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Abstract

We give a theoretical review of recent development of the mesoscopic physics of phonon
transport in carbon nanotubes, including the quantization of phonon thermal conductance,
phonon Anderson localization, and so on. A single-walled carbon nanotube (SWCNT) can
be regarded as a typical one-dimensional phonon conductor and exhibits various interesting
phenomena originating from its one dimensionality. For example, a pristine SWCNTwith-
out any defects shows the quantization of phonon thermal conductance at low temperature.
On the other hand, a defective SWCNT with randomly distributed carbon isotopes shows
the phonon Anderson localization originating from the interference between phonons
scattered by isotope impurities.

Keywords: carbon nanotube, ballistic phonon, quantized thermal conductance, phonon
Anderson localization, phonon waveguide

1. Introduction

Heating of electronic devices is an unavoidable serious problem toward the realization of next-

generation nanoscale devices. Carbon nanotube (CNT) is expected to be a potential material

for removing the heat from heated devices because of its high thermal conductivity. However,

concern has been raised that intrinsic high thermal conductivity of pure CNTs is lost because of

the presence of defects in synthesized CNTs.

In this chapter, we give a review of recent progress of theoretical works on phonon transport in

CNTs focusing on the quantization of phonon thermal conductance, phonon Anderson locali-

zation, and so on. The phonon transport in CNTs shows fully quantum behaviors at low

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



temperatures and exhibits strong nonlinear behaviors due to phonon-phonon interaction at

high temperatures. Therefore, traditional transport theories for bulk objects are not applicable

to the thermal transport in CNTs. In the chapter, we will introduce a novel theory for

mesoscopic phonon transport we developed and will describe various results and their physical

interpretations.

2. Coherent phonon thermal transport in carbon nanotubes

2.1. Quantized thermal conductance of carbon nanotubes

In the one-dimensional (1D) phonon system formed between heat and cold baths, the thermal

current density is described as the Landauer energy flux [1–3], which is given by

_Qph ¼
X

m

ð

∞

0

dk

2π
ℏωm kð Þvm kð Þ η ωm;Thotð Þ � η ωm;Tcoldð Þ½ �ζm kð Þ (1)

where ℏωm kð Þ a phonon energy dispersion of wave number k and a phonon mode index m,

vm kð Þ ¼ dωm kð Þ=dk a group velocity, η ωm;Tαð Þ ¼ exp ℏωm kð Þ=kBTαð Þ � 1
� ��1

the Bose-Einstein

distribution function in heat baths, and ζm kð Þ is the transmission probability between the

system and heat baths [1].

Analytically, performing the integration in Eq. (1) is, generally, very difficult, and it requires a

knowledge of ωm kð Þ and ζm kð Þ as a function of m and k. However, transformation of the

integration variable in Eq. (1) from k to ωm kð Þ leads to a cancelation between vm kð Þ and the

density of state, dk=dωm, so that Eq. (1) is rewritten as

_Qph ¼
X

m

ðωmax
m

ωmin
m

dωm

2π
ℏωm η ωm;Thotð Þ � η ωm;Tcoldð Þ½ �ζm ωmð Þ (2)

Here ωmin
m and ωmax

m are the minimum and maximum angular frequencies of the mth phonon

dispersion, respectively. It is noted that Eq. (2) depends on only ωmin
m and ωmax

m regardless of the

energy dispersion. Furthermore, within the linear response limit, ΔT � Thot � Tcold ≪T

� Thot þ Tcoldð Þ=2, and the limit of adiabatic contact between the system and heat baths,

ζm ωmð Þ ¼ 1, the thermal conductance, κph ¼ _Qph=ΔT, is simplified as

κph ¼
k2BT

2πℏ

X

m

ðxmax
m

xmin
m

dx
x2ex

ex � 1ð Þ2
(3)

Carrying out the integration in Eq. (3), we can derive an analytical expression of the thermal

conductance, which can easily apply to various 1D ballistic phonon systems, κph ¼

κmin
ph � κmax

ph :
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κα
ph ¼

2k2BT

h

X

m

ϕ 2; e�xα
m

� �

þ x
α
m
ϕ 1; e�xα

m

� �

þ
xα
m

� �2

2
η x

α
m

� �

" #

(4)

Here, α denotes “min” or “max,” ϕ z; sð Þ ¼
P

∞

n¼1 sn=nzð Þ is the Appel function, and

xα
m
¼ ℏωα

m
=kBT. In particular, an acoustic mode (ωmin

m
¼ 0) contributes a universal quantum of

κ0 ¼ π2k
2
BT=3h to the thermal conductance.

The thermal conductance in single-walled carbon nanotubes (SWCNTs) can be obtained by

knowing the values of ωmin
m

and ωmax
m

for all m. These values can be obtained from the

diagonalization of the dynamical matrix, constructed with the scaled force-constant parame-

ters [4, 5]. Figure 1 shows energy dispersion curves for the region near k ¼ 0 for a CNT with

chiral vector Ch ¼ 10; 10ð Þ, where ∣T∣ is the magnitude of the unit vector along the tube axis.

Here, the chiral vector n;mð Þ uniquely determines the geometrical structure of CNTs [5, 7].

Figure 1 shows four acoustic modes with linear dispersion: a longitudinal acoustic one, doubly

degenerate transverse acoustic ones, and a twisting one. The lowest doubly degenerate optical

(E2g Raman active) modes have an energy gap of ℏωop ¼ 2:1 meV at k ¼ 0. As shown in the

inset of Figure 1, ℏωop depends only on the tube radius R and decreases approximately

according to � 1=R2 [5, 7]. These modes always lie in low-energy dispersion relations, inde-

pendent of the geometry of SWCNTs.

Figure 2(a) shows the thermal conductances normalized to a universal value of 4κ0 (as

explained later) as a function of temperature. The calculated values approach unity in the

Figure 1. Low-energy phonon dispersion curves for a (10,10) SWCNT [6]. The inset shows the energy gap of the lowest

optical modes. Copyright 2004 American Physical Society.
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low-temperature limit, meaning that the phonon thermal conductance of SWCNTs is quan-

tized in unit of a universal value of 4κ0, independent of the chirality of SWCNTs. The origin of

the quantization of thermal conductance is low-energy excitations of long wavelength acoustic

phonons (four branches in Figure 1) at temperatures sufficiently low that the two lowest

optical modes with ℏωop are not excited (lowest gapped branch in Figure 2). The quantization

Figure 2. Thermal conductance as a function of temperature (a) in units of Kelvin and (b) scaled by the energy gap of the

lowest optical mode [6]. Copyright 2004 American Physical Society.
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can also be derived analytically from Eq. (4). Only the first term contributes to the conductance

at the low-T limit, leading to 4 π2k2BT=3h
� �

¼ 4κ0. Here, 4 is the number of acoustic branches.

As another important finding, the different curves of κph Tð Þ for various SWCNTs seen in

Figure 2(a) exhibit a universal feature when a scaled temperature is introduced, τop ¼

kBT=ℏωop. Taking account of the four acoustic and two lowest optical modes and substituting

the values of ωmin
m for these branches at the k ¼ 0 into Eq. (2), the thermal conductance can be

given as

κph

4κ0
≈ 1þ

3

π2
e�1=τop 1þ

1

τop
þ

1

2τ2op

 !

(5)

The curves in Figure 2(a) are replotted against the curve of Eq. (5) with τop in Figure 2(b). It is

evident that all curves (only three curves are shown for clarity) fall on a single curve coinciding

with the curve of Eq. (5) in the low-T limit. The curves turn upward at around τop ≈ 0:14 from a

linear region in this plot (quantization plateau), with the plateau width determined by the

relation � 1=R2 (see result in the inset of Figure 1). This universal feature of κph Tð Þ of SWCNTs

indicates that the optical phonon energy gap, which is decided only by R, characterizes low-

temperature phonon transport, as shown in the inset of Figure 1. This theoretical result

supports both the experimental observations and the inferred tube-radius dependence of the

width of the thermal conductance plateau, although the unknown extrinsic factors in the

experiment makes it impossible to compare the absolute values between the experiment and

theory directly [8, 9].

The contribution of electrons to thermal conductance can be determined in a simple manner by

replacing η ωm;Tð Þ in Eq. (1) with f Em;Tð Þ ¼ 1= e Em�μð Þ=kBT þ 1
h i

and then substituting the

electron energy bands, Em, into the formula. According to this formulation, all conduction

bands crossing the Fermi energy level yield κ0, as that of phonons, even though electrons obey

different statistics. Generally, the quantum of thermal conductance should be universal out of

relation to particle statistics [1, 10].

The low-T behavior of the electronic thermal conductance in SWCNTs is dependent on

whether the SWCNT is metallic or semiconducting, which is sensitive to radius and chirality

[11, 12]. For semiconducting SWCNTs, the electronic thermal conductance, κel, should vanish

roughly exponentially in the limit of T ! 0, having an energy gap of the order of 0.1 eV

[13–15]. For metallic SWCNTs, two linear energy bands crossing the Fermi level at k > 0 [5]

contribute toκel at low temperatures, resulting in a universal value of κel ¼ 4κ0, where 4 is the

number of two spin-degenerate channels crossing the Fermi level. This result also satisfies the

Wiedemann-Franz relation between electrical conductance and electronic thermal one [16–18].

The total thermal conductance of metallic SWCNTs is given by κ ¼ κel þ κph ¼ 8π2k2BT=3h at

low temperatures.

Finally, in this subsection, a significant difference was recognized between the widths of the

quantization plateau for phonons and those for electrons in metallic SWCNTs. The characteristic
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energy for phonon transport at low temperature is ℏωop, typically a few meV, as described in

Figure 2(b), while that for electron transport is of the order of 0.1 eV, which corresponds to the

energy at a Van Hove singularity measured from the Fermi level [19]. As a result, it is predicted

that the quantized nature of electron thermal conductance survives up to room temperature, at

which phonons already cease to exhibit thermal quantization, giving rise to high thermal

conductance. In other words, the contribution from electrons to thermal conductance is negli-

gible compared to that from phonons at moderate temperatures. In Figure 3, the temperature

dependence of the ratio of thermal conductance κel=κph for electrons and phonons is illus-

trated. The experimentally observed ratio [20] is 1 order of magnitude lower than the present

value. The discrepancy is attributed to the theoretical treatment of SWCNTs as purely metallic,

whereas only a certain fraction � 1=3ð Þ [5, 11] of the crystalline ropes of SWCNTs in the

experiment will be metallic and contribute to κel.

2.2. Carbon nanotube as phonon waveguide

In this subsection, nonequilibrium molecular dynamics (NEMD) simulations are carried out

with the Brenner bond-order potential for carbon-carbon covalent bonds [21] and the Lennard-

Jones one for van der Waals interaction between the tube walls [22]. In our NEMD simulations,

different temperatures, TC (¼ 290 K) and TH (¼ 310 K), are assigned to several layers of the

left- and right-hand sides of a SWCNT. This leads to a thermal current from the right to left

through the SWCNT, as shown in Figure 4. The Nosé-Hoover thermostat is utilized to control

the temperature of the left and right-hand side several layers [24, 25], and we impose the fixed

boundary condition, so that the edge atoms of SWCNTs are fixed rigidly. The length of the

Figure 3. Ratio of thermal conductance by electrons, to that by phonons for a (10,10) SWCNT [6]. The inset gives results at

low temperatures on an expanded scale. Copyright 2004 American Physical Society.
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temperature-controlled layers is taken to be LC ¼ L=2, where L is the length of the phonon-

conduction region. The tunable parameters in the Nosé-Hoover thermostat method were

optimized so as to minimize contact thermal resistance [26]. In our simulations, we solve

Hamilton’s classical equations of motion using second-order operator splitting integrators

[27] with the molecular-dynamics (MD) time step of 0.5 fs.

In this subsection, the thermal conductance κ is treated as

κ ¼
Jth

TH � TC
(6)

Here, the steady-state thermal current, Jth, is calculated as follows:

Jth ¼

Pn
j¼1 ΔQH jð Þ � ΔQC jð Þ½ �

2nΔt
(7)

where n represents the number of MD steps and �ΔQH Cð Þ jð Þ is the amount of heat added to the

right temperature-controlled layers (removed from the left ones) per unit time (see Figure 4).

First, the influence of bending deformation on the thermal conductance of SWCNTs is

discussed. In our simulations, shortening the distance between the two ends of a SWCNT

realizes bending. The right panels (a)-(c) in Figure 5 illustrate the bent 5; 5ð Þ SWCNT for

compression lengths lcomp ¼ 0, 60, and 120 nm, respectively. It can be seen that the CNT is

severely bent as the edge-layer distance decreases. In the simulations, the bending deformation

arises from stretching of carbon-carbon bond lengths, and the hexagonal network of carbon

atoms in the SWCNT is not broken. The left panel in Figure 5 shows the thermal conductance of

the 5; 5ð Þ SWCNT with L ¼ 100 nm as a function of the compression length. Our simulations

exhibits that the bending does not affect the thermal conductance. Although the value of

thermal conductance depends on L, the L-dependence is not discussed here because the conclu-

sion of the study does not change qualitatively within the range from L ¼ 100 to 250 nm as

calculated. For the L-dependence, we refer the reader to other published papers [26, 28–31].

The bending robustness of κ can be understood through a perspective of the phonon disper-

sion relations as shown in Figure 6, given by the power spectra of velocity fluctuations

calculated by MD simulations [26, 28]. Figure 6(a)-(c) show the dispersion relations of the bent

Figure 4. Schematic of the SWCNT in which different temperatures are assigned to the left- and right-end several layers

[23]. Copyright 2009 the Japan Society of Applied Physics.

Mesoscopic Physics of Phonon Transport in Carbon Materials
http://dx.doi.org/10.5772/intechopen.81292

149



Figure 5. The thermal conductance of the (5,5) SWCNTwith 200 nm length as a function of the compression length [23]. The

right panels (a)–(c) represent the MD snapshots of a bended CNT. Copyright 2009 the Japan Society of Applied Physics.

Figure 6. The phonon dispersion relations of the (5,5) SWCNT with the compression length (a) 0, (b) 60, and (c) 120 nm

[23]. Copyright 2009 the Japan Society of Applied Physics.
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5; 5ð Þ SWCNT for lcomp ¼ 0, 60, and 120 nm, respectively. Since the bending deformation does

not break the hexagonal network of the SWCNT is not broken by the bending deformation, a

change of the dispersion structure due to the bending is very small. More specifically, the

dispersion structure in the low-energy region remains unchanged after the bending, whereas

that in the high-frequency region is slightly changed as shown in Figure 6. Consequently, κ at

the room-temperature is unaffected by the local bond-length deformation due to the bending.

The bending robustness obtained by our simulations supports the experimental results of

Chang et al. [32].

2.3. Phonon Anderson localization in isotope-disordered carbon nanotube

This subsection is focused on the interference effects of coherent phonons in SWCNTs. Here,

we performed calculations for two typical examples: a (5,5) metallic SWCNT with 15.0% 13C

and a (8,0) semiconducting SWCNT with 9.4% 14C. Our simulation is based on the Landauer

theory of phonon transport combined with the nonequilibrium Green’s function (NEGF)

technique [33–35]. We used the Brenner bond-order potential for the interaction between

carbon atoms [21], as used in the previous subsection. It is assumed that isotope disorder exists

only in a central region with a length L. This region is connected to semi-infinite pristine

SWCNT leads, not including any defects or impurities (Figure 7). In accordance with the

Landauer theory within the linear response with the temperature difference between hot and

cold baths [1], the phonon derived thermal conductance can be expressed as κ Tð Þ ¼
Ð

∞

0
dω
2π ℏω

∂f B ω;Tð Þ
∂T ζ ωð Þh i, where s ℏ is Planck’s constant, T is the average temperature of the hot

and cold baths, f B ω;Tð Þ is the Bose-Einstein distribution function for a phonon with a fre-

quency ω in the baths, and ζ ωð Þh i is the phonon-transmission function averaged over an

ensemble of samples with different isotope configurations. We adopted over 200 realizations

for each L at each ω.

In the NEGF technique, the phonon-transmission function ζ ωð Þ is given by ζ ωð Þ ¼ Tr ΓL ωð Þ½

G ωð ÞΓR ωð ÞG† ωð Þ�, where G ωð Þ ¼ ω2
M �D� ΣL ωð Þ � ΣR ωð Þ

� ��1
is the retarded Green’s func-

tion in the central region and ΓL Rð Þ ωð Þ ¼ i ΣL Rð Þ ωð Þ � Σ
†

L Rð Þ ωð Þ
� �

is the level broadening func-

tion due to the left (right) lead [33–35]. Here, D is a dynamical matrix in the central region,M a

diagonal matrix with elements corresponding to the masses of the constituent atoms, and

ΣL Rð Þ ωð Þ a self-energy due to the left (right) lead. A merit of NEGF technique is that the phonon

transport in micrometer-length nanotubes can be efficiently computed. We can easily calculate

the statistical average of the phonon transmission for nanotubes within the wide range of tube

Figure 7. Schematic of an isotope-disordered SWCNT [36]. Copyright 2011 American Physical Society.
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length with respect to huge number of isotope configurations. On the other hand, consider-

ation of many-body interactions such as phonon-phonon scattering requires much computa-

tion time in the NEGF technique.

To perform the NEGF simulations, we first optimized the structures of a pristine (5,5) metallic

and (8,0) semiconducting SWCNTs, and then calculated D from the second derivative of the

total energy of the optimized structures with respect to the atom coordinate. By using D and

the recursion method, we can easily compute ΣL Rð Þ ωð Þ. Moreover, we assume that the isotopes

are taken into account only in M.

Coherent-phonon transport is classified into three regions based on a relation among the

length L of the central region: the ballistic regime for L≪ lMFP ωð Þ, the diffusive one for

lMFP ωð Þ≪ L≪ ξ ωð Þ, and the localization one for L≫ ξ ωð Þ. Here, lMFP ωð Þ is the mean free path

and ξ ωð Þ the localization length. Before discussing the phonon-transmission histogram, we

first determine lMFP ωð Þ and ξ ωð Þ for isotope-disordered SWCNTs. We adopt the procedure

used in Ref. [37] to estimate these lengths. Figure 8(a) shows the average phonon transmission

ζ ωð Þh i of the (5,5) SWCNT with 15% 13C for various L up to 5 m. In the very low-frequency

region, ζ ωð Þh i does not decrease and is almost four, even in the presence of isotope impurities.

Perfect transmission (i.e., ballistic transport) is realized because the wavelength of acoustic

phonons in the low-ω region is much longer than L. The Landauer expression of thermal

conductance eventually exhibits universal quantization of 4κ0 at low temperatures irrespective

of the presence and absence of isotope impurities (the factor 4 reflects the number of acoustic

phonon modes).

In contrast, ζ ωð Þh i decreases rapidly in the higher frequency region with increasing L, as

shown in Figure 8(a). There are two possible mechanisms for the reduction of ζ ωð Þh i:

diffusive scattering and phonon localization. For the former, ζ ωð Þh i decreases with L

according to ζ ωð Þh i ¼ M ωð Þ= 1þ L=lMFP ωð Þð Þ, where M ωð Þ means the number of phonon

modes. On the other hand, for the latter mechanism, the phonon-transmission function

decays exponentially with L according to the scaling law ln ζ ωð Þh i ¼ �L=ξ ωð Þ. In other

words, ξ ωð Þ is defined by the scaling law. To clarify these mechanisms for the phonon-

transmission reduction, the L-dependences of ζ ωð Þh i and ln ζ ωð Þh i are plotted in Figure 8(b)

and (c) for the two mechanisms, respectively. As Figure 8(b) shows that the numerical

data of ζ ωð Þh i at ω ¼ 34 cm�1 and 391 cm�1 are well fitted by the dashed lines. In particular,

the slope of the dashed line for ω ¼ 34 cm�1 is almost zero, implying that lMFP is very long

and the phonon transport is ballistic at this frequency, as has been discussed above. For

ω ¼ 391 cm�1, the slope is finite, which indicates that phonon transport at this frequency is

in the diffusive regime. In contrast to the low frequencies, at higher frequencies (ω ¼ 1071,1207,

and 1513 cm�1), the calculated values deviate from the dashed lines with increasing L,

although they are well fitted in the short-L region. This deviation means that the phonon-

transmission reduction for high-ω phonons of a long-L SWCNT cannot be explained by the

diffusive scattering mechanism. As shown in Figure 8(c), the data for ω ¼ 1071,1207, and

1513 cm�1 are well fitted by the dashed lines in the ln ζh i plot. Thus, it can be concluded that

phonon localization causes the phonon-transmission reduction for high-ω phonons in a long-L

SWCNT.
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lMFP and ξ ωð Þ can be estimated from the slope of dashed lines in Figure 8(b) and (c), respectively.

The estimated lMFP and ξ ωð Þ for the (5,5) SWCNT with 15% 13C are presented in Figure 8(d).

This result is in excellent agreement with the phenomenological Thouless relation, ξ ωð Þ ¼

M ωð Þ þ 1ð ÞlMFP ωð Þ=2, similar to electron systems with time-reversal symmetry [38]. Thus, the

three distinct regimes (ballistic, diffusive, and localization) could be clarified.

Figure 9 shows the 13C-concentration dependence of κ Tð Þ in the (8,0) semiconducting SWCNT

with 2 μm length at 300 K. As seen in Figure 9, thermal conductance decreases rapidly as the

concentration increases. When the concentration overs about 20%, κ Tð Þ decreases by 80% in

comparison with the pristine (8,0) SWCNT.

Figure 8. (a) The average phonon transmission of the (5,5) SWCNT with 15% 13C [36]. (b) The length dependence of the

transmission for estimating the mean free path and (c) for the localization length. (d) The mean free path and the

localization length as functions of frequency. Copyright 2011 American Physical Society.
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We now discuss the phonon-transmission fluctuation, defined by a standard deviation

Δζ ωð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ ωð Þ2
D E

� ζ ωð Þh i2
r

. Figure 10 shows Δζ ωð Þ for (a) 625 nm-long (5,5) SWCNT with

15% 13C and (b) 210 nm-long (8,0) SWCNT with 9.4% 14C. The fluctuation of a physical

quantity generally decreases as its average value increases. However, the fluctuation of pho-

non transmission is constant within the frequency region in the diffusive regime although

ζ ωð Þh i varies depending on ω [see also Figure 8(a)]. The constant value is estimated to be

Δζ ωð Þ ¼ 0:35� 0:02 and indicated by the dashed lines in Figure 10(a) and (b). Thus, Δζ ωð Þ in

the diffusive regime is universal and is independent of the background phonon transmission,

the tube chirality and length, the isotope concentration, and the type of isotopes. This universal

fluctuation is realized only in the diffusive regime and not in the ballistic and localization

regimes. Interestingly, the value of Δζ ωð Þ ¼ 0:35� 0:02 is the same as the value of the universal

conductance fluctuation (UCF) for coherent electron transport in disordered quasi-1D systems,

Figure 9. 13C-concentration dependence of thermal conductance of the (8,0) SWCNTwith 2 μm length at 300 K.

Figure 10. The root-mean-square phonon transmission for (a) the (5,5) SWCNT and (b) the (8,0) SWCNT [36]. Copyright

2011 American Physical Society.
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ΔG=G0 ¼ 0:365, within the statistical error. Here, G0 and ΔG are respectively the electrical

conductance quantum and the electrical conductance fluctuation. This means that the univer-

sal phonon-transmission fluctuation is closely related to the UCF even though electrons and

phonons obey different quantum statistics. Similar to the UCF, the reason for the macroscop-

ically observable phonon-transmission fluctuation can be qualitatively understood as follows:

the fluctuations of phonon-transmission channels cannot cancel each other because there are

very few effective transmission channels due to isotope scattering. To obtain a quantitative and

complete understanding of the universal phonon-transmission fluctuation, some sophisticated

microscopic theories are required.

In the final of this subsection, we discuss the phonon-transmission histogram P ζð Þ that con-

tains information for every moment of ζ ωð Þ. In Figure 11(a) and (b), P ζð Þ for several typical

frequencies in the diffusive regime of (a) 625 nm-long (5,5) SWCNT with 15% 13C and (b)

210 nm-long (8,0) SWCNT with 9.4% 14C are shown. All the histograms in these figures are

well described by a Gaussian distribution function with the universal fluctuation

Figure 11. Phonon-transmission histograms for several frequencies in the diffusive regime for (a) the (5,5) SWCNT and

(b) the (8,0) SWCNT, and in the localization regime for (c) the (5,5) SWNT and (d) the (8,0) SWCNT [36]. The insets show

the variance. Copyright 2011 American Physical Society.
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Δζ ωð Þ ¼ 0:35� 0:02. This is similar to the fact that the electrical conductance histogram in the

diffusive region is expressed by a Gaussian distribution function with the UCF [38].

In L≫ ξ ωð Þ regime, P ζð Þ becomes no longer a symmetric Gaussian distribution. By analogy

with the electrical conductance histogram in the localization regime [39], one can easily expect

that the asymmetric histogram is a lognormal function of ζ. In fact, P ln ζð Þ can be well

described by a Gaussian distribution as shown in Figure 11(c) and (d). Unlike the other

regimes, the variance Var ln ζ½ � � Δ ln ζð Þ2 of P ln ζð Þ decreases with increasing ln ζh i according

to Var ln ζ½ � � �2 ln ζh i as shown in the insets of these figures, similar to the situation for

electrons [38]. The transmission fluctuation in the localization regime is material independent

in the sense that the slope of Var ln ζ½ � does not depend on the tube geometry, isotope concen-

tration, or the type of isotopes. The above-mentioned results for the ballistic, diffusive, and

localization regimes are summarized in Table 1.

3. Crossover from ballistic to diffusive phonon transport

This section discusses the crossover from ballistic to diffusive phonon transport in SWCNT

using some basic arithmetic which follows from the fictitious-probe idea. In this idea, the

thermal conductance was found to formally have the same expression as the Landauer for-

mula for coherent phonon transport [1, 6]:

κ ¼
X

ν

ðωmax
ν

ωmin
ν

dω

2π
ℏω

∂f ω;Tð Þ

∂T

	 


Tν ωð Þ (8)

even when phonon-phonon scattering exists. Here, T is an averaged temperature as descried in

the previous section, and Tν ωð Þ is a phonon transmission function, effectively including the

phonon-phonon scattering given as

Tν ωð Þ ¼ ζLRν ωð Þ þ
ζFLν ωð ÞζFRν ωð Þ

ζLFν ωð Þ þ ζFRν ωð Þ
(9)

where ζαβν ωð Þ is the transmission function of a coherent phonon with a phonon mode ν and

frequency ω flowing from α to β leads. Note that the inelastic component of thermal conduc-

tance in Eq. (8) is neglected, because it negligibly contributes to κ of CNTs in the quasiballistic

regime.

Table 1. Phonon-transmission histogram in ballistic, diffusive, and localization regimes [36]. Copyright 2011 American

Physical Society.
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Thus far, we have discussed the role of a single probe with temperature TF . Generally, a spatial

distribution of temperature exists inside the conductor. In order to incorporate this distribu-

tion, a conductor attaching N probes in series, with respective temperatures Ti i ¼ 1; 2⋯;Nð Þ is

introduced. For N probes, the transmission function Ttot
ν

ωð Þ propagating in a conductor of

length L can be written as

Ttot
ν

ωð Þ ¼
Lν ωð Þ

Lþ Lν ωð Þ
�

Λν ωð Þ

Lþ Λν ωð Þ
(10)

where the characteristic length Lν ωð Þ � Tν=r 1� Tνð Þ is expressed by the density of scatters in

the conductor, r ¼ N=L and Tν. The derivation process of Eq. (10) is analogous to that of

effective transmission for inelastic electronic transport in mesoscopic conductors [40]. Here, it

is explained that we can regard Lν ωð Þ in Eq. (10) as the mean free path Λν ωð Þ ¼ τν ωð Þ vν ωð Þj j,

where τν ωð Þ and vν ωð Þ are the backscattering time and group velocity of a phonon with ν;ωf g,

respectively. For phonon propagation over the distance between neighboring probes

dL � L=N ¼ 1=r, the reflection probability Rν ωð Þ is given by Rν ωð Þ ¼ dL= vν ωð Þj jð Þ=τν ωð Þ

¼ 1=rΛν ωð Þ. Thus, the phonon’s mean free path is Λν ωð Þ ¼ 1=rRν ωð Þ, and Lν ωð Þ � Λν ωð Þ in

the large-N (or small-dL) limit where the transmission probability of each small segment with

length dL is close to one (Tν ωð Þ � 1).

According to the above discussion, a general expression of thermal conductance is given as

κ ¼
X

ν

ð

ω
max
ν

ω
min
ν

dω

2π
ℏω

∂f ω;Tð Þ

∂T

	 


Λν ωð Þ

LþΛν ωð Þ
(11)

For a short conductor L≪Λν ωð Þð Þ, Eq. (11) reproduces the Landauer formula [1, 6] for coher-

ent phonon transport with perfect transmission. In the other limit L≫Λν ωð Þð ), it reduces to the

Boltzmann-Peierls formula [41].

We now apply the developed formula (11) to thermal transport in SWCNTs at room tempera-

ture. Instead of estimating Λν ωð Þ from Eq. (9), we use an phenomenological expression

Λν ωð Þ ¼ cνA=ω
2T for three-phonon Umklapp scattering events in the low-frequency limit

ℏω=kBT≪ 1, where A ¼ 3:35� 1023 mK=s2 is the coupling constant for graphene [42] and cν
represents the curvature effect of a CNT (cν ¼ 1 corresponds to a graphene). By using this

expression we can perform integration in Eq. (11) analytically. Strictly speaking, this expres-

sion can apply only to acoustic phonon modes with linear dispersion, but it has been shown to

be useful to represent other modes as well [30]. Consequently, the thermal conductance is

expressed simply as:

κCNT ¼
kB
2π

X

ν

Ων arctan
ω

max
ν

Ων

� �

� arctan
ω

min
ν

Ων

� �
 �

(12)

where Ων Lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cνA=TL
p

is an L-dependent characteristic frequency, which is a key quantity

for understanding the crossover between ballistic and diffusive phonon transport in the CNTs.

The ν dependence of cν is neglected hereafter, i.e., the mode-dependent characteristic
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frequency Ων Lð Þ is replaced by Ω Lð Þ. In spite of the relative simplification, this works remark-

ably well to describe L dependence of thermal conductance in the quasi-ballistic regime, as will

be discussed below.

In Eq. (10), effects of phonon scattering at interfaces between a CNT and the left/right leads

were not included. One of simple treatments of the interfacial thermal resistance is to introduce

it by the following way: κ�1 ¼ κ
�1
CNT þ κ

�1
int . The interfacial resistance κ

�1
int can be decided by

fitting experimental or numerical calculation data.

Now, we estimate the thermal conductance of SWCNTs by performing the NEMD simulations

[26, 28] with Brenner’s bond-order potential [21], and compare the MD results to the above-

described theory. The L-dependence of thermal conductance was quantified for various tube

lengths, up to micrometers at T ¼ 300 K (Thot ¼ 310 K and Tcold ¼ 290 K). We refer the detailed

simulation procedure to Ref. [26]. The thermal conductances for (3,3) and (5,5) SWCNTs

obtained from the NEMD simulations are shown by blue and red circles in Figure 12, respec-

tively. The solid curves representing theoretical curves given the proper choice of two param-

eters κint and c (e.g., κ�1
int ¼ 0:09 K=nW and c ¼ 0:65 for the (3,3) SWCNT) excellently agree with

the MD data. Most recently, the L-dependent thermal conductance (or conductivity) of

SWCNTs shown here has been measured in experiments [31, 44], although we cannot compare

the theory with the experiments because the detailed information on tube structure such as

number of walls and their chiralities was not described.

We return to discuss the ballistic-diffusive crossover. The relative position ofΩ Lð Þwith respect

to the phonon dispersion relation determines the thermal-transport properties of SWCNTs. As

illustrated in Figure 13, the dashed blue line indicates the position of Ω Lð Þ relative to the

Figure 12. Length dependence of thermal conductance [43]. Copyright 2009 the Japan Society of Applied Physics.
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dispersion relation. As seen in Figure 12, nanometer-length SWCNTs display the thermal

conductance independent of L, reflecting purely ballistic phonon transport. At nanometer

length, Ω Lð Þ is much larger than the energies of the phonons, as shown in the left panel of

Figure 13.

With an increase in L, up to micrometer length, the value ofΩ Lð Þ decreases, lying in the middle

of the phonon dispersion relation, as shown in the central panel of Figure 13. In this situation,

low-frequency phonon modes (ωmax
ν

≪Ω Lð Þ) give L-independent thermal conductance

reflecting a ballistic nature, whereas the high-frequency modes ω
min
ν

≫Ω Lð Þ
� �

show κ∝ 1=L

reflecting a diffusive nature. The intermediate-frequency phonon modes (ωmin
ν

< Ω Lð Þ < ω
max
ν

)

cannot be described in terms of both Landauer and Boltzmann-Peierls formulae, and the

thermal conductance exhibits nonlinear L-dependence described by Eq. (12). Thus, it is con-

cluded that micrometer-length SWCNTs belong to the quasi-ballistic thermal transport regime

in which ballistic and diffusive phonons coexist.

Next, the case when Ω Lð Þ is much lower than the excitation frequency of the lowest optical

phonons is discussed, as shown in the right panel of Figure 13. In this case, the tube lengthL

reaches millimeters and the contribution of optical phonons to thermal conductance has a

behavior as κ∝ 1=L, resulting in constant thermal conductivity, as λ ¼ L=Sð Þκ ¼ const. Here, S

is the cross-sectional area of a SWCNT. On the other hand, the acoustic modes show κ∝L
�1=2,

leading to a power-law divergence λ∝ L
1=2 of thermal conductivity [29, 30]. This divergence

closely relates to the long-standing problem pointed out by Pomeranchuk in the 1940s that the

low-frequency acoustic phonon contribution to thermal conductivity diverges in the thermo-

dynamic limit L ! ∞ [45]. However, it is known, in general, that the divergence disappears if

Figure 13. The relative position of the length dependent characteristic frequencies, 270 THz (left panel), 27 THz (middle

panel), and 2.7 THz (right panel) [43]. Copyright 2009 the Japan Society of Applied Physics.
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we take into account higher-order phonon-phonon scattering events, although the possibility

of the above-stated long-time tail in low-dimensional materials remains an open problem

[46, 47]. In either case, the agreement between the current theory and MD simulation results

indicates that the higher-order effects are negligible in the current length regime. This consists

with the previously reported observation from Boltzmann’s kinetic approach [30].

4. Thermal properties of graphene modulated by strain

Finally, we shortly mention the recent theoretical work about the thermal property in another

carbon material, a graphene [48]. In this work, the strain response of the phonon specific heat

was investigated. The low temperature behavior of the specific heat is dominated by the three

acoustic modes, i.e., the longitudinal acoustic (LA) mode, transverse acoustic (TA) mode, and

out-of-plane acoustic (ZA) mode. It is well known that the LA and TA modes have a linear

dispersion in the long wavelength region while the other has a quadratic one in the absence of

the strain [49]. This means that the ZA mode is critical for low-temperature dependence of the

specific heat. As a result, the specific heat has a linear dependence at low temperature. As the

strain increases, the dispersion of the ZA mode drastically changes, so that this dispersion

becomes linear in the same as the LA and TAmodes [50, 51]. Due to the ZAmode linearized by

the strain, the low-temperature dependence of the specific heat becomes quadratic. Therefore,

since the specific heat directly relates the thermal conductivity, it is easily expected that the

strain can also modulate the temperature dependence of the thermal conductivity.

5. Conclusion

This chapter reviewed recent progress of theoretical studies on phonon transport in SWCNTs

focusing on the quantization of phonon thermal conductance, phonon Anderson localization,

and so on. At low temperature, the phonon thermal conductance of SWCNTs has a quantized

universal value of 4κ0, where the factor, 4 is the number of the acoustic modes in SWCNTs. As

the temperature increases, the crossover from the ballistic transport to diffusive one occurs and

the thermal conductance in the intermediate region between them indicates the non-linear

dependence of tube length.
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