 7(a). In this case, we have

B∗B0 ¼
∂uy
∂x

Δx: (19)

A similar relation can be derived by considering a line element initially lying in
the y-direction. From the Figure 7(b), we have

θ ≈ tan θ ¼
∂uy=∂x

1þ ∂ux=∂x
≈

∂uy
∂x

(20)

provided that (i) θ is small and (ii) the displacement gradient ∂ux=∂x is small. A
similar expression for the angle λ can be derived as

λ ≈
∂ux
∂y

(21)

Figure 6.
Deformation of a line element.

Figure 7.
(a) Deformation of a line element and (b) strains in terms of displacement gradients.
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and hence the shear strain can be written in terms of displacement gradients as

εxy ¼
1

2

∂ux
∂y

þ
∂uy
∂x

� �

: (22)

In similar manner, the strain-displacement relation for three dimensional body
is given by

εxx ¼
∂ux
∂x

, εyy ¼
∂uy
∂y

, εzz ¼
∂uz
∂z

,

εxy ¼
1

2

∂ux
∂y

þ
∂uy
∂x

� �

, εxz ¼
1

2

∂ux
∂z

þ
∂uz
∂x

� �

, εyz ¼
1

2

∂uy
∂z

þ
∂uz
∂y

� �

:

(23)

3.3 Compatibility of strain

As seen in the previous section, there are three strain-displacement relations
Eqs. (17), (18) and (22) but only two displacement components. This implies that
the strains are not independent but are related in some way. The relations between
the strains are called compatibility conditions.

3.3.1 Compatibility relations

Let us suppose that the point Pwhich is act (x,y) before straining and it will be at
P0 after straining on the co-ordinate plane Oxy as depicted in Figure 8. Then (u,v) is
a displacement corresponding to the point P. The variable u and v are the functions
of x and y.

Using the fundamental notation

εxx ¼
∂ux
∂x

, εyy ¼
∂uy
∂y

, εxy ¼
1

2

∂ux
∂y

þ
∂uy
∂x

� �

(24)

Figure 8.
Deformation of line element.
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we get

∂
2εxx

∂y2
¼

∂
3ux

∂x∂y2
,
∂
2εyy

∂x2
¼

∂
3uy

∂x2∂y
(25)

∂
2εxy

∂x∂y
¼

1

2

∂
3uy

∂x2∂y
þ

∂
3ux

∂x∂y2

� �

: (26)

Eqs. (25) and (26) result in

∂
2εxy

∂x∂y
¼

1

2

∂
2εxx

∂y2
þ

∂
2εyy

∂x2

� �

(27)

which is the compatibility condition in two dimension.

4. Stress-strain relation

In the previous section, the state of stress at a point was characterized by six
components of stress, and the internal stresses and the applied forces are accompa-
nied with the three equilibrium equation. These equations are applicable to all types
of materials as the relationships are independent of the deformations (strains) and
the material behavior.

Also, the state of strain at a point was defined in terms of six components of
strain. The strains and the displacements are related uniquely by the derivation of
six strain-displacement relations and compatibility equations. These equations are
also applicable to all materials as they are independent of the stresses and the
material behavior and hence.

Irrespective of the independent nature of the equilibrium equations and strain-
displacement relations, usually, it is essential to study the general behavior of
materials under applied loads including these relations. Strains will be developed in
a body due to the application of a load, stresses and deformations and hence it is
become necessary to study the behavior of different types of materials. In a general
three-dimensional system, there will be 15 unknowns namely 3 displacements, 6
strains and 6 stresses. But we have only 9 equations such as 3 equilibrium equations
and 6 strain-displacement equations to achieve these 15 unknowns. It is important
to note that the compatibility conditions are not useful for the determination of
either the displacements or strains. Hence the additional six equations relating six
stresses and six strains will be developed. These equations are known as “Constitu-
tive equations” because they describe the macroscopic behavior of a material based
on its internal constitution.

4.1 Linear elasticity generalized Hooke’s law

Hooke’s law provides the unique relationship between stress and strain, which is
independent of time and loading history. The law can be used to predict the defor-
mations used in a given material by a combination of stresses.

The linear relationship between stress and strain is given by

σx ¼ Eεxx (28)

where E is known as Young’s modulus.
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In general, each strain is dependent on each stress. For example, the strain εxx
written as a function of each stress as

εxx ¼ C11σx þ C12σy þ C13σz þ C14τxy þ C15τyz þ C16τzx þ C17τxz þ C18τzy þ C19τyx:

(29)

Similarly, stresses can be expressed in terms of strains which state that at each
point in a material, each stress component is linearly related to all the strain com-
ponents. This is known as generalized Hook’s law.

For the most general case of three-dimensional state of stress, Eq. (28) can be
written as

σij
	 


9�1
¼ Dijkl

	 


9�9
εklð Þ9�1 (30)

where Dijkl

	 


is elasticity matrix, σij
	 


is stress components, εklð Þ is strain com-

ponents.
Since both stress σij and strain εij are second-order tensors, it follows that Dijkl is

a fourth order tensor, which consists of 34 ¼ 81 material constants if symmetry is
not assumed.

Now, from σij ¼ σji and εij ¼ εji, the number of 81 material constants is reduced
to 36 under symmetric conditions of Dijkl ¼ Djikl ¼ Dijlk ¼ Djilk which provides

stress-strain relation for most general form of anisotropic material.

4.1.1 Stress-strain relation for triclinic material

The stress-strain relation for triclinic material will consist 21 elastic constants
which is given by

σx

σy

σz

τxy

τyz

τzx

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

¼

D11 D12 D13 D14 D15 D16

D12 D22 D23 D24 D25 D26

D13 D23 D33 D34 D35 D36

D14 D24 D34 D44 D45 D46

D15 D25 D35 D45 D55 D56

D16 D26 D36 D46 D56 D66

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

εxx

εyy

εzz

εxy

εyz

εzx

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

: (31)

4.1.2 Stress-strain relation for monoclinic material

The stress-strain relation for monoclinic material will consist 13 elastic constants
which is given by

σx

σy

σz

τxy

τyz

τzx

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

¼

D11 D12 D13 0 D15 0

D12 D22 D23 0 D25 0

D13 D23 D33 0 D35 0

0 0 0 D44 0 D46

D15 D25 D35 0 D55 0

0 0 0 D46 0 D66

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

εxx

εyy

εzz

εxy

εyz

εzx

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

: (32)
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4.1.3 Stress-strain relation for orthotropic material

A material that exhibits symmetry with respect to three mutually orthogonal
planes is called an orthotropic material. The stress-strain relation for orthotropic
material will consist 9 elastic constants which is given by

σx

σy

σz

τxy

τyz

τzx

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

¼

D11 D12 D13 0 0 0

D12 D22 D23 0 0 0

D13 D23 D33 0 0 0

0 0 0 D44 0 0

0 0 0 0 D55 0

0 0 0 0 0 D66

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

εxx

εyy

εzz

εxy

εyz

εzx

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

: (33)

4.1.4 Stress-strain relation for transversely isotropic material

Transversely isotropic material exhibits a rationally elastic symmetry about one
of the coordinate axes x, y and z. In such case, the material constants reduce to 5 as
shown below

σx

σy

σz

τxy

τyz

τzx

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

¼

D11 D12 D13 0 0 0

D12 D11 D13 0 0 0

D13 D13 D33 0 0 0

0 0 0 D11 �D12ð Þ=2 0 0

0 0 0 0 D44 0

0 0 0 0 0 D44

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

εxx

εyy

εzz

εxy

εyz

εzx

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

: (34)

4.1.5 Stress-strain relation for fiber-reinforced material

The constitutive equation for a fiber-reinforced material whose preferred direc-

tion is that of a unit vector a
!
is

τij ¼ λekkδij þ 2μTeij þ α akamekmδij þ ekkaiaj
	 


þ 2 μL � μTð Þ aiakekj þ ajakeki
	 


þ βakamekmaiaj; i, j, k,m ¼ 1, 2, 3
(35)

where τij are components of stress, eij are components of infinitesimal strain, and

ai the components of a
!
, which are referred to rectangular Cartesian co-ordinates

xi. The vector a
!
may be a function of position. Indices take the value 1, 2 and 3, and

the repeated suffix summation convention is adopted. The coefficients λ, μL, μT, α
and β are all elastic constant with the dimension of stress.

4.1.6 Stress-strain relation for isotropic material

For a material whose elastic properties are not a function of direction at all, only
two independent elastic material constants are sufficient to describe its behavior
completely. This material is called isotropic linear elastic. The stress-strain relation-
ship for this material is written as
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σx

σy

σz

τxy

τyz

τzx

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

¼

D11 D12 D12 0 0 0

D12 D11 D12 0 0 0

D12 D12 D11 0 0 0

0 0 0 D11 �D12ð Þ=2 0 0

0 0 0 0 D11 �D12ð Þ=2 0

0 0 0 0 0 D11 �D12ð Þ=2

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

εxx

εyy

εzz

εxy

εyz

εzx

2

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

5

(36)

which consists only two independent elastic constants. Replacing D12 and
D12 D11 �D12ð Þ=2 by λ and μ which are called Lame’s constants and in particular μ is
also called shear modulus of elasticity, we get

σx ¼ 2μþ λð Þεxx þ λ εyy þ εzz
	 


,

σy ¼ 2μþ λð Þεyy þ λ εxx þ εzzð Þ,

σz ¼ 2μþ λð Þεzz þ λ εyy þ εxx
	 


,

τxy ¼ μεxy, τyz ¼ μεyz, τzx ¼ μεzx:

9

>

>

>

>

=

>

>

>

>

;

(37)

Also, from the above relation some important terms are induced which are as
follow

(1) Bulk modulus: Bulk modulus is the relative change in the volume of a body
produced by a unit compressive or tensile stress acting uniformly over its
surface. Symbolically

K ¼ λþ
2

3
μ: (38)

(2) Young’s modulus:Young’s modulus is a measure of the ability of a material
to withstand changes in length when under lengthwise tension or
compression. Symbolically

E ¼
μ 3λþ 2μð Þ

λþ μ
: (39)

(3) Poisson’s ratio: The ratio of transverse strain and longitudinal strain is
called Poisson’s ratio. Symbolically

ν ¼
λ

2 λþ μð Þ
: (40)

5. Conclusions

This chapter dealt the analysis of stress, analysis of strain and stress-strain
relationship through particular sections. Concept of normal and shear stress, prin-
cipal stress, plane stress, Mohr’s circle, stress invariants and stress equilibrium
relations are discussed in analysis of stress section while strain-displacement
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relationship for normal and shear strain, compatibility of strains are discussed in
analysis of strain section through geometrical representations. Linear elasticity,
generalized Hooke’s law and stress-strain relation for triclinic, monoclinic,
orthotropic, transversely-isotropic, fiber-reinforced and isotropic materials with
some important relations for elasticity are discussed mathematically.
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