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Chapter

Data Mining-Based Identification
of Nonlinear Systems
Natalia Bakhtadze, Vladimir Lototsky, Valery Pyatetsky

and Alexey Lototsky

Abstract

This chapter presents identification methods using associative search of analogs
and wavelet analysis. It investigates the properties of data mining-based identifica-
tion algorithms which allow to predict: (i) the approach of process variables to
critical values and (ii) process transition to chaotic dynamics. The methods pro-
posed are based on the modeling of human operator decision-making. The effec-
tiveness of the methods is illustrated with an example of product quality prediction
in oil refining. The development of fuzzy analogs of associative identification
models is further discussed. Fuzzy approach expands the application area of asso-
ciative techniques. Finally, state prediction techniques for manufacturing resources
are developed on the basis of binary models and a machine learning procedure,
which is named associative rules search.

Keywords: process identification, knowledge base, associative search models,
wavelet analysis

1. Introduction

The reduction of uncertainty in object description in terms of adjustable model
has been a key conceptual direction in the identification theory and applications for
a long time. In the statistical description of uncertainty, consistent estimates of
plant’s characteristics can be obtained by analyzing the convergence of the empiri-
cal distribution functional with the corresponding “theoretical” values, but this
entails appropriate increase of the sample size. The difficulties in implementing this
approach, especially for nonlinear and nonstationary objects, along with the
increased possibilities of plant history analysis resulted in the advent of identifica-
tion methods based on data mining [1].

The use of additional a priori information on the system for its training is
considered by some authors today to be one of the key trends in the theory and
practice of identification [2, 3].

One method that implements this approach to identification is the associative
search method based on the design of predictive models [2]. They are based on
inductive learning, that is, on associative search of analogs by means of intelligent
analysis of process history and knowledge base development. The development of a
predictive model for a dynamic object by associative search technique (i.e., by
building a new model at every time step) is based on the generated and updated
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knowledge about the system. This approach allows to use any available a priori
information about the plant [3].

The stability of a model built using the associative search techniques is investi-
gated in terms of the spectrum analysis of a multi-scale wavelet expansion [4].
Methods based on the wavelet analysis open up a unique possibility to select
“frequency-domain windows” as against the well-known windowed Fourier trans-
form.

The development of intelligent identification algorithms for nonlinear and
nonstationary objects is important for various applications, in particular, in chemi-
cal, oil refining, and power (smart grids) industries; transportation and logistics
system; and trading processes (Bakhtadze et al. [1, 2, 4–7]).

2. Control system identification

Consider a traditional problem of dynamic object identification. For input vec-
tors meeting Gauss-Markov assumptions, the least squares parameter estimates are
consistent, unbiased, and efficient. However, the development of a closed-loop
control system (for identification-based control system synthesis) faces consider-
able challenges. In a closed loop, the system state depends on control values at
earlier time instants, which results in a degeneration problem.

To develop an informational model of control system’s dynamics in a degenerate
case, the Moore-Penrose method [8, 9] can be used for getting pseudo-solutions to a
linear system by means of least squares techniques.

For a wide class of objects and, in particular, processes, control based on a linear
model identification is not satisfactory. At the same time, models constructed by the
method of associative search frequently are highly accurate even for nonlinear
objects. However, some processes can be characterized by certain “irregularities” in
certain time intervals, which affect the accuracy and adequacy of associative
models.

Examples of such irregularities (which are often oscillatory in engineering sys-
tems) can be:

• seasonal and daily load oscillations in power networks that affect directly the
optimization of power transmission control modes;

• ups and downs of stock market caused by various economic reasons;

• feed source changes in industrial process, and so on.

3. Associative search as intelligent modeling method

The difference between the associative search method based on data mining and
traditional identification techniques is as follows. The method does not approximate
process dynamics in time; it rather builds a new predictive model of the dynamic
object (a “virtual model”) at each time step using historical data sets (“associa-
tions”) generated at the training phase.

As a result, at any time step, process control decision-making by a human
individual (process operator, supervisor, plant or enterprise manager, trading
operator, etc.) is modeled on the base of his/her knowledge and emerging
associations.

Clustering (self-organizing learning) is an effective way to form associations.
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Knowledge in intelligent systems is of two types [10]. The first type of knowl-
edge, that is, declarative knowledge, by means of appropriate ontologies describes
different facts, events, and observation. A formal description of skills is called
procedural knowledge. Depending on the level of this knowledge, users can be
referred to as beginners or experts [11]. These two groups have different structures
and ways of thinking. Beginners use so-called inverse reasoning in the procedure for
decision-making. They make decisions based on the analysis of the information
obtained in the previous step. In contrast to the beginners, experts at an intuitive,
subconscious level form the so-called direct reasoning. Thus, cognitive psychology
defines knowledge as a collection of symbols stored in the memory of a particular
person [12]. The symbols, in turn, can be determined by their structure and the
nature of neuron links [13].

Knowledge processing in an intelligent system consists in the recovery (associa-
tive search) of knowledge by its fragment [14]. The knowledge can be defined as an
associative link between images (Figure 1). As an image, we will use “feature sets,”
that is, components of input vectors or input variables. The set of all associations
over the set of images forms the memory of the intelligent system’s knowledge base.

The associative search process can be either an image reconstruction procedure
by a feature set (this set may not be complete; this approach is often used in models
of a human associative memory), or the search procedure of other images in the
archive, similar to the image under study by a certain criterion.

In Ref. [14], a model of decision-making search by the human operator is
proposed, representing the process of associative thinking as a sequence of sets of
associations. Association is a pair of images (the image-source and the image-
output), wherein each image is described by a set of features. This approach is
intermediate between neural networks and logical models in the classical theory of
artificial intelligence.

The criterion for the similarity of two images in the general case can be
represented as a logical function—a predicate. In the particular case, the features
have a numerical expression. The feature sets that form the image are vectors in n-
dimensional space. In this case, as a criterion of image similarity can be a metric in
the space.

4. Associative search technique

Associative search method consists in constructing virtual predictive models. The
term “virtual” should be understood as “ad hoc” [2]. The method presumes the
construction of a predictive model for a dynamic object as follows. A traditional

Figure 1.
Model of a human associative memory.
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identification algorithm approximates real process in time. As against such algo-
rithms, our method builds a new model at each time step t based on the analysis of
the history data set (“associations”) formed at the stage of learning and further
adaptively corrected in accordance to certain criteria.

Within the present context, linear dynamic model is of the form:

yN ¼ ∑
m

i¼1
aiyN�i þ ∑

rs

j¼1
∑
S

s¼1
bj, sxN�j, s, ∀j ¼ 1,́ N, (1)

where yN is the prediction of the object’s output at the time instant N, xN is the
input vector, m is the memory depth in the output, rs is the memory depth in the
input, S is the dimension of the input vectors, and ai and bj, s are tuning coefficients
of the model. Model (1) is a regression whose structure is determined by a criterion
of similarity of images forming the association.

In general, a new structure is formed for each time instant. The associative
model is virtual in the sense that for each time step, it formed a new structure. For
each current input vector, the corresponding input vectors and their corresponding
outputs are selected from the archive. Further, a system of linear equations with
respect to the adjustable coefficients is formed. Its decision in accordance with the
least squares method determines the point linear model of a nonlinear object, as
well as the output forecast.

Thus, each point of the global nonlinear regression surface is formed as a result
of using linear “local” models at each new time step.

The set of values of inputs at each fixed point and the corresponding output
replenish the procedural knowledge base.

Unlike classical regression models, for each fixed time instant from the process
history, input vectors are selected close to the current input vector in the sense of a
certain criterion (rather than the chronological sequence as in regression models).
Thus, in Eq. (1), rs is the number of vectors from the archive (from the time instant
1 to the time instant N), selected in accordance to the associative search criterion. A
certain set of vectors rs, 1≤ rs ≤N, is selected at each time segment N � 1;N½ �. The
criterion for selecting the input vectors from the archive is described below
(Figure 2).

Figure 2.
Approximating hypersurface design.
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As a distance (a norm in RS) between points of the S-dimensional space of
inputs, we introduce the value:

dN,N�j ¼ ∑
S

s¼1
xN, s � xN�j, s

�� ��,∀j ¼ 1,́ N, (2)

where xN, s are the components of the input vector at the current time instant N.
By virtue of a property of the norm (“the triangle inequality”), we have:

dN,N�j ≤ ∑
S

s¼1
xN, sj j þ ∑

S

s¼1
xN�j, s

�� ��,∀j ¼ 1,́ N, (3)

Let for the current input vector xN :

∑
S

s¼1
xN, sj j ¼ dN : (4)

To derive an approximating hypersurface for the vector xN, we select from the
archive of the input data such vectors xN�j, j ¼ 1,́ N that for a set DN the condition:

dN,N�j ≤ dN þ ∑
S

s¼1
xN�j, s

�� ��≤DN, ∀j ¼ 1,́ N, (5)

holds, where DN may be selected, for instance, from the condition (Figure 3):

DN ≥ 2dmax
N ¼ 2max

j
∑
S

s¼1
xN�j, s

�� ��: (6)

Under the assumptions that the inputs meet the Gauss-Markov conditions, the
estimates obtained via the LS method are unbiased and statistically effective.

Figure 3.
Approximating hypersurface building.
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5. Fuzzy virtual models

Fuzzy models under uncertainty are advisable to apply in decision-making sys-
tems in the following cases [3]:

• dynamics of the investigated quality index is described by a complex nonlinear
dependence; and

• one or more factors of this dynamics are weakly or not formalized.

In fuzzy systems, the most commonly used technique is the production rule one.
The production rule consists of antecedent (or several premises) and consequent. In
the general case, the premises are connected by logical operators AND and OR.

Fuzzy systems are based on production-type rules with linguistic variables used
as premise and conclusion in the rule.

By renaming the variables, the linear dynamic plant’s model can be represented
as follows:

YN ¼ ∑
nþт

i¼1
aiXi

The fuzzy system based on the production rules has the form:
A fuzzy model with nþm input variables X ¼ X1;X2; …Xnþmf g defined in

space DX ¼ DX1 � DX2 � … �DXnþm and with one-dimensional output Y is
defined in the domain of reasoning DY.

Clear values of fuzzy variables Xi and Y are denoted by xi and y, respectively.
LXi = {LXi,1,…, LXi, li} is the fuzzy domain of definition of the i -th input variable

and Xi is the number of linguistic terms on which this fuzzy variable is defined.
LY = {LY1,…, LYly} is the domain of the fuzzy output variable.
l is the number of fuzzy values.
LYj is the name of the output linguistic term.
The rule base in the fuzzy Mamdani system is a set of fuzzy rules such as:

Rj : LX1, j1 AND…AND LXn, jn ! LYj: (7)

The j-th fuzzy rule in the singleton-type system looks as follows:

Rj : LX1, j1 AND…AND LXn, jn ! rj (8)

where rj is a real number to estimate the output y.
The j-th rule in the Takagi-Sugeno model [15] looks as follows:

Rj : LX1, j1 AND…AND LXnþm, jnþm
! r0j þ r1jx1 þ r2jx2 þ … þ r nþmð Þjxnþm (9)

where the output y is estimated by a linear function.
Thus, the fuzzy system performs the mapping L : R

nþm ! R.
The grade of crisp variable xi membership in the fuzzy notion LXij is determined

by membership functions μLXij
(xi). The rule base is formed by the criterion of

minimum output error which can be defined by the following expressions:

∑К

i¼1 f xið Þ � L xið Þj j

К
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑К

i f xið Þ � L xið Þð Þ2
q

К
, max

i∈К

f xið Þ � L xið Þj j (10)

where К is the number of samples.
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Depending on the features of the object and the purpose of identification, vari-
ous fuzzy models can be formed. Thus, the Takagi-Sugeno model is most suitable
for objects with complex nonlinear dynamics, such as moving objects, in the control
of which the accuracy requirements prevail.

A fuzzy model of the Mamdani type is suitable for problems in the solution of
which it is important to form knowledge based on data analysis.

The singleton-type system may be used in both identification and knowledge-
formation tasks.

Singleton-type fuzzy model performs the mapping L : R
nþm ! R where the

fuzzy conjunction operator is replaced by a product, and the operator of fuzzy rules
aggregation, that is, by summation. The mapping L is defined by the following
expression:

L xð Þ ¼
∑

q
i¼1μLX1i

x1ð Þ � μLX2i
x2ð Þ � … � μLX nþmð Þi

xnþmð Þ � ri

∑
q
i¼1μLX1i

x1ð Þ � μLX2i
x2ð Þ � … � μLX nþmð Þi

xnþmð Þ
(11)

where x = x1; … ; xnþm½ �T ∈Rnþm; q is the number of rules in a fuzzy model; nþm

is the number of input variables in the model; and μLXij
xij
� �

is the membership

function.
The expression for L mapping in the Takagi-Sugeno model looks as follows:

L xð Þ ¼
∑

q
i¼1μLX1i

x1ð Þ � μLX2i
x2ð Þ � … � μLX nþmð Þi

xnþmð Þ � r0i þ r1ix1 þ r2ix2 þ … þ r nþmð Þixnþm

� �

∑
q
i¼1μLX1i

x1ð Þ � μLX2i
x2ð Þ � … � μLX nþmð Þi

xnþmð Þ

(12)

In Mamdani fuzzy systems, fuzzy logic techniques are used for describing the
input vector’s x mapping into the output value y, for example, Mamdani approxi-
mation or a method based on a formal logical proof.

Let the variables in (1) be fuzzy. In this case, (1) can be represented as a fuzzy
model of Takagi-Sugeno (TS) [15].

To form the model, product rules with linear finite-difference equations on the
right-hand side are defined (for simplicity, we consider one-input case, i.e., P = 1):

If y t� 1ð Þ is Yθ
1,…, y t� rð Þ is Yθ

r ,

x tð Þ is Xθ
0,…, x t� sð Þ is Xθ

r , then

yθ tð Þ ¼ aθ0 þ ∑
r

k¼1

aθky t� kð Þ þ ∑
s

l¼0

bθl x t� lð Þ, θ ¼ 1, … , n, (13)

where: aθ ¼ aθ0; a
θ
1; … ; aθr

� �
, bθ ¼ bθ0; b

θ
1; … ; bθs

� �
are adjustable parameter vectors;

y t� rð Þ ¼ 1; y t� 1ð Þ; … ; y t� rð Þð Þ is the state vector; x t� sð Þ ¼ x tð Þ;ð

x t� 1ð Þ; … ; x t� sð ÞÞ is an input sequence; and Yθ
1, … , Yθ

r , X
θ
0, … , Xθ

r are fuzzy sets.
By re-denoting input variables: u0 tð Þ; u1 tð Þ; … ; um tð Þð Þ ¼ 1; y t� 1ð Þ; … ; y t� rð Þ;ð

x tð Þ; … x t� sð ÞÞ, finite-difference equation’s coefficients: cθ0; c
θ
1; … ; cθm

� �
¼

aθ0; a
θ
1 ; … ; aθr ; b

θ
1; … ; bθs

� �
, and membership functions:

Uθ
1 u1 tð Þð Þ; … ;Uθ

m um tð Þð Þ
� �

¼ Yθ
1 y t� 1ð Þð Þ; … ;Yθ

r y t� rð Þð Þ;Xθ
0 x tð Þð Þ; … ;Xθ

s x t� sð Þð Þ
� �

,

where m ¼ r ¼ sþ 1, one obtains the analytic form of the fuzzy model, intended
for calculating the output ŷ tð Þ:

ŷ tð Þ ¼ cTeu tð Þ, (14)
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where c ¼ c10; … ; cn0; … ; c1m; … ; cnm
� �T

is the vector of the adjustable parameters;

euT tð Þ ¼ u0 tð Þβ1 tð Þ; … ; u0 tð Þβθ tð Þ; … ; um tð Þβ1 tð Þ; … ; um tð Þβn tð Þ
� �

is the extended
input vector;

βθ tð Þ ¼
Uθ

1 u1 tð Þð Þ⊗…⊗Uθ
m um tð Þð Þ

∑N
θ¼1 Uθ

1 u1 tð Þð Þ⊗…⊗Uθ
m um tð Þð Þ

� � (15)

is a fuzzy function where ⊗ denotes the minimization operation of fuzzy
product.

If for t = 0, the vectorc 0ð Þ ¼ 0, the correcting mn� nm matrix Q 0ð Þ (m is the
number of input vectors, n is the number of production rules), and the values of
u tð Þ, t ¼ 1, … , N are specified, the parameter vector c tð Þ is calculated using the
known multi-step LSM:

c tð Þ ¼ c t� 1ð Þ þQ tð Þeu tð Þ y tð Þ � cT t� 1ð Þeu tð Þ�
�

Q tð Þ ¼ Q t� 1ð Þ �
Q t� 1ð Þeu tð ÞeuT tð ÞQ t� 1ð Þ

1þ euT tð ÞQ t� 1ð Þeu tð Þ
(16)

Q 0ð Þ ¼ γI, γ > > 1, where I is the unit matrix.
The above equations show that even in case of one-dimensional input and few

production rules, a lot of observations are needed to apply LSM which makes the
fuzzy model too unwieldy. Therefore, only a part of the whole set of rules (r < n)
should be chosen according to a certain criterion.

The application of the associative search techniques where one or more model
parameters are fuzzy is reduced to such determination of the predicate
Ξ ¼ Ξi R

a
0,R

a;Ta
� �� �

, so that the number of production rules in the TS model is
significantly reduced according to some criterion.

For example, the following matrix:

β
Θt
1 … β

Θt

P

… … …

β
Θt�s
1 … β

Θt�s

P

(17)

can be defined for P-dimensional input vectors at time steps t�j, j = 1, …, s. If the

rows of this matrix are ranged, say, w.r.t. ∑P
p¼1 β

Θi
p

���
��� decrease and a certain number

of rows are selected, then such selection combined with condition (4) will deter-
mine the predicate Ξ and, respectively, the criterion for selecting the images (sets of
input vector) from the history.

Let us range the rows of this matrix, for example, subject to the criterion of

descending the values∑P
p¼1 β

Θi
p

���
���, and select a certain number of rows. Such selection

combined with condition (4) defines the predicate Ξ ¼ Ξi R
a
0,R

a;Ta
� �� �

, and,
respectively, the image selection criterion (sets of input vectors) from the archive.

5.1 Fuzzy associative search

Notwithstanding all benefits delivered by fuzzy techniques, their application
significantly reduces the calculation speed that is critical for predicting the dynam-
ics of some plants. This consideration coupled with the principal impossibility of
formalizing some factors necessitated the development of algorithms that could
combine all advantages of fuzzy approach and associative search algorithms.

8

Applied Modern Control



Assume the associative search procedure is determined by the predicate
Ξ(Pa, Ra), which interprets input variables’ limits (specified, say, by process
specifications) as a fuzzy conjunction of input variables:

Ξ Pa;Rað Þ ¼ X1 : x1 ⊂A1ð Þ∧ X2 : x2 ⊂Að Þ… Xn : xn ⊂Anð gf

for all X1, X2, …Xn from DX ¼ DX1 � DX2 � … �DXn.
Then, the production rules, where fuzzy variables possess such values that

Ξ(Pa, Ra) possesses the value FALSE, will be discarded automatically. This reduces
drastically the number of production rules employed in the fuzzy model and thus
increases significantly the algorithms’ speed.

6. Solving the associative search problem by means of clusterization
techniques

The associative search problem is solved by clustering technique (both crisp and
fuzzy) in the following way.

The current vector under investigation is attributed to a certain cluster per the
criterion of minimum distance to the center:

min
k

∑
K

k¼1

gk � x́N
		 		2,

where x́N ∈X is the current input vector of the control plant under investigation.
Within this cluster, the vectors are sought that satisfy the assigned associative

criterion. It may turn out that one cannot find within this cluster the number of
vectors necessary to solve the problem of forecasting using the method of least
squares. In this case, one of the known methods of combining two clusters with the
minimum distance between any two of their members can be applied. This
approach provides significant savings in computing resources compared to
searching through a full search. However, such a combination of clusters does not
yet guarantee the solution of the problem. The approach described below looks the
most reasonable.

6.1 Virtual clustering (“impostor”method)

The current input vector at any particular time can be assigned to a specific
cluster. This can, for example, be done by the criterion of the minimum distance to
the center.

Let

min
k

∑
K

k¼1

gk � x́N
		 		2

be satisfied for k = r.
Let x́N denote the center of the cluster Ar. If additional selection of input vectors

from the archive is required (to form a system of a sufficient number of equations
to identify the system using the associative search method), clusters with the
minimum distance between their centers and x́N are selected for the join. This
approach allows not only to discard a significant number of vectors removed from
x́N, but also to select from the archive the maximum possible number of vectors
satisfying the criterion of associative search.
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After the completion of this procedure, assigning x́N as the cluster center Ar is
canceled, and the procedure of the formation of virtual (relevant to the certain time
instant) models continues using conventional clustering algorithms.

7. Case study: oil refining product quality modeling

Key process equipment of an atmospheric distillation unit comprises of cold and
hot crude oil preheat trains, desalter, a flash drum or, instead, a pre-flash column
with an overhead reflux drum, atmospheric heaters, and an atmospheric distillation
column with a reflux drum and three side stripping columns for middle distillates
(typically, kerosene, light diesel and heavy diesel aka atmospheric gas oil). The
naphtha streams from both reflux drums are re-combined and further sent to
downstream stabilization and rerun facilities. The atmospheric residuum from the
bottom of the main atmospheric column is typically streamed to a vacuum distilla-
tion section.

To obtain a soft sensor model for the 10% distillation point of a kerosene stream,
the lab data for this quality were collected along with process data from the atmo-
spheric column. The predictive model is formed by means of the associative search
method. The process data were analyzed, and process variables measured by plant
instruments were selected for modeling along with the distillation point sampled at
the plant and measured in the refinery’s laboratory. Based on the preliminary data
analysis, the following linear predictive model was developed:

T tð Þ ¼ ∑
4

i¼1
biFi t� 1ð Þ þ b5F5 t� 3ð Þ þ b6F6 t� 5ð Þ þ ∑

12

i¼7
biFi t� 7ð Þ, (18)

where T tð Þ is the desired estimate; Fi t� jð Þ are various process parameters, such
as flows, temperatures, and pressures, measured directly at the plant; and b1, … , b12
are model’s coefficients.

The forecast was calculated per linear and associative models for 10,525 time
steps (1 step = 10 min). Figure 4 shows simulation results for the steps

t ¼ 102´, 301.

Figure 4.
Kerosene 10% distillation point forecast.
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8. Application of wavelet approach to the analysis of nonstationary
processes

Within the last two decades, applyingwavelet transform (WT) to the analysis of
nonstationary processes has been widely used. Thewavelet transform of signals is a
generalization of the spectral analysis, for instance,with regard to the Fourier transform.

First papers on the wavelet analysis of time (spatial) series with a pronounced
heterogeneity appeared in the end of 1980s [16, 17]. The method was positioned as
an alternative to the Fourier transform, localizing the frequencies but not providing
the time extension of a process under study. In sequel, the theory of wavelets has
appeared and is developed, as well as its numerous applications.

The scope of wavelet analysis today is very wide: it includes the synthesis and
processing of nonstationary signals, compression and coding of information, image
recognition and image analysis, the study of functions and time-dependent signals
and inhomogeneity in space. The approach is effective for tasks where the results of
the analysis should contain not only the characteristics of the frequency signal
(signal power distribution by frequency components) but also information about
local coordinates in which certain groups of frequency components manifest them-
selves or in which rapid changes in the frequency components of the signal occur. A
significant number of practical applications have been created, including in health
care, the study of geophysical fields, temporary meteorological series, and predic-
tion of earthquakes [18].

The wavelet analysis method consists in applying a special linear conversion of
signals. In particular, it becomes possible to study the physical properties or
dynamics of real objects and processes in depth. For example, it can be processes in
manufacturing. The wavelet transform (WT) of a one-dimensional signal is its
representation in the form of a generalized Fourier series (or Fourier integral) over
a system of basis functions called the “wavelet.” A wavelet is characterized by the
fact that the function that forms it (a wavelet-formation function or a wavelet
matrix) is distinguished by a certain scale (frequency) and localization in time
based on the time shift and the change in the time scale.

The time scale is analogous to the oscillation period, that is, it is inverse one with
regard to the frequency, and the shift interprets the displacement of the signal over
the time axis.

The wavelet transform performs the projection of a one-dimensional process
into a two-dimensional surface in three-dimensional space. The frequency and time
are treated as independent variables.

At the same time, it becomes realistic to simultaneously study the properties of
the process being studied both in the time domain and in the frequency domain. It
becomes possible to investigate the dynamics of the frequency process and its local
features. This allows us to identify the coordinates at which certain frequencies
manifest themselves most significantly.

The graphical representation of the wavelet analysis can be displayed in the form
of isolines, illustrating the change in the intensities of wavelet transform coeffi-
cients at different time scales, and also for revealing local extrema of surfaces.

If a function is used in the Fourier transform that generates an orthonormal basis
of space by means of a scale transformation, then the wavelet transform is formed
using a basis function localized in a bounded domain, although defined on the
whole numerical axis.

The wavelet transform, as a mathematical tool, serves mainly to analyze data in
the time and frequency domains.

Wavelet transformation, as a mathematical tool, provides the ability to analyze
data in the time and frequency domains simultaneously. The wavelet transform can
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provide time-frequency information about a function that in many practical situa-
tions is more relevant than information obtained through standard Fourier analysis.

There are examples of the use of wavelet analysis in identification problems [5].
In the literature, it is noted that wavelets are used mainly to identify nonlinear
systems with a certain structure, where unknown time-varying coefficients can be
represented as a linear combination of basis wavelet functions [6, 7]. It was stated
that along with the usual (“direct”) wavelet analysis, biorthogonal bursts [18],
wavelet frames [19], or wavelet networks [20] can be used to identify the system.

There exist many different ways of applying wavelets for linear system identifi-
cation. In Ref. [21], the identification of systems with a specific input/output struc-
ture was studied, in which the parameters are identified via spline-wavelets and
their derivatives. In paper [22], an extended use of an orthonormal transformation
least squares method is presented in order to reveal useful information from data.

9. Conditions of the associative model stability in the aspect of the
analysis of the spectrum of multi-scale wavelet expansion

Let (1) be an associative search model. We represent the multi-scale wavelet
decomposition for the current input vector x tð Þ for a fixed level of detail L [7]:

x tð Þ ¼ ∑
N

k¼1

cxL,k tð ÞφL,k tð Þ þ ∑
L

l¼1

∑
N

k¼1

dxl,k tð Þψ l,k tð Þ,

y tð Þ ¼ ∑
N

k¼1

c
y
L,k tð ÞφL,k tð Þ þ ∑

L

l¼1

∑
N

k¼1

d
y
l,k tð Þψ l,k7 tð Þ,

(19)

where L is the depth of the multi-scale expansion; φL,k tð Þ are scaling functions;
ψ l,k tð Þ are the wavelet functions that are obtained from the mother wavelets by
tension/combustion and shift

ψ l,k tð Þ ¼ 2l=2ψmother 2lt� k
� �

(as the mother wavelets, in the present case, we consider the Haar wavelets); l is
the level of data detailing; cL,k are the scaling coefficients; and dl,k are the detailing
coefficients. The coefficients are calculated by use of the Mallat algorithm [17].

Let us expand Eq. (1) over wavelets:

∑
N

k¼1

c
y
Lk tð ÞφLk tð Þ þ ∑

L

l¼1

∑
N

k¼1

d
y
lk tð Þψ lk tð Þ ¼ ∑

N

k¼1

∑
m

i¼1
aic

y
Lk t� ið ÞφLk t� ið Þ


 �

þ ∑
L

l¼1

∑
N

k¼1

∑
m

i¼1
aid

y
lk t� ið Þψ lk t� ið Þ


 �
þ ∑

N

k¼1

∑
S

s¼1
∑
rs

j¼1
bsjc

s
Lk t� jð ÞφLk t� jð Þ

 !

þ ∑
L

l¼1

∑
N

k¼1

∑
S

s¼1
∑
rs

j¼1
bsjd

s
lk t� jð Þψ lk t� jð Þ

 !

Let us consider individually the detailing and approximating parts correspondingly:

tð Þψ lk tð Þ ¼ ∑
m

i¼1
aid

y
lk t� ið Þψ lk t� ið Þ þ ∑

S

s¼1
∑
rs

j¼1
bsjd

s
lk t� jð Þψ lk t� jð Þ, (20)

c
y
Lk tð ÞφLk tð Þ ¼ ∑

m

i¼1
âic

y
Lk t� ið ÞφLk t� ið Þ þ ∑

S

s¼1
∑
rs

j¼1
b̂sjc

s
Lk t� jð ÞφLk t� jð Þ: (21)
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In [7], it was shown that a sufficient condition for the stability of plant (1) is as
follows: for ∀k ¼ 1,́ N meeting the inequalities is to be provided:

1. if m>R, R ¼ max rs
s¼1, S

, then the condition for the detailing coefficients:

a1d
y
l,k t� 1ð Þ þ∑S

s¼1bs,1d
xs
l,k t� 1ð Þ

2d
y
l,k tð Þ

�����

����� < 1,

�a2d
y
l,k t� 2ð Þ þ∑S

s¼1bs,2d
xs
l,k t� 2ð Þ

a1d
y
l,k t� 1ð Þ þ∑S

s¼1bs,1d
xs
l,k t� 1ð Þ

�����

����� < 1, … ,

�aRþ1d
y
l,k t� R� 1ð Þ

aRd
y
l,k t� Rð Þ þ∑S

s¼1bs,Rd
xs
l,k t� Rð Þ

�����

����� < 1,

�aRþ2d
y
l,k t� R� 2ð Þ

aRþ1d
y
l,k t� R� 1ð Þ

�����

����� < 1, … ,

�2amd
y
l,k t�mð Þ

am�1d
y
l,k t�mþ 1ð Þ

�����

����� < 1

(22)

for the approximating coefficients:

a1c
y
L,k t� 1ð Þ þ∑S

s¼1bs,1c
xs
L,k t� 1ð Þ

2c
y
L,k tð Þ

�����

����� < 1,

�a2c
y
L,k t� 2ð Þ þ∑S

s¼1bs,2c
xs
L,k t� 2ð Þ

a1c
y
L,k t� 1ð Þ þ∑S

s¼1bs,1c
xs
L,k t� 1ð Þ

�����

����� < 1, … ,

�aRþ1c
y
L,k t� R� 1ð Þ

aRc
y
L,k t� Rð Þ þ∑S

s¼1bs,Rc
xs
L,k t� Rð Þ

�����

����� < 1,

�aRþ2c
y
L,k t� R� 2ð Þ

aRþ1c
y
L,k t� R� 1ð Þ

�����

����� < 1, … ,

�2amc
y
L,k t�mð Þ

am�1c
y
L,k t�mþ 1ð Þ

�����

����� < 1;

(23)

2. if m<R, R ¼ maxrs s¼1,́ S , then the condition for the detailing coefficients:

a1d
y
l,k t� 1ð Þ þ∑S

s¼1bs,1d
xs
l,k t� 1ð Þ

2d
y
lk tð Þ

�����

����� < 1,

�a2d
y
l,k t� 2ð Þ þ∑S

s¼1bs,2d
xs
l,k t� 2ð Þ

a1d
y
l,k t� 1ð Þ þ∑S

s¼1bs,1d
xs
l,k t� 1ð Þ

�����

����� < 1, … ,

�∑S
s¼1bs,mþ1d

xs
l,k t�m� 1ð Þ

amd
y
l,k t�mð Þ þ∑S

s¼1bs,md
xs
l,k t�mð Þ

�����

����� < 1,

�∑S
s¼1bs,mþ2d

xs
l,k t�m� 2ð Þ

∑S
s¼1bs,mþ1d

xs
l,k t�m� 1ð Þ

�����

����� < 1, … ,

�2∑S
s¼1bs,Rd

xs
l,k t� Rð Þ

∑S
s¼1bs,R�1d

xs
l,k t� Rþ 1ð Þ

�����

����� < 1
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for the approximating coefficients:

a1c
y
L,k t� 1ð Þ þ∑S

s¼1bs,1c
xs
L,k t� 1ð Þ

2c
y
L,k tð Þ

�����

����� < 1,

�a2c
y
L,k t� 2ð Þ þ∑S

s¼1bs,2c
xs
L,k t� 2ð Þ

a1c
y
L,k t� 1ð Þ þ∑S

s¼1bs,1c
xs
L,k t� 1ð Þ

�����

����� < 1, … ,

�∑S
s¼1bs,mþ1c

xs
L,k t�m� 1ð Þ

amc
y
L,k t�mð Þ þ∑S

s¼1bs,mc
xs
L,k t�mð Þ

�����

����� < 1,

�∑S
s¼1bs,mþ2c

xs
L,k t�m� 2ð Þ

∑S
s¼1bs,mþ1c

xs
L,k t�m� 1ð Þ

�����

����� < 1, … ,

�2∑S
s¼1bs,Rc

xs
L,k t� Rð Þ

∑S
s¼1bs,R�1c

xs
L,k t� Rþ 1ð Þ

�����

����� < 1;

(24)

3. if m ¼ R 6¼ 1, R ¼ maxrs s¼1,́ S , then the condition of the stability for the
detailing coefficients:

a1d
y
l,k t� 1ð Þ þ∑S

s¼1bs,1d
xs
l,k t� 1ð Þ

2d
y
l,k tð Þ

�����

����� < 1,

�a2d
y
l,k t� 2ð Þ þ∑S

s¼1bs,1d
xs
l,k t� 2ð Þ

a1d
y
l,k t� 1ð Þ þ∑S

s¼1bs,1d
xs
l,k t� 1ð Þ

�����

����� < 1, … ,

�2 amd
y
l,k t�mð Þ þ∑S

s¼1bs,md
xs
l,k t�mð Þ

h i

am�1d
y
l,k t�mþ 1ð Þ þ∑S

s¼1bs,m�1d
xs
l,k t�mþ 1ð Þ

������

������
< 1

(25)

for the approximating coefficients:

a1c
y
L,k t� 1ð Þ þ∑S

s¼1bs,1c
xs
L,k t� 1ð Þ

2c
y
L,k tð Þ

�����

����� < 1,

�a2c
y
L,k t� 2ð Þ þ∑S

s¼1bs,2c
xs
L,k t� 2ð Þ

a1c
y
L,k t� 1ð Þ þ∑S

s¼1bs,1c
xs
L,k t� 1ð Þ

�����

����� < 1, … ,

�2 amc
y
L,k t�mð Þ þ∑S

s¼1b̂s,mc
xs
L,k t�mð Þ

h i

am�1c
y
L,k t�mþ 1ð Þ þ∑S

s¼1b̂s,m�1c
xs
L,k t�mþ 1ð Þ

������

������
< 1;

(26)

4. if m ¼ R ¼ 1, R ¼ maxrs s¼1,́ S , then the condition of the stability for the
detailing coefficients:

a1d
y
l,k t� 1ð Þ þ∑S

s¼1bs,1d
xs
l,k t� 1ð Þ

d
y
l,k tð Þ

�����

����� < 1
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for the approximating coefficients:

a1c
y
L,k t� 1ð Þ þ∑S

s¼1bs,1c
xs
L,k t� 1ð Þ

c
y
L,k tð Þ

�����

����� < 1:

10. Prediction of the transfer to chaos

The chaotic system dynamics is characterized by considerable dependence on
initial conditions, when as close as needed at the initial time instant trajectories
during certain time are diverge by a finite distance. The main characteristics of the
chaotic behavior are the speed of divergence of the trajectories defined by the senior
Lyapunov exponent. This speed is determined by the Lyapunov exponent whose
value represents the degree of instability or degree of sensitivity to the original data.

For a linear system with a constant matrix, the senior Lyapunov exponent is
χ1 ¼ max Rλi, where λi are the eigenvalues of the system matrix. In other words,
χ1j j coincides with the conventional degree of the system stability [23].

Thus, (23) and (24) are sufficient conditions for chaotic dynamics prediction,
what is a key condition under implementing phase transfers of technological pro-
cesses under study.

11. Prediction of manufacturing situations

Optimal routine enterprise resource planning and scheduling are currently based
on detailed mathematical models of production processes [24]. Rescheduling
requires model update subject to the current production information.

Present-day industrial sites feature interrelated multi-variable production pro-
cesses and sophisticated material flow networks; scheduling at such sites poses
nonlinear NP-hard optimization problems.

The state of manufacturing resources should be nevertheless assessed and
predicted both to improve control agility and to foresee the situations where sched-
ule execution becomes problematic or impossible. Such situations will be further
referred to as incidents.

It may make sense to develop intelligent predictive models describing the overall
current state of resources employed to execute all production operations of a spe-
cific production process.

The term “production resources” will hereafter mean the following:

• input flows characterized by formal properties dependent on production
specificity; and

• production equipment.

dij, i ¼ 1, … , N; j ¼ 1, … ,M

and other facilities used for performing the j-th operation;

• human resources

hij, i ¼ 1, … , H; j ¼ 1, … ,M

involved in the j-th operation;
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• other factors

f ij,k ¼ 1, … , N; j ¼ 1, … ,M

affecting the j-th operation such as energy resources and a variety of formal
indices and factors related with the production process.

Production resources may be described differently.

1. Some have qualitative characteristics which take on specific values that may be
checked against norms at any moment.

2. The state of others such as certain equipment pieces may be exclusively either
“working” or “not working.” The remaining life time may be known or not for
such resources. The process historian may however keep failure statistics for a
specific equipment piece; maintenance downtime statistics may be also
available for a specific piece or similar kind of equipment.

3.One more resource type (including human resources) is not subject to
maintenance. In case of outage, such resources should be immediately replaced
from the backlog. The replacement process is typically fast; therefore, no
values other than 1 (OK) and 0 (not OK) should be assigned to such resource.

Assume a model of a specific manufacturing situation as a dynamic schedule
fragment comprising the following components:

rij tð Þ ¼ <С1 >С2 >С3 >С4 >С5 >f gijt (27)

where

<С1 > ¼
def

< ijt > is a resource identifier including the resource number, the opera-
tion number, and the time stamp (the number of characteristics may be increased).

Other components of the resource state vector at the time moment t may be
represented by a binary code.

<С2 > is the code of the numerical value of a state variable; this code is different
for each of the above-listed resource types.

<С3 > , <С4 > , and <С5 > will be discussed further.
Consider the resources whose state may be described by some quantitative

characteristic, such as inlet flow rate or temperature for chemical processes or an
average equipment failure number.

For a specific resource, we assume that the characteristic of its state possesses
the values on the half-interval [0; 1) (this half-interval was chosen as an example
for simplicity, the results can be easily spread to any other).

This half-interval can be represented as the union
[0; 0.5)∪ [0.5, 1). We will further correspond the symbols {0; 1} to the left and

right half-intervals respectively, namely, 0 to the left half-interval, and 1 to the
right one.

Each of the two subintervals can be further split in the same way, and, again, the
values 0 and 1 can be assigned to the left and the right parts, respectively.

In that way, a finite chain of symbols from {0; 1} has a one-to-one correspon-
dence with a half-interval embedded in [0; 1). For a binary partition, a chain of n
symbols corresponds to a half-interval with the length 1

2n.
This way, for each value of a numerical characteristic at the current time

moment, we obtain a code of 0s and 1s. The number of positions, as we show
further, will determine the accuracy of prediction.
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For the resources from the categories 2 and 3, the respective codes will have the
same value in all positions (either 1 or 0). <С3 > is the code of the time before the
maintenance end. If a resource is available and operated, the respective code con-
sists of 1s. <С4 > is the code of the time before the equipment piece fails with the
probability close to 1 (remaining life).

In the scheduling practice, this time is not less than the operating time. How-
ever, resource replacement just during the operation may be sometimes more cost-
effective. Moreover, the equipment piece may fail unexpectedly. For resource types
from categories 1 and 3, <С4 > has 1s in all positions.

<С5 > is the time before the scheduled end of the operation. In real-life
manufacturing situations, time may be wasted (with the need in schedule update)
for the reasons neither stipulated in the production model nor caused by equipment
failures.

Generally, it is hardly possible to formalize all such causes of schedule disrup-
tion. Therefore, their consolidation as the “remaining plan execution time” is a way
to allow for these hidden factors in the production state model.

For the developed binary chain, a forecast may be obtained using data mining
techniques. It makes sense to apply themethods named association rules search [25].

A forecast of a state described by a binary chain with an identifier can be
obtained by revealing the most probable combination of two binary sets of values at
a fixed time instant and at the next instant (a one-step forecast). A more distant
prediction horizon is also possible.

12. Conclusion

Modern information technologies offer new possibilities for solving identifica-
tion problems for control and decision-making systems. Data mining methods allow
to solve problems that in the general case could not be solved by classical methods,
or required heuristic approaches.

In this chapter, associative search techniques are presented. The techniques
allow the identification of nonlinear systems, without the need to build a bunch of
Wiener-Hammerstein models, etc. An alternative is to analyze the current state of
the system using the knowledge base and training system. This approach allows the
best use of a priori information on the object.

The algorithms may be successfully applied in the identification of nonlinear
nonstationary processes. For these purposes, the multi-scale wavelet expansion is
used. By investigating the dynamics of the coefficients of this expansion, one can
predict the approach of process parameters to stability limits. Finally, sufficient
conditions of stability are derived.

The high accuracy of forecasting by associative search technique makes it rele-
vant for studying the dynamics of processes and predicting the transition to chaos.
Also, it becomes possible to predict the contingencies of production processes. For
this, the method of searching for associative rules is applied.
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