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Abstract

Diterpenes are one of the classes of natural products with about 7000 structures. The 
basic skeleton of diterpene contains 20 carbon atoms. Microbes contain a large number of 
diterpenoid with many oxidized carbons and nitrogen atoms. To date, a number of sec-
ondary metabolites have been isolated from fungal sources, and some of these examples 
showed diverse structural features and interesting biological activities. These classes of 
compounds have attracted the interest of natural product scientist due to their potential 
biological activities. This chapter includes recently (2013–2018) isolated compounds from 
various fungal sources especially cythane, clerodanes, halimanes, abietane, and indole-
type diterpenes. Biosynthetic pathway of plants and fungi diterpenes showed homology 
at initial steps but showed differences at latter steps. The biological activity and 13C-
NMR data of these recently isolated compounds have been discussed. These diterpenes 
exhibited potential nitric oxide, anticancer, antioxidant, and antitumor properties. The 
diterpenes are clerodane, labdane, and kaurane derivatives. A brief discussion on the 
13C-NMR chemical shifts of these diterpenes has been discussed at the end of each type.

Keywords: fungal, biosynthesis, diterpenes, biological activities, 13C-NMR

1. Introduction

Terpenoids comprise the largest, structurally most diverse family of natural products and 

play important roles in all living organisms [1, 2]. Fungi (Ascomycota and Basidiomycota) are 

prolific producers of structurally diverse terpenoid compounds. Classes of terpenoids identi-
fied in fungi include the sesqui-, di-, and triterpenoids.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



As the largest group of documented natural products, terpenoids have attracted attention 
from a broad scientific community and have been heavily investigated due to their interesting 
structural characteristics and profound biological effects [3–6].

Fungi are important source of potential bioactive compounds which play an important role in 

pharmacology industry [7–11]. Among fungi, mushrooms are the most attractive sources of 
bioactive compounds both of chemical and biomedical interests. Approximately 2000 mush-

rooms are safe for human consumption, and about 650 of them have medicinal properties 

out of 15,000 documented species of mushrooms [12]. These are also important in industrial 

processes to enhance composition of bioactive compounds in fermented grain assays [13–15].

2. Diterpene biosynthesis

Diterpenoid biosynthesis has been studied in plants, bacteria, and fungi [16]; still lots of 

work are required to clone many important respective genes to characterize and engineer 
diterpenoid pathways in these representative organisms which remain a big challenge [17]. 

Fungal di-TPS enzymes show homology to plant enzymes in terms of its size and the combi-

nation of biochemical studies with molecular genetics. This also facilitated the comparison 

of plant and fungal biochemical pathways leading to the formation of gibberellins in plants 

and fungi [18].

The first committed step in diterpenoid biosynthesis is the cyclization of GGPP to pro-

duce the diterpene scaffold, which occurs via a carbocation cascade. Classically, activa-

tion of the carbocation cascade by terpene synthases corresponds to the removal of the 

pyrophosphate group from the linear substrate. This ionization-dependent reaction is 

catalyzed by class I terpene synthases [19]. Fusicoccanes are potent phytotoxins known 

to be synthesized by a few fungal species. P. amygdali was the first monofunctional diter-

pene synthase cloned and characterized in E. coli [20, 21]. Diterpenoids cyclized by the 

first, one-step route involves a monofunctional class I diterpene synthase that catalyzes 
ionization-dependent diphosphate cleavage and subsequent carbocation migration and 
quenching using a mechanism similar to sesquiterpene synthases, except the prenyl chain 
is now longer by one isoprene unit [22].

Biosynthesis of labdane-type diterpenoids requires a two-step cyclization pathway involving 
first a protonation dependent cyclization of GGPP to form the characteristic labdane bicycle 
and, in the second step, ionization-dependent cyclization at a separate active site to generate 

the final cyclic product (Figure 1). Cyclization of GGPP to ent-CDP and then to the tetracyclic 
ent-kaurene generates the precursor for gibberellin (gibberellic acids, GA) phytohormones 
that are major regulators of plant growth and development. It is believed that because of its 

essential role in plants, ent-kaurene represents the ancestral diterpenoid cyclization pathway 

from which alternative cyclization routes evolved to generate the large diversity of labdane-

type compounds known today [22]. In fact, it has been shown that single amino acid changes 

are sufficient to alter the product profile of the class I ent-kaurene synthase to form new cyclic 
scaffolds [23, 24].
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Figure 1. Overview of diterpenoid biosynthesis: (a) monofunctional-2,10(14)-diene is modified into different fusicoccane 
compounds and (b) bifunctional diterpene synthases make different labdane-related scaffolds that are modified into 
bioactive compounds.
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3. Diterpenoid classification

3.1. Bicyclic diterpenoids

3.1.1. Clerodane diterpenes

Clerodane diterpenes are the natural group of secondary metabolites holding an utmost 

pharmacological significance. These are bicyclic structures consisting of a fused ring (decalin 
moiety from C-1 to C-10) with a six-carbon side chain (C-11 to C-16) attached at C-9. The 
rest of the carbons (C-17 to C-20) are bonded at C-8, C-4, C-5, and C-9, correspondingly [25]. 

Only 25% of the clerodane diterpenes showed 5:10 cis ring junction, while the rest possess 

5:10 trans ring fusion as presented here in the form of columbin and clerodin, respectively. 

Columbin exhibited dose-dependent anti-inflammatory activity as well as chemopreventive 
activity against colorectal cancer [26–28]. During the last 25 years, over 1300 diterpenoids and 

nor-diterpenoids with the clerodane carbon skeleton have been isolated [29, 30]. The detailed 

classification of clerodane diterpenes is given in Figure 2.

3.1.1.1. Clerodane diterpenes by biotransformation from endophytic fungi

Three strains of endophytic fungi L. gonubiensis, N. ribis, and P. stromaticum produced one 

known and five unknown compounds (B1–B4) through a process of biotransformation, while 
compounds Q1–Q2 are derived as chemical derivatization of compound 2 [30]. These com-

pounds were actually isolated for the first time from Croton argyrophylloides (Euphorbiaceae) 

and further biotransformed by Cunninghamella echinulata and Rhizopus stolonifer fungi and 

produced a new diterpene, as previously described by Monte et al. [31] and Mafezoli et al. 

[32] (Figure 3).

Figure 2. Clerodane skeleton, cis and trans structures of clerodane.
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3.1.1.2. 13C-NMR date

13C-NMR spectra of substrate 1 and B2 suggested the C-7 hydroxylation making the signal 

at δ 70.1 (CH) in B2. Compound B2 is identified as new metabolite (4S,5S,7R,8R,9S,10S)-
4,7-dihydroxy-15,16-epoxy-3,12-dioxocleroda-13(16),14-diene, and its molecular formula 

C
20

H
28

O
5
 is sorted by HRMS. Compound B3 was unique for cultures of N. ribis. The 13C-

NMR spectrum of B3 showed the presence of one at δ 72.2 in the spectrum confirmed that 
compound 1 was regioselectively bioreduced at C-3. The new compound B3 was named 

(3R,4S,5S,7R,8S,9R,10S)-3,4,7-trihydroxy-15,16-epoxy-12-oxocleroda-13(16),14-diene, which 

is in agreement with the molecular formula C
20

H
30

O
5
. The biotransformation product B4 was 

obtained only in the P. stromaticum culture. The 13C-NMR spectrum of B4 showed no reduc-

tion of carbonyl group at δ 213.5 (C-3) and the appearance of carbinol methane group at δ 71.8 

(C-6). And it is named as (4S,5R,6R,8S,9R,10S)-4,6-dihydroxy-15,16-epoxy-3,12-dioxocleroda-

13(16),14-diene, which is in agreement with the molecular formula C
20

H
28

O
5
. The new 

compound Q1 was named (4S,5S,7R,8R,9S,10S)-7-propionyloxy-4-hydroxy-15,16-epoxy-3,12-

dioxocleroda-13(16),14-diene. The new derivative Q2 was named (4S,5S,7R,8R,9S,10S)-7-

benzyloxy-4-hydroxy-15,16-epoxy-3,12-dioxocleroda-13(16),14-diene [30].

3.1.1.3. Biological activity

Clerodane diterpenes possessed effective insect antifeeding and related insecticidal proper-

ties. There are approximately more than 400 natural and semisynthetic products that have 

been assayed in the laboratories showing potential antifeedant properties [33].

Figure 3.  Chemical structures of the metabolites by and chemical derivatives of the (3R,4S,5S,8S,9R,10S)-3,12-dioxo-

15,16-epoxy-4-hydroxycleroda-13(16),14-diene (compound 1) [35].
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3.1.2. Labdanes

The labdane-related diterpenoids are a special group, consisting of over 7000 members, which 

are distinguished by their unique biosynthesis. Gibberellin phytohormones as well as antibi-
otics such as some of phytoalexins and phytoanticipins fall into this family [34]. Labdanolic 

acids have been identified as biomarkers for the botanical origin of French ambers [35], while 

copalic acid and its relatives have been associated with the biological activity of the resins 

from Copaifera species. The lanceolatins are a group of labdanes and abietanes which were 

obtained [40] from Cephalotaxus lanceolata (Cephalotaxaceae). Some of the abietanes were 

described in this chapter as well (Figure 4).

3.2. Tricyclic diterpenoids

See Figure 5

3.2.1. Abietanes

Abietane is a class of diterpenoids with excellent metabolic profile. Compounds of this class 
showed broad spectrum antiviral, antibacterial, and antifungal activity [36, 37]. Abietane 

diterpenoids are extracted from few fungal species [38]. The intervention of quinone methides 
in the antioxidant activity of the phenolic diterpenoids ferruginol and carnosic acid has been 

discussed. The antifungal activity of some abietic acid esters in the context of their use as 

wood preservatives and the antiviral activity of podocarpic acid derivatives have been exam-

ined. In case of human cells, antiproliferative effect on tumor cells has been reported [39].

About 200 compounds of this family have been identified commonly known as dehydroabi-
etic derivatives (dehydroabietanes) [40] assuming 20-carbon saturated aromatic ring I, abi-

etane as standard (Figure 6).

3.2.1.1. Tricyclic abietatrienes

This group of abietane terpenes includes a tricyclic ring, three double bonds on B or C rings. 

Carboxylic acids are representatives of this group, of which the earliest example is the biologi-

cally active dehydroabietic acid (Figure 6), which possess an acid group at C-18 [42].

Figure 4. Skeleton of labdanes.
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3.2.1.1.1. Abietic acid

Abietic acid was extensively studied in various organisms for its biological activities. Current 

data also suggest that abietic acid is an important compound for synthesis of novel metabo-

lites. They contribute to the body of knowledge related to compound 1 and deepen the under-

standing of the potential and properties of 1 and its derivatives (Figure 7).

3.2.1.1.2. Dehydroabietic acid

Dehydroabietic acid displays not only antiulcer and antimicrobial properties but also anti-

tumor and anti-inflammatory effects (compound 2). Antimicrobial effects of DHA have been 
studied, specifically against methicillin-resistant strains of Staphylococcus aureus [43].

Biological activity: It also showed activity against other Gram-positive organisms such as 
Salmonella sp., Bacillus subtilis, and E. coli [44]. This latter study also described the inhibition of 
nitric oxide (NO) production by DHA, which was reported by other researchers as well [49]. 

Kawada et al. [45] have reported in relation with the inhibition of pro-inflammatory cytokines 
that DHA is useful for treating obesity-related diseases.

Figure 5. Classification of tricyclic abietane diterpenes.

Figure 6. Abietane skeleton with some standard compounds [41].
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3.2.1.1.3. Ferruginol

Ferruginol (abieta-8, 11, 13-triene-12-ol) is the simplest phenolic abietane diterpenoid (3). This 

abietane occurs in plants belonging to the Podocarpaceae and Lamiaceae families [22].

Biological activity: This diterpene has attracted much attention since it has exhibited important 
bioactivities, such as antimicrobial [46], miticidal [47], cardioactive [48], and antioxidative [49]. 

Moreover, it accelerates the gastric ulcer healing process, and such effects have been related 
with the ability of ferruginol to increase the gastric prostaglandin content in vitro [50–52].

3.2.1.1.4. Callitrisic acid

Callitrisic acid is a diterpenoid acid contained in the resins of several Callitris species 

(Cupressaceae). It was simultaneously reported as a new natural product [53, 54]. This acid 

also occurs in plants of the genus Juniperus and Calceolaria, and it has also been found in the 

genus Illicium. Recently, a series of related acids to callitrisic acid having a C-19 carboxylic 

group have been isolated [55].

Biological activity: All these acids demonstrated important antiviral activity and significant 
anti-inflammatory activity [56].

3.2.2. Abietatriene 20-7 lactones

The abietatriene lactones are a group of compounds which possess an oxygen-containing 

ring which predominantly is in the form of lactones (i.e., abietatrien-20,7-olides). This group 

Figure 7. Synthesis of compounds 2–10 [42].
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of abietanes are exemplified by carnosol (11,12-dihydroxy-8,11,13-20,7-olide). Carnosol pos-

sesses an aromatic C ring, carbon C-20 is a keto group, and carbons C-11 and C-12 are hydroxy 

groups. This abietane has displayed several biological activities. It displayed antioxidant, 

antimicrobial, anti-inflammatory, antitumor, and anti-HIV (IC50 = 8.0 μM) properties [57, 58].

3.2.3. Abietatetraenes

The abietatetraenes are a group of compounds which possess a fourth double bond which can 

be located at different positions. Among the 5,6-dehydro derivatives are coleon C and coleon 
U and related compounds (Figure 8). These metabolites are common in plants of the genus 

Coleus (synonym Plectranthus) and have described to possess antitumor, antimicrobial, and 

antiproliferative activity [59, 60] (Table 1).

3.3. Tetracyclic diterpenoids

3.3.1. Cythane diterpenes

Cyathus is a genus of fungi in the Nidulariaceae, a family collectively known as the bird’s 

nest fungi. Such compounds are named so, as they resemble tiny bird’s nests filled with 
“eggs,” structures large enough to have been mistaken in the past for seeds. The first cyathin 
A

3
 and allocyathin B

3
 were reported from fungus C. helenae in 1972, and since then a number 

of other diterpenes being isolated and documented from different species belong to genus 
Cyathus [61]. In particular, the species belonging to the genus Cyathus is recognized as pro-

lific producer of bioactive cyathane diterpenoids with inimitable tricyclic ring skeleton [62]. 

Cyathane diterpenoids also represent a group of natural products with versatility both in 

structure and bioactivity [63, 64]. Cyathane diterpenes are important bioactive metabolites 

extracted from the genus Cyathus, Hericium, and Sarcodon. Genus Cyathus is beneficial in 
producing healthy food and possesses the potential of nitric oxide (NO) inhibition and anti-

bacterial activities [64].

3.3.1.1. Diversity of cythane diterpenes

A number of other biologically significant cyathane diterpenoids have been isolated from 
the fruiting bodies of mushroom Sarcodon scabrosus [65–67], Sarcodon glaucopus [68, 69], and 

Sarcodon cyrneus [70, 71] and the culture of fungi C. helenae [72], C. africanus [73], C. earlei 

Figure 8. Representative member of tricyclic abietatrienes Callitris species.
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Carbon number Compound B2a Compound B3b B4b Q1b Q2b 2b 3b 4b 5b 6a 7b 8b 9b 10b

1 24.6 21.4 23.5 23.5 23.5 14.3 14.2 9.8 14.3 14.3 14.3 14.3 16.3 16.3

2 37.6 30.2 35.8 36.1 36.1 17.1 17.1 14.3 17.1 17 17.1 17.1 18.6 18.6

3 215.7 72.2 213.5 214.4 214.3 18.4 18.1 17.1 18.4 18.4 18.4 18.4 21.1 21.0

4 83.0 79.0 83.0 81.4 81.3 21.0 18.4 18.4 21.0 21.0 21.0 21.0 23.9 23.9

5 46.7 43.1 48.9 45.6 45.6 21.6 19.1 21.0 21.6 21.6 21.6 21.6 25.2 23.9

6 41.7 41.4 71.9 37.3 37.1 22.7 20.9 21.6 22.2 22.6 22.6 22.6 30.0 25.2

7 70.1 70.0 34.4 72.2 77.4 25.4 21.5 22.6 22.6 25.3 25.4 25.5 33.4 30.0

8 45.9 44.9 35.3 41.8 41.8 27.6 22.6 25.4 23.0 27.6 26.3 27.6 37.1 33.4

9 44.0 42.8 42.0 42.7 42.7 34.8 25.5 25.6 25.2 34.8 26.4 34.8 37.2 37.1

10 42.7 42.0 41.2 41.0 40.9 35.0 27.5 27.6 25.4 35.0 26.5 35.1 37.9 37.2

11 48.3 47.4 46.8 47.1 47.0 37.7 31.3 34.8 27.6 37.7 27.6 37.5 45.6 37.9

12 197.4 194.8 196.8 194.5 194.3 38.5 34.7 35.0 34.8 38.1 32.7 38.4 47.4 45.6

13 131.0 129.6 129.6 129.5 129.5 41.7 35.0 37.7 35.0 38.4 33.7 45.9 52.6 47.4

14 109.4 108.8 108.8 108.8 108.8 45.9 37.8 38.4 37.8 45.7 34.6 46.6 54.8 52.6

15 146.1 144.5 144.7 144..6 144.7 46.5 38.4 45.8 38.5 46.5 34.8 51.1 63.6 54.8

16 149.9 147.0 147.1 147.0 147.1 51.1 45.6 46.5 41.8 51.1 35.0 53.0 123.9 63.5

17 12.2 11.8 16.3 11.6 11.6 52.4 46.6 51.1 45.8 52.4 37.7 55.3 124.0 123.9

18 22.2 16.0 22.0 22.0 21.9 120.7 51.0 52.14 46.5 53.4 38.5 63.9 126.8 124.0

19 16.7 16.1 9.4 15.9 19.0 122.6 52.1 53.6 51.1 120.7 40.1 120..5 134.5 126.8

20 19.2 18.8 17.8 19.0 15.8 135.7 57.3 120.6 52.3 122.6 45.8 122.5 145.7 134.5

21 145.3 120.5 122.6 120.7 127.3 46.5 135.7 146.7 145.7

22 170.3 122.6 135.7 122.6 128.8 50.4 145.5 171.1 146.8

23 178.8 135.6 145.3 135.7 129.4 51.1 171.3 171.2
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Carbon number Compound B2a Compound B3b B4b Q1b Q2b 2b 3b 4b 5b 6a 7b 8b 9b 10b

24 145.2 173.4 145.3 135.6 52.4 179.4 179.1

25 172.9 178.2 174.0 136.3 120.6

26 178.2 178.3 145.2 122.6

27 172.6 135.7

28 178.1 145.3

29 174.1

30 178.2

Ref [30] [30] [30] [30] [30] [42] [42] [42] [42] [42] [42] [42] [42] [42]

a13C-NMR at 125 MHz.
b13C-NMR at 75 MHz in CDCl

3
.

Table 1. 13C-NMR data of New Clerodane Diterpenes from Fungal Biotransformation of the3,12-Dioxo-15,16-Epoxy-4-Hydroxycleroda-13(16),14-Diene and abietane 

diterpenoids.
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[74], C. striatius [75], Strobilurus tenacellus [76], and Hericium erinaceus [77–84]. Some cyathane 

diterpenoids represented interesting and significant biological activities.

3.3.1.1.1. Cythane diterpenes from Cyathus gansuensis

Cyathus gansuensis was reported in 2002 and produced valuable bioactive metabolites from 

fermented grains of barley and rice [13] by transformation. Recently, seven new [85] metabo-

lites (8–14) named have been isolated from fruiting body of C. gansuensis as presented in 

Figure 9. The L69 fungal strain was used to isolate these compounds (8–14).

Biological activity: NO inhibition activity was tested on mouse monocyte, macrophages. 

Seven newly discovered cyathane diterpene derivatives showed inhibitory activity against 

the NO production in LPS-activated macrophages. The fungus can be a good choice for a 

transformation on a large scale to acquire enough pure metabolites for the future [85].

13C-NMR structural elucidation: The detail of 13C-NMR is presented in Table 2. 13C-NMR data 

for compounds 8–14 revealed 20 carbons ascribable for 4 methyls, 4 methylenes (one oxygen-

ated), 4 methines (two oxygenated), two quaternary carbons, and six sp2 carbons. According 

to NMR and HRTOFMS at m/z 341.2079, [M + Na] + presented molecular formula of 8 and 9 

(cyathin J and K) as C
20

H
30

O
3
 (six degrees of unsaturation), 10 (cyathin L) C

22
H

32
O

5
 (seven degrees 

of unsaturation degrees), 11 (cyathin M) C
20

H
30

O
5
 (six degrees of unsaturation), 12 (cyathin N) 

C
20

H
28

O
5
 (seven degrees of unsaturation), 13 (cyathin O) C

20
H

30
O

5
 (six degrees of unsaturation), 

and 14 (cyathin P) C
20

H
28

O
5
 (seven degrees of unsaturation) [85].

3.3.1.1.2. Cythane diterpenes from Cyathus africanus

Cyathus africanus is a medicinal basidiomycete fungus. Diterpenes have been reported to pos-

sess multiple bioactivities consisting of antimicrobial and anti-inflammatory properties [86]. 

The presently reported metabolites in this text are collected by the study of various scientists. 

Moreover, they have been characterized on the basis of their structural elucidation by spectro-

scopic methods and discussed in detail in this chapter (Table 2). Some of the new metabolites 

documented by various scientists are isolated from C. africanus. Cyathin Q (15) an important 

metabolite (Figure 10) showed autophagy-dependent apoptosis [87]. The gene sequence of this 

Figure 9. Representative members of abietatetraenes.
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Carbon number Compound 8a 9a 10a 11a 12a 13a 14a 15c 16c 17c 18c 19c 20c 21c 22c 23c

1 145.9 145.9 39.8 83.7 84.3 53.4 84.5 38.6 39.9 38.8 34.9 33.8 33.7 83.8 82.1 53.0

2 129.0 129.2 29.4 209.7 209.0 211.1 209.6 29.3 29.7 29.7 23.7 23.2 22.8 209.8 75.3 210.6

3 142.3 142.9 140.4 141.8 140.7 145.0 142.6 140.8 144.9 141.8 79.2 77.4 77.5 141.9 140.7 144.4

4 146.2 147.3 139.2 176.2 177.0 177.1 172.5 140.6 144.0 139.9 78.5 77.0 76.6 176.4 146.7 179.6

5 44.1 41.6 41.7 46.8 142.6 41.0 41.4 38.5 152.7 36.5 36.0 37.6 31.8 47.0 45.8 45.6

6 45.7 44.8 45.1 45.0 49.4 46.5 45.3 47.2 48.6 45.1 46.2 43.6 42.8 45.2 43.4 58.2

7 29.2 34.1 31.0 28.9 29.7 29.5 29.8 35.8 33.8 35.1 33.7 28.0 32.3 29.1 28.9 35.5

8 33.6 34.1 38.4 37.2 35.3 37.3 35.2 36.2 38.0 17.5 31.2 31.7 30.8 37.4 38.1 39.0

9 55.8 55.8 50.6 47.7 47.6 43.0 47.1 51.2 50.3 50.9 43.6 42.6 42.2 47.9 50.9 43.6

10 29.1 38.5 30.5 28.2 124.4 27.6 32.2 30.3 121.3 32.1 24.8 26.2 25.7 28.4 29.2 27.0

11 130.0 72.6 72.0 128.6 118.2 74.6 76.6 160.2 135.8 72.2 159.9 160.5 69.9 128.8 129.8 39.2

12 143.1 147.8 129.7 143.7 149.6 55.9 49.3 144.7 130.1 146.8 145.2 142.4 146.0 143.8 143.3 156.5

13 69.2 125.9 150.5 69.1 71.4 71.8 70.2 78.5 33.5 159.1 78.2 79.5 157.6 69.3 69.1 127.3

14 81.5 76.7 76.2 80.6 81.9 106.4 107.4 75.5 76.5 77.4 74.8 80.2 76.0 80.8 91.3 209.2

15 66.6 64.8 169.4 66.3 63.1 60.6 62.2 196.2 172.1 194.7 196.1 194.2 192.9 66.5 66.6 26.9

16 17.8 17.3 17.2 17.8 24.9 13.6 13.4 17.7 27.0 16.7 18.9 19.7 17.7 18.0 18.0 16.4

17 19.2 19.3 25.1 20.3 21.0 26.3 22.3 24.8 24.2 24.7 19.9 20.0 19.5 20.4 20.6 23.9

18 27.4 27.4 28.4 27.0 26.8 26.3 26.3 28.5 28.2 28.5 29.1 28.1 28.3 27.2 28.4 27.2

19 22.6 23.2 21.9 19.8 20.5 20.7 20.2 21.8 21.9 22.2 19.7 19.4 19.3 20.0 22.5 19.8

20 23.4 23.4 22.4 20.3 21.3 20.8 21.4 22.6 22.0 22.6 19.9 19.6 19.8 21.6 23.2 21.2

21 172.3 28.0 57.3 57.9 59.3 57.1

22 21.1

Ref. [85] [85] [85] [85] [85] [85] [85] [87] [88] [88] [88] [88] [88] [89] [89] [89]
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Carbon number Compound 8a 9a 10a 11a 12a 13a 14a 15c 16c 17c 18c 19c 20c 21c 22c 23c

Carbon number Compound 24e 25d 26d 27d 28d 29d 30d 31d 32d 33d 34f 33a

1 213.7 53.1 88.5 47.0 82.8 84.5 90.5 215.4 216.0 53.3 38.5 38.3

2 127.0 211.1 83.5 72.8 37.2 209.5 83.3 125.8 126.4 210.9 28.4 29.1

3 188.5 144.2 140.2 77.8 137.2 141.6 139.6 192.3 193.2 144.9 139.9 140.7

4 84.0 181.7 141.4 78.2 137.8 174.0 140.1 53.3 53.5 177.0 136.6 139.8

5 43.7 43.2 39.0 37.1 41.6 43.3 41.3 38.9 37.5 40.5 40.4 36.1

6 52.9 45.8 56.6 54.6 42.6 44.9 42.8 42.7 41.9 46.0 40.6 44.5

7 33.1 32.0 34.8 34.7 31.0 30.5 30.9 29.7 29.9 29.7 30.4 34.3

8 34.5 39.3 30.2 33.7 36.2 35.3 36.1 30.3 30.8 37.1 37.0 37.1

9 54.0 43.5 48.7 42.6 49.9 47.3 47.2 50.2 50.4 42.9 49.2 50.4

10 34.8 36.6 37.0 32.3 28.3 27.6 28.2 29.9 33.3 31.5 30.1 35.0

11 73.0 71.6 72.4 72.3 80.0 79.9 79.9 74.6 76.9 76.3 72.4 62.1

12 157.5 145.9 157.0 157.3 149.0 149.2 149.2 64.0 49.7 49.8 138.6 148.2

13 122.6 127.3 123.2 123.2 126.6 126.9 126.6 57.0 70.6 70.2 158.2 154.6

14 209.7 76.2 210.6 210.1 111.2 110.8 111.1 104.8 108.2 107.4 85.4 85.3

15 64.4 65.0 64.5 64.4 58.9 58.9 58.9 59.1 62.1 62.0 192.9 194.2

16 17.4 17.1 15.6 17.9 12.0 12.2 12.2 14.6 16.1 13.2 16.4 16.4

17 14.5 24.3 23.6 20.7 17.3 22.4 19.6 20.5 22.4 26.0 24.5 24.7

18 31.2 26.7 28.2 29.8 27.5 26.3 27.2 33.0 33.0 26.2 27.0 27.7

19 22.2 21.0 24.3 20.5 21.2 20.2 19.3 23.4 21.0 20.5 21.5 22.0

20 25.3 20.1 19.6 20.4 22.6 21.2 24.6 21.0 23.3 20.6 21.8 22.3

21 56.6 ***

1’ 105.3 106.3
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Carbon number Compound 8a 9a 10a 11a 12a 13a 14a 15c 16c 17c 18c 19c 20c 21c 22c 23c

2’ 73.5 74.6

3’ 69.6 70.3

4’ 75.5 73.3

5’ 65.1 65.0

Ref. [90] [90] [90] [90] [90] [90] [90] [90] [90] [90] [96] [96]

a13C NMR at 125 MHz.
b13C NMR at 75 MHz in CDCl3.
c13C NMR at 150 MHz CD3OD.
d13C-NMR spectroscopic data for compounds 24–33 in MeOH at 200 MHz.
e13C-NMR at 125 MHz.
f13C-NMR 175 MHz in acetone-d6.

Table 2. 13C-NMR data of cyathane diterpenoids.
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strain has also been reported and submitted to GenBank with an accession numbers JX103204. 
Sequences of analysis exhibited 100% homology with that of fungus C. africanus. Compounds 

16–20 (D–H) structurally represented new group of metabolites, while neosarcodonin O (21), 

cyathatriol (22), and 11-O-acetylcyathatriol (23) are also known cyathane diterpenes. Five novel 

compounds are isolated from C. africanus and show potential NO inhibition and cytotoxicity 

against HeLa cell line in vitro [88]. The structural elucidation is also described in Figure 11.

Ten new polyoxygenated cyathane diterpenoids, named as neocyathins (24–33), together with 

four known diterpenes are isolated from fungus Cyathus africanus (Figure 12). These com-

pounds were isolated and identified by 13C-NMR technique [90] (Figure 13).

Biological activity: Diterpenes with diverse bioactivities have been identified from plants 
and fungi [91]. Cyathin Q has the capacity to induce the apoptosis in HCT116 cells in a 

time- and dose-dependent manner. It was observed, when HCT116 cells exposed to 10 mM 

cyathin Q for 24 h exhibited apoptotic cells 82.07% [87]. This compound induced hallmarks 

of apoptotic events in HCT116 cells, including caspase activation, cytochrome c release, 

poly (ADP-ribose) polymerase (PARP) cleavage, and depolarization of the mitochondrial 

inner transmembrane potential. Nitric oxide has the capacity to react with aqueous oxygen, 

Figure 10. Newly (8–14) isolated metabolites from C. gansuensis [85].

Figure 11. Structures of cyathane Q (15) isolated from C. africanus [87].
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superoxide, and transition metals like iron or zinc-sulfur clusters, and overproduction of NO 

is involved in many pathogenic diseases, including inflammation and cancer. The inhibition 
of NO overproduction in cells may prevent the occurrence of inflammatory diseases and 
cancer. The inhibition capacity (IC50) was more pronounced for 16, 17, and 19 by exhibiting 

NO inhibition 79.44, 89.2 and 84.33% reduction, respectively [91]. Moreover, inhibition of NO 

is concentration dependent as compounds 16–23 showed no NO inhibition at concentration 

100 μM [88, 89]. COX-2 and iNOS are two major inflammatory mediators in brain neurode-

generation [92, 93]. Compounds isolated from C. africanus [90] showed strong COX-2 and 
iNOS capacities. Western blot analysis demonstrated that compounds 24 and 28 significantly 
suppressed LPS-induced COX-2 expression, whereas compounds 27, 28, 30, 31, and 33 mark-

edly inhibited LPS-induced iNOS expression. Among these compounds, 28 showed strong 

inhibitory effects on both COX-2 and iNOS. Interestingly, 30 abolished LPS-induced iNOS 
expression but did not affect LPS-induced COX-2 expression. In addition, we also assayed 
the activities of iNOS enzyme [90].

13C-NMR structural elucidation: The 13C-NMR spectrum of some of the compounds isolated 

from C. africanus presented in Table 2.

3.3.1.1.3. Cythane diterpene from Hericium erinaceus and H. flagellum

Hericium genus is among the most blessed medicinal and eatable mushrooms and known 

to produce secondary metabolites with the potential to treat neurodegenerative diseases. 

It enables improvement of many brain-related disorders [94]. In this regard, neurotrophins 

are nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) involved 

Figure 12. Structures of metabolites isolated from C. africanus [88, 89].
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in survival, maintenance, and regeneration of specific neuronal populations in the adult 
brain [95]. Therefore, the metabolites extracted from Hericium are important source of 

metabolites and source as remedy in the fight against neurodegenerative diseases such as 
Parkinson’s, Alzheimer’s, and Huntington’s diseases, which are accompanied by decreased 

neurotrophic factor expression [102]. Two new potential metabolites have been isolated 

from H. erinaceus (strain STMA 06157B) and H. flagellum (strain CBS 103681) [96] (Figure 14).

Figure 13. Structures of metabolites isolated from C. africanus [90].

Figure 14. Structural elucidation of metabolites isolated from H. erinaceus and H. flagellum [96].

Terpenes and Terpenoids128



Biological activity and 13C-NMR analysis: All of the metabolites isolated from H. erinaceus 

and H. flagellum exhibited strong neutrotrophin capacity [95, 96]. Metabolites were also 

studied through 13C-NMR; compound 34 exhibited the presence of five non-proton-bearing 
carbons, including three olefinic (δC 139.9, 136.6, 138.6) and two aliphatic carbons (δC 40.6, 

49.2). Furthermore, five methylene groups with corresponding carbons between δC 28.4 and 

38.5 ppm, a further oxygenated methylene group at δC 65.1, vicinal to two aliphatic methines 

at δC 40.4, and six methines at δC 69.6–105.3 ppm were observed. 13C shifts and correlations 

of the HSQC-DEPT spectrum showed high similarity to 35 which was a derivative of the 

cyathane diterpenoid 34. The major difference between the two compound spectra was the 
missing methoxy group at C-11 in 35 (Figure 13). The detail of 13C-NMR data is described in 

Table 2.

3.3.2. Indole diterpenes

Indole diterpenes are the broad class of secondary metabolites with enormous structural 

and functional diversity. They mostly occur in filamentous fungal members having most 
abundance in Penicillium, Aspergillus, Neotyphodium, and Claviceps [97, 98]. This class of 

diterpenes is generally divided into two main groups, paxilline type and non-paxilline 

type [98], though it mainly consists of cyclic diterpenoid backbone in addition to an indole 

moiety.

3.3.2.1. Diversity of indole diterpenes

3.3.2.1.1. Indole diterpenes from Aspergillus nidulans

The marine fungi A. nidulans was reported to be the source of 19-hydroxypenitrem A (1) and 

19-hydroxypenitrem E (2). The 13C-NMR spectrum of 19-hydroxypenitrem A (C
37

H
44

ClNO
7
) 

provided 37 resonance states from 5 methyl, 8 methylene (with 2 sp
2
 terminal), 1 sp

2
 and 7 sp

3
 

methines (with 5 oxygenated), and 16 quaternary (with 5 oxygenated sp
3
 and 9 sp

2
) carbon 

atoms. In comparison, 19-hydroxypenitrem E (C
37

H
45

NO
7
) lack chlorine atom but have one 

additional hydrogen atom [98] (Figure 15).

3.3.2.1.2. Drechmeria sp.: a rich source of indole diterpenes

An endophytic fungi Drechmeria sp. was found to be the reservoir of diverse indole diter-

penes including drechmerin A (38), drechmerin B (39), drechmerin C (40), drechmerin D (41), 

Figure 15. Indole diterpenes from A. nidulans [98].
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drechmerin E (42), drechmerin F (43), drechmerin G (44), terpendole A (45), terpendole C (46), 
terpendole I (47), and dehydroxypaxilline (48) [99] (Figure 16).

The 13C-NMR spectrum of drechmerin exhibited 28 carbon resonances, comprising 8 aromatic 

carbons, 4 oxygenated carbons, 6 methylene carbons, 2 methine carbons, 3 quaternary car-

bons, and 5 methyl carbons [100]. The detail of 13C-NMR data is given in Table 3.

3.3.2.1.3. Indole diterpenes from marine A. flavus

The marine Aspergillus flavus had provided 4b-deoxy-β-aflatrem (1),9-isopentenyl paxilline (2), 
6,8-di-O-methylcitreoisocoumarin (3), β-aflatrem (4), and paspaline (5). 4b-Deoxy-β-aflatrem 

Figure 16. Indole diterpenes from (1–11) Drechmeria sp. [99].
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Carbon 

Number

Compound 36g 37g 38c 39c 40c 41c 42c 43c 44c

2 152.2 151.3 152.6 152.2 152.3 153.8 153.8 153.5 150.7

3 116.7 116.4 54.7 53.8 53.9 52.1 52.1 51.8 51.9

4 132.7 131.0 41.1 40.9 40.9 43.9 43.9 43.7 46.6

5 123.4 125.9 34.0 34.1 34.1 27.5 27.5 27.4 33.2

6 122.6 118.9 26.5 26.4 26.5 29.8 29.8 29.5 32.3

7 110.4 110.3 79.3 77.7 77.9 73.1 73.1 73.0 84.5

8 120.3 121.1 *** *** *** *** *** *** ***

9 138.5 138.9 80.6 79.9 78.4 72.7 42.7 77.7 88.6

10 33.7 37.1 31.0 32.5 32.7 72.9 72.7 68.7 74.1

11 148.7 150.0 71.1 68.3 68.5 61.4 61.4 65.0 175.8

12 45.4 45.7 42.0 53.6 53.6 68.9 69.0 70.7 212.8

13 23.9 24.0 39.2 41.6 41.6 78.8 78.9 78.6 52.2

14 52.9 53.0 22.9 24.9 24.8 30.6 30.6 30.8 23.8

15 80.3 80.4 25.7 26.3 26.3 22.0 22.0 22.0 24.7

16 74.6 74.6 50.4 50.5 50.5 51.6 51.6 51.7 50.5

17 28.6 28.4 28.4 28.2 28.3 30.7 28.2

18 79.5 79.8 118.0 118.1 118.1 117.2 117.3 116.7 118.3

19 86.9 87.0 126.4 126.4 126.4 126.5 126.5 126.4 126.3

20 27.7 27.7 118.8 118.9 118.9 118.9 118.9 131.7 119.0

21 23.4 23.4 119.8 119.8 119.8 119.8 119.8 121.0 120.

22 75.9 76.0 120.8 120.9 120.9 120.8 120.8 121.0 121.2

23 64.8 64.8 112.8 112.8 112.8 112.7 112.7 110.8 112.8

24 60.0 60.0 142.2 142.2 142.2 141.9 141.9 142.0 142.2

25 64.7 64.7 15.0 15.0 15.0 16.6 16.6 16.5 15.0

26 73.0 73.0 20.4 17.0 17.1 19.1 19.1 19.0 16.4

27 *** *** 14.1 178.2 178.2 *** *** *** ***

28 69.7 69.8 73.0 72.8 77.7 76.2 76.1 73.7 16.4

29 29.0 29.0 25.5 26.4 23.7 28.7 28.8 27.5 84.0

30 27.9 28.0 25.9 25.5 22.1 17.2 17.1 25.2 27.8

1’ 42.8 42.8 60.1 95.5 96.0 36.4 22.9

2’ 53.8 53.9 123.7 77.5 77.6 78.4

3’ 106.8 105.3 136.3 77.9 77.8 79.0

4’ 19.3 19.3 18.2 22.6 22.4 22.0
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(C
32

H
39

NO
3
) exhibits 14 degrees of unsaturation and consists of an indole chromophore and 

a carbonyl group. As per 13C-NMR spectrum, the respective structure owns resemblance to 

β-aflatrem, except that a methine replaced an oxygenated quaternary carbon, thereby result-
ing in an isopentenylated indole diterpenoid. Moreover, 9-isopentenyl paxilline (C

32
H

39
NO

4
) 

comprised hexacyclic indole diterpenoid skeleton [100] (Figure 17).

Figure 17. Skeleton by NMR indole diterpenes from A. flavus [100].

Carbon 

Number

Compound 36g 37g 38c 39c 40c 41c 42c 43c 44c

5’ 29.0 29.0 26.1 21.3 21.7 20.6

36 19.8 19.8

37 142.5 142.5

38 110.7 110.7

39 19.9 19.8

40 16.9 17.1

Ref. [98] [98] [99] [99] [99] [99] [99] [99] [99]

a13C-NMR at a 125 MHz.
b13C-NMR at 75 MHz in CDCl

3
.

c13C-NMR at 150 MHz CD
3
OD.

g13C-NMR at 125 MHz for 13C, measured in DMSO-d6.

Table 3. 13C-NMR data of indole diterpenoids.
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3.3.2.1.4. Penitrem D from Penicillium crustosum

Penitrem D (C
37

H
45

NO
4
) was first isolated from P. crustosum in 1983. It is a complex structure 

with 9 rings, an indole core, and 11 stereocenters [101] (Figure 18).

3.3.2.1.5. Emindole SB from Emericella striata

The mycelium of E. striata was reported to naturally produce emindole SB (C
28

H
39

NO). 

In its structure an indole unit fused to a tricyclic carbon scaffold, and it presented six 
stereocenters, including vicinal quaternary centers on the western cyclohexyl ring [103] 

(Figure 19).

3.3.2.1.6. Paspaline obtained from Claviceps paspali

The ergot fungus Claviceps paspali was found to be the source of paspaline (C
28

H
39

NO
2
) in 1966. 

The structure owes similarity with emindole SB but contains one more ring comparatively 

[104] (Figure 20).

Figure 18. Structure and compound isolated from P. crustosum [102].

Figure 19. Structure and compound isolated from E. striata [103].
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3.3.2.2. Biological activity

The indole diterpenes, famously called tremorgenic mycotoxins, put forward promising 

insecticidal potential via regulation of their glutamategated chloride ion channels [105], 

antibiotic activity [107, 108], antiproliferative against human breast cancer cells [109], and 

antifungal efficacy [110].
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