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Abstract

Bacteria have developed the capability to produce structured communities (or 
cluster of cells) via adherence to surface to form biofilms that facilitate or prolong 
their survival under extreme environmental condition. Bacterial biomass adheres to 
inanimate and biotic surfaces in the hospital setting as well as in the environment. 
In the healthcare system, the biofilm formation on medical devices allows bacte-
ria to sustain as a reservoir and becomes more resistant to antimicrobial agents. 
However, biofilm formation facilitates pathogens to sabotage the host defenses that 
are linked to long-term retention within the host cell. Therefore, in this review, 
we provide some steps leading to the formation of biofilm within the host and on 
inanimate surfaces, also emphasizing various medically significant pathogens and 
debate current developments on novel approaches that aimed to prevent biofilm 
formations and its dispersion to patients.
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1. Introduction

Biofilm formation is structured accumulation of fastidious microorganisms 
attached on inanimate objects or compact surfaces that extensively have been 
examined in the past decades because they particularly cause infections and more 
often responsible for chronic infections [1–3]. They are predominantly problematic 
due to their antimicrobial resistant properties and their ability to evade host defense 
mechanisms, which substantially hinders disease treatment in the hospital [1–4]. 
Bacterial biofilms are ubiquitous in nature and harbor phenotypic adaptations in 
the environment with respect to broader perspective [1]. The nature of single cell 
organisms enables them to adhere to each other and form a “complex structure,” 
which assists to survive under adverse environmental condition. The biofilm forma-
tion occurs from planktonic bacteria due to environmental changes and involves 
in conjugation gene transfer “multiple regulatory network” from one bacterium to 
another in response to environmental stress [5–9]. This type of cell-to-cell adhesion 
and gene transformation changes the expression of surface molecules, virulence 
factors, and nutrient utilization that enables their survival under unfavorable 
environmental condition [8, 10–17].
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Bacteria are cocooned within the biofilm and form extracellular matrix, which 
represents 90% of the biomass [18]. The matrix as a stabilizing scaffold for the 
three-dimensional structure is composed of extracellular polymeric substance (EPS) 
along with extracellular DNS and carbohydrate binding protein [19–21]. Nutrients 
are trapped by the resident bacteria in the matrix and water is retained efficiently 
via H-bond interaction with hydrophilic polysaccharides [18, 22]. The composition 
of extracellular polymeric substance (EPS) is modified in response to alterations in 
nutrient availability [23, 24] by certain enzyme secretion of bacteria, thus tailoring 
biofilm formation to the more specific environment [23, 25]. Therefore, the skeletal 
components of the extracellular matrix are highly hydrated and provide high tensile 
strength that enables bacteria to exchange their DNA by conjugation and promote 
cell-to-cell interaction while defending the biomass from predation, radiation, 
desiccation, oxidizing molecules, and other dangerous agents [18, 26–28].

The multifaceted nature of biofilms that allow the bacteria to form a community, 
i.e., division of labor and express their virulence factors in response to local oxygen 
and nutrient availability, makes them resistant against different antimicrobial 
agents [29, 30]. Some studies have shown that there are presence of nondividing 
metabolically inactive recalcitrant bacteria within the biomass [29, 31], which play 
very crucial role to cause tolerance against broad-spectrum antimicrobial drugs. 
The matrix protein inside the host cell protects bacterial biofilm against innate 
immune defenses, i.e., phagocytosis and opsonization [32]. The spread of other 
virulence factors inside the host cell and drug resistance marker is due to the cell-
to-cell interaction [15]. Thus, biofilm-forming pathogens retained and adhere to the 
infected surface and cause recalcitrant and chronic infection, i.e., upper respiratory 
tract infection (particularly, Pseudomonas aeruginosa) [33, 34], dental decay (mixed 
culture of Streptococcus mutans, and other pathogens) [35], ventilated-induced and 
other device-associated infections (Escherichia coli, Klebsiella spp., Enterococcus 
faecalis, Staphylococcus aureus, etc.) [36, 37], urinary tract infections [Proteus spp., 
uropathogenic E. coli (UPEC)] [38]. In particular, immunocompromised patients 
are the most common target to all these biofilm-forming pathogens, causing a dev-
astating impact on patients, and in many cases, leading to death. Here, we analyze 
the formation of intracellular and extracellular biofilm which is the underlying 
factor for various medically important microorganisms. Given the recalcitrance and 
prevalence of infections caused by biofilm-forming pathogens, we discuss knowl-
edge about the most current progresses in the advancement of novel strategies of 
biofilm.

2. Extracellular formation of biofilm

2.1 Bacterial attachment on surfaces and what does make it adhere  
to object surface?

Bacterial biofilm growth, subsequent maturation, and aggregation consist of 
irreversible and reversible stages, which involve various conserved and species-spe-
cific aspects. At the first stage, the bacteria are introduced on the surface; a process 
of at least a part of stochastic that is driven by gravitational forces and Brownian 
motion, and usually influenced by nearby hydrodynamic forces [39, 40].  
Microorganisms encounter with repelling or attractive forces—within the niche 
that alter depending on ionic strength, pH, nutrient levels, and temperature. 
Bacterial cell wall composition, along with medium properties, affects direction 
and velocity toward or away by the contact surface of pathogens [39]. Motile 
bacteria utilize flagella in order to overcome repulsive and hydrodynamic forces, by 
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having a competitive advantage. The main function of flagella is to provide motility 
and initial cell attachment to the surface for various pathogens, including Listeria 
monocytogenes, E. coli, Vibrio cholerae, and P. aeruginosa [41–45]. In some species 
of bacteria, chemotaxis plays very important role in direct attachment to nutrient 
composition, for instance, mutations arise in CheR1 methyltransferase, which 
have been observed to vary the response of amino acid of P. aeruginosa and impair 
maturation of bacterial biofilm and attachment [46]. Some earlier studies have been 
shown that chemotaxis in E. coli is dispensable [5]; moreover, current observations 
revealed that the disruption occurs in the chemotaxis methyl accepting protein II 
and informs biofilm defects particularly in uropathogenic E. coli cells [47]. With 
respect to intercepting surface, bacterial attachment is facilitated by additional 
secreted molecules such as adhesin protein and extracellular adhesive appendages.

Initially, the attachment is reversible and dynamic during which pathogens 
can separate and rejoin planktonic biomass if agitated through repulsive forces 
[48], hydrodynamic forces—detach bacteria off from the surface. Some bacteria 
attained irreversible attachment in order to maintain a firm grip on the cell surface. 
Serotypes of other E. coli and uropathogenic E. coli depend intensely on the type 
1 pili [5, 40, 49–51]. Uropathogenic E. coli harbors several pili systems (means 
CUP system), which mediate adhering to a specific niche [38]. Attachment on the 
bacterial surface is facilitated by the adhesion protein (FimH), which identifies 
mannosylated moieties [50–52]. The adhesive protein (FimH) plays a critical role in 
the pathogenesis of uropathogenic E. coli because it facilitates adherence and causes 
invasion to epithelial cells of bladder in human, adheres to the human uroplakin 
and is also critical in preclinical murine cystitis model, which causes human disease 
[51, 53, 54]. FimH is much more consistent to play a critical role in the virulence of 
human disease under positive selection [52–56].

Furthermore, antigen 43, curli fibers, and type 1 pili have been observed to 
facilitate attachment and cell-to-cell interaction on inanimate surfaces [57]. Curli 
fiber also mediates attachment to the extracellular matrix components in eukary-
otes such as plasminogen, fibronectin, and laminin [58]. Pseudomonas aeruginosa, 
for instance, uses various additional organelles, which assist in adherence to the 
surface, irreversibly. Contrary to UPEC and P. aeruginosa, Gram-positive bacteria 
(Enterococci) are lactose producing, nonmotile, and recently identified to contain 
nonadhesive (pili) that mediate attachment to the extracellular matrix components 
in eukaryotes. Examples of these include Ace (E. faecalis) and SagA (E. faecium), 
which attach to the collagen protein [59] and surface protein (Esp). This has been 
observed to stimulate abiotic formation of biofilm on the contact surface specifi-
cally in E. faecalis [60]. Current studies showed the existent of biofilm-associated 
pili (Ebp) and also confirmed their contribution toward urinary tract infections, 
endocarditis, and biofilm formation and attachment [61].

2.2 Maturation of biofilm

Cell-to-cell interaction triggers specific intrinsic responses that cause changes 
in the gene expression, upregulating factors favorable to sessility especially for 
those involved in extracellular matrix protein formation [40]. However, relatively 
very little information is obtained about the matrix constituents with respect to E. 
coli pathogen. Initially, cellulose was recognized as essential components in E. coli 
pellicle biofilms and later on expressed with curli fibers in gastrointestinal E. coli 
strains [62]. Curli fiber plays a critical role in pellicles, for instance, curli fiber (amy-
loid) that leads to the pellicle biofilm formation. It also acts as a curlicide to prevent 
pellicle formation, and some of them have deficient to form pellicles (known as 
curli mutants) [63]. Further studies revealed that colonic acid and polyglucosamine 
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(PGA) take part in biofilm architecture [64], while the PGA being predominant 
among the clinical strains, particularly in UPEC isolates. Thus, more detailed inves-
tigations are required for further characterization of extracellular matrix protein in  
E. coli. The composition of extracellular matrix protein has been extensively ana-
lyzed in P. aeruginosa and varies depending on external environmental conditions 
[65]. The primary components of EPS are Psl and Pel [25]. Psl enhances the attach-
ment of P. aeruginosa to epithelial cells [66] and mucin, while the expression of Pel 
increased in small colony variants (SCV) isolated from the cystic fibrosis patients 
associated with Pseudomonas persistence in the airways of lung [67]. Moreover, 
intercellular interactions and biofilm stabilizations in P. aeruginosa are critical in 
response to environmental DNA (eDNA) [68].

Mature P. aeruginosa biofilm formations are more resistant to treatment with 
DNase as compared to young biofilms, demonstrating that eDNA remains stable 
because the components of EPS are not abundant during the initial stage of biofilm 
when the bacterial cells come to attach each other. In contrast, the concentration of 
eDNA increases during biofilm maturation stage due to the occurrence of bacte-
rial cell lysis in response to quorum sensing mechanism of Pseudomonas quinolone 
signal (Pqs) [69]. In Pseudomonas, type IV pili play an essential role in the migrating 
pathogens to form aggregation in the area of high eDNA binding attraction [70]. 
The amount of eDNA to form biofilm structure has already been observed in  
E. faecalis. Some reports identified that biofilm formation in this organism is influ-
enced by the affected autolysis of cells and intracellular release of DNA [71, 72].  
Initial study reported that the mutant reduced the biofilm formation by 30% due 
to the lack of autolysin gene, Atn [59]. In another study investigated, it showed that 
specific stage of bacterial biofilm formation required temporal regulation by Atn for 
the release of DNA [73].

2.3 Matrix escape mechanisms

Bacterial mature biofilm provides a suitable living environment to the resident 
microorganisms for making compact surface adherence community, so as to share 
products and actively exchange their genetic materials by conjugation. Moreover, as 
biofilms  mature, dispersal becomes a choice. In addition to passive dispersal caused 
by shear stress, the pathogen develops different ways to recognize environmental 
changes, which make it to stay within the biofilm. Bacterial biofilm dispersal occurs 
as a result of various clues such as oxygen fluctuations, modifications in nutrient 
availability, and increases in toxic products [74]. Biofilm dispersal is induced by the 
increase of extracellular iron in uropathogenic E. coli [75], while in Pseudomonas 
spp., it is due to the increased quantities of various nitrogen and carbon source [76]. 
The amounts of small molecules such as alterations in environment and changes 
in gene expression are monitored by various sensory systems [77]. Among various 
other signals, for instance, universal cyclic-di-GMP has been used in P. aeruginosa 
and E. coli causing implication in a shift between motility and sessility. Typically, an 
increase in the level of cyclic-di-GMP is favorable to sessility, while a reduction in 
cyclic-di-GMP induces upregulation of motility [78].

Recently, some results reported the factors responsible for such changes such as 
downregulation of extracellular polymeric substance, reduction of cyclic-di-GMP 
in bacterial biofilm communities, and upregulation of swarming and swimming 
motility [25]. Certain type of enzymes (such as alginate lyase) also participates in 
pathogen detachment from surface especially in P. aeruginosa [79], whereas in E. 
coli, the enzyme (CsrA) is responsible to repress the synthesis of PGA [80]. Along 
with that downregulation of EPS, certain molecules of surfactant are produced 
causing a reduction in cell-to-cell interaction. Moreover, studies identified that 
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flagellated populations within the biofilms of P. aeruginosa migrate to other void 
surface in order to make colonies [65]. Initially, these colonies loosely attach to 
compact surface, but after maturation process, they make a hard shell in the sur-
rounding and use the infected surface as a source of nutrient. Sometimes, live cells 
use dead cells as a source of carbon. When bacteria become dead, then live cells 
accumulate on it, bind to each other by sharing their genetic materials and form a 
compact layer that is usually very hard to break. Dead cells are also responsible for 
creating cavity within the bacterial biomass. The bacteria within the biofilm can be 
scattered by applying dispersal mechanism.

Due to dispersing nature of bacteria, they may have the ability to restart the 
biofilm formation process after encountering a favorable environmental condition 
[81]. This is another sophisticated mechanism of dispersal revealed by using  
B. subtilis, which could be prevalent among the bacterial species. Researchers 
reported that the pathogen (B. subtilis) lost its cellular integrity within 5–8 days and also  
found that disassembly of biofilm is associated with a mixture of different amino 
acids (D-tyrosine, D-methionine, etc.) that are formed during bacterial stationary 
growth phase [82]. These D-types of amino acids interfere with bacterial attachment 
to cell surface and perturbation to fiber dissociation, without influencing matrix 
component expression or bacterial growth [83]. In B. subtilis, the performance of 
biofilm is disrupted by the addition of D-type amino acid mixture [83]. Further 
studies showed that another factor such as norspermidine, which is produced by B. 
subtilis, works together with D-type amino acid leading to biofilm disassembly [84]. 
So, this type of association—norspermidine/D-type amino acid—is essential for the 
eradication of bacterial biofilm and makes them vulnerable to antimicrobial agents 
used in the hospital.

3. Bacterial intracellular biofilms

Gathering evidence have showed that numerous bacterial pathogenic species 
formerly considered as extracellular can retain within the host cell by adapting 
intracellular bacterial lifestyle that includes the bacterial communities having 
biofilm-like properties. First, a murine model of infection was used to assess the 
bacterial communities for UPEC [85]. Type 1 pili in uropathogenic E. coli bind to 
the receptor on superficial bladder cells [86], triggering to induce bacterial inter-
nalization. Toll-like receptor-4 (TLR-4)-dependent process used to expel out from 
inside the UPEC [87], but certain bacteria elude exocytic procedure and leave out 
from the cytoplasm of host cell, where they duplicate into intracellular bacterial 
communities (IBCs) [85]. Several developmental stages lead to the process of IBCs 
that indicate distinct morphological features [85]. After passing first 6 h ensuing 
bladder inoculation, UPEC rapidly divides (replication time 30–35 min) causing 
small clusters associated with loosely attached rods (during early IBCs), having 
a coccoid shape and an average bacterial length of about 0.7 mm. The bacterial 
exponential growth rate dramatically drops between 6 and 8 h, exceeding replica-
tion time to 60 min. This is the second stage where bacteria accumulate and are 
tightly packed within the biofilm and organized a compact sphere-shaped structure 
(mature-stage IBCs) (Figure 1).

The amount of IBCs is found between 3 and 700 in an infected patient’s blad-
der—IBCs are composed of 104–105 bacterial cells [88]. There are numerous fibers 
surrounded on IBC bacteria that originate from the surface of pathogen and enclose 
pathogens in individualized sections. One of the main components present on the 
surface of IBCs called polysaccharide (sialic acid) that provides protection from 
the attack of immune system and environmental stress. The heterogeneous nature 
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of IBCs, such as extracellular bacterial biofilm, composed of different subpopula-
tion having distinct gene expression systems [89]. As IBCs expand, they induce the 
bacterial biofilm to cause interruption against cell membrane of host, producing a 
pod-like structure on the infected cell surface. Ultimately, UPEC detaches as fila-
ment or single rod at the IBC boundary and the infected cells are flux out into the 
lumen of bladder where can invade epithelial cells and restart the process through 
binding [85]. The inhibitor (SuIA) of cell division has been observed to be crucial 
for dispersal and filamentation of UPEC from the bacterial biofilm. The patients 
suffered from urinary tract infections (UTIs) are more likely observed with the 
UPEC filaments in their urine, but not in comparison with healthy controls [90].

The formation of IBC is prevented by intense molecular blockages and during 
acute infection—development of chronic cystitis—the IBC numbers are higher, 
representing the significance of intracellular pathways in the pathogenesis of UTIs 
[88]. The cycle of IBC is dependent on FimH, causing interruption in the expres-
sion of type-1 pili after invasion to host cell, and disrupts normal development 
of IBC due to attenuation of UPEC [54]. The two-component system (QseBC) is 
a key factor influencing curli expression, formation of IBC and type-1 pili. Some 
studies indicated that the intracellular pathway of UPEC is necessary for the TCA 
cycle completion [47]. The techniques such as qPCR and DNA microarray analyses 
interpreting the UPEC expression patterns within IBC pathogen exposed that 
acquisition of iron in bacteria is upregulated, representing the significance of sys-
tem biomass formation [91]. While in clinical isolates of UPEC, the iron acquisition 
patterns are prevalent [92]. Moreover, the pathogen Klebsiella pneumoniae is more 
commonly seen in community- and hospital-acquired infection. About up to 5% 
forms intracellular communities and is more predominant in hospitalized diabetic 
patients [93]. Likewise to UPEC, the Klebsiella pneumoniae invasion is mediated by 

Figure 1. 
Schematic diagram of the development of IBC cascade in uropathogenic E. coli (UPEC), taken by scanning 
electron microscope (SEM) images indicating different structural changes from attachment to dispersion and 
fluxing.
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type-1 pili and formation of IBC, although the differences occur in the expression 
kinetic of pili and filaments [90]. The ability to occupy an intracellular niche and 
persist within the host cell through transitioning from single microbial cell to the 
multicellular community is not confined to uropathogens. Researchers showed that 
by using different animal models and cell line of acute lung infection, the cluster 
formation occurs inside the lung airways due to P. aeruginosa, morphology similar to 
Klebsiella and UPEC (IBCs) [94]. The biofilm formation ability could be evolution-
ary adaptation of pathogens that enable the bacteria to persist within the host cell. 
All these findings represent the formation of IBC, a process that enables the bacteria 
to rapidly expand inside the host cell and take part in bacterial persistence.

4. Postantibiotic period: treatment strategy for biofilm

Broad-spectrum antibiotics are the drug of choice for the treatment of bacterial 
infections. Conventional antibiotics act as either killing the bacterial cell (bacteri-
cidal) or inhibiting the cell division (bacteriostatic). Numerous evidence shows that 
the use of antibiotics extensively causes damage to the host microbiota, producing 
a condition where invading bacteria can prevail and enhance the selective pressure 
against drug resistance [95]. Furthermore, surgery proceeded by administering 
antibiotics is highly successful in order to minimize the infection prophylactically. 
In certain cases, the perfect treatment of choice for foreign material associated with 
biofilm infections is the removal of infectious device. In some cases like pacemak-
ers, cardiac implants and implantable prostheses, device removal is difficult [37]. 
Biofilm formation nature of bacteria that make them recalcitrant against different 
antimicrobial drugs is a result of prolonged treatment. There is a need for the irra-
diation or complete removal of these kinds of pathogens. Antibiotic resistance is not 
only due to increased resistance markers transmitted within the bacterial biofilm 
community, but also due to high metal ion concentration, low pH, and the pres-
ence of persistent cells that are metabolically inactive and inactivate the antibiotics 

Figure 2. 
Schematic diagram about the different stages in the development of biofilm and indicating the strategies to 
preventing and damaging the bacterial biofilm production at particular stages.
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[31]. All these characteristics make bacterial biofilm more tolerant/resistant to 
antimicrobial drugs up to 1000-fold more when compared to planktonic bacterial 
cells [96]. Therefore, an alternative strategy must be investigated to combat the 
antibiotic resistant strains and make them vulnerable to antimicrobial drugs. Here 
below, we have mentioned some of the recent developments in strategies that are 
considered to prevent formation of biofilm by bactericidal mechanism or targeting 
distinct developmental stages of biofilm (Figure 2).

5. Bacterial killing strategies

5.1 Elimination of foreign material (indwelling devices) and abscess

There are studies that have reported that the presence of any foreign body 
(indwelling medical devices such as implants or prostheses or catheters) in low 
inoculums of Staphylococcus aureus (102 CFU/ml) in animal tissues was sufficient to 
form abscesses in the patients (95%) despite significant existence of leukocytes. In 
fact, this could be associated with the existence of any foreign material considerably 
intracellular bactericidal effects of body immune cells (leukocytes) and down-
regulated the mechanism of phagocytosis [97]. The polymorphonuclear leukocytes 
cannot perform well in the presence of any foreign body because it provides a 
surface ideal for the bacterial attachment. Therefore, the existence of any foreign 
material considerably increases the chances of bacterial biofilm formation. This 
leads to the pathogen becoming more persistent and resistant against conventional 
antibiotics. Thus, potential therapeutic strategy is required for the elimination of 
such type of bacterial biofilm formations. Certain precautionary measures could 
be employed, for instance, to replace the infected devices used for medical pur-
poses in the patients with a new one. Otherwise, it would be hard to overcome the 
problem regardless of applying various effective antimicrobial drugs in response to 
fastidious pathogens. Changing dialysis catheter if it is infected by the pathogens is 
another measure that could be taken. When pathogen forms biomass on the cath-
eter, it could be the source of bacterial colonization leading to bacteremia which 
may be caused by a deadly bacterial strain. For the cure of catheter-associated infec-
tions caused by bacterial biofilm formation, it is important to change the catheter 
infected with pathogens along with administration of antibiotic intravenously 
during a short time in order to eradicate the pathogen before it invades into the 
bloodstream. However, in some cases, it is hard to change the catheter temporarily; 
therefore, antimicrobial drugs and other alternative therapy may be the best option 
for the minimal release of pathogens from the infected site.

5.2 Phage therapy

An alternative approach to antibiotic treatment is phage therapy [98]. Phages are 
present in a wide range in the environment. It can be isolated easily and ubiquitous 
in nature. Their host ranges from specific to narrow, they are able to self-replicate, 
and therefore, a small dosage may be sufficient to disturb the host microorganisms. 
Furthermore, high mutation rate of phage facilitates adaptation as conforming bac-
terial host aggregate mutations to fix in a specific environment. Phage therapy has 
various advantages during lytic cycle phage that does not enter prophage cycle and 
rarely transfers or contains a virulence gene, thus causing destruction of bacterial 
cell rapidly. Many phages are associated with EPS degrading protein [99] or spread 
during stationary growth phase; these features allow to persist inside the bacterial 
biofilm [100].
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5.3 Antimicrobial peptides

This is another alternative approach used for the improvement of new type 
of antimicrobial drug, usually produced by innate immune response mechanism 
[101]. Contrary to that, their mechanism of action and antimicrobial spectrum 
activity must be defined more accurately before applying as a therapeutic strategy. 
Cathelicidin, for instance, possesses most essential type of antibacterial peptides. 
The biofilm formation of multidrug-resistant Pseudomonas strains, isolated from 
cystic fibrosis (CF) patients, is reduced considerably by BMAP-28, BMAP-27, and 
BMAP-29 [102]. According to a recent study by Pompilio et al. [102], antimicrobial 
activity of tobramycin against multidrug-resistant strains is less than cathelicidin 
peptides. This study indicates that the multidrug-resistant strains are vulnerable to 
cathelicidins due to antibiofilm agents. Another important group that can be used to 
assess the inhibitory effects is called lytic peptides. These peptides assist in attach-
ment of lipopolysaccharides (LPS) to the cell membrane of pathogen and cause cell 
membrane disruption. The study on Staphylococcus aureus indicated that in vitro 
formation of biofilm is prohibited by the lytic peptide (PTP-7) and easily penetrates 
the bacterial biofilm causing death of the bacteria at a rate of 99.9%. This peptide 
has the capacity to bear extreme acidic environment and inhibit the biofilm forma-
tion of Staphylococcus aureus [103].

5.4 Silver nanoparticles

Many researchers have done research on the antimicrobial property of silver 
nanoparticles. Fey [37] found that the silver nanoparticles are the best alternative 
strategy to combat the bacterial biofilms. For example, antimicrobial agents (silver 
nanoparticles) have been incorporated with medical devices and have showed to 
inhibit the device-associated bacterial biofilms. Silver was frequently used as an 
antimicrobial agent for different pathogens over a 100 years; for instance, during 
World War 1, it was extensively used to sterilize the wound infections [104]. The 
antimicrobial activity of silver nanoparticles depends on the positively charged ions 
of metal and electrostatic interactions between negatively charged cell membrane 
of bacteria [105]. The thiol group in silver is the main cause of death in bacteria that 
play an important role in the inactivation of enzyme [106]. This is the reason why 
silver nanoparticles are increasingly used in response to various bacterial infections. 
The antimicrobial agents contain different properties such as high aspect ratios, 
nonimmunogenic, biocompatible, nonbiodegradable, ultralight weight, and easy 
cell membrane penetration. Due to such remarkable properties, we can apply silver 
nanoparticles in various applications such as infection therapy, gene therapy, and 
as antioxidants. The size of silver nanoparticles is typically smaller than 100 nm. 
The mechanism of action of silver nanoparticle is to interrupt the cell membrane 
of bacteria, generate the reactive oxygen species (ROS), interrupt the metabolic 
pathway, prevent the replication of DNA, disrupt the bacterial electron transport 
chain (ETC) [106], and release the toxic ions outside the bacterial cells that lead 
to the death of bacteria. There are large numbers of studies conducted regarding 
toxicity mechanism of silver nanoparticles in rabbits. There is a study that showed 
that silver nanoparticles inhibited bacterial biofilm formation against Staphylococcus 
aureus, without accumulating inside the host tissue [106, 107].

5.5 Polysaccharides

Bacterial cell-to-cell interaction mediated by the exopolysaccharides is a serious 
threat to the formation of biofilm and stabilization. Mutants incapable to export or 
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synthesize such exopolysaccharides are usually deficient in the formation of biofilm 
and adherence and hence are extremely sensitive to killing through host immune 
defenses and antimicrobial drugs [108]. Recent studies showed that certain bacterial 
exopolysaccharides destabilize or prevent biofilm formation by some pathogenic 
species. For instance, the existence of Pseudomonas aeruginosa prevented biofilm 
formation of S. epidermidis in in vitro experiments [109]. Polysaccharides along 
with nonbactericidal antibiofilm characteristics have been separated from acellular 
biofilm (or biomass) extracts of various species [108]. The antibiofilm properties 
of Pseudomonas aeruginosa have the ability to act as signaling molecules that effect 
the expression of genes in susceptible pathogens, change the physical features of 
isolated bacterial cells, and prevent the protein-carbohydrate interactions. Most 
polysaccharides with antibiofilm properties allow a broad-spectrum inhibition of 
biofilm, while some are proficient of scattering preformed biofilms. So far, there are 
evidence suggests that polysaccharide with antibiofilm features acts as a surfactant 
molecule that alters the physical properties of abiotic surfaces and bacterial cells. 
Some results also show that polysaccharides might modulate the expression of 
genes of the recipient pathogenic bacteria by acting as signaling molecules [110]. 
Another potential mode of action of polysaccharide is to prevent competitively the 
multivalent protein-carbohydrate interactions [66]. As a result, polysaccharides 
with antibiofilm properties might block tip adhesins of pili and fimbriae, or block 
sugar or lectin-binding proteins that are present on the outer surface of pathogens. 
In pathogen P. aeruginosa, for instance, lectin-dependent adhesion to human cell is 
proficiently repressed by galactomannans [111]. This kind of polysaccharides that 
inhibit the biofilm could be a prominent strategy appropriate for the prevention of 
bacterial infections. Some scientist showed that antibiofilm polysaccharides can be 
used as an adjuvant because of enhancing antibiotic drug functions [108].

5.6 Interference with signal transference

Many studies have been carried out on biofilm inhibition caused by inter-
ruption of the pathogen signaling cascades. This is possible provided that the 
two-component systems in bacteria establish a dominant means of translating 
and intercepting the environmental changes. Signal transduction inhibition 
system plays a critical role in response to antimicrobial therapy because of this 
type of signaling cascade interruption. Not only does it kill the pathogen, but it 
also interferes with the gene expression. Two-component system (QseBC) is the 
best alternative candidate for targeting the drugs, particularly in Gram-negative 
biofilm-forming pathogens [112]. QseC/QseB establishes a significant association 
between the bacterial environmental signaling and the host stress response. The 
pathogen (E. coli) responds to autoinducer-3 in the intestine that is formed by the 
human stress hormones (such as epinephrine and norepinephrine) and gut flora. 
The cascade of signaling transduction comprises chemotaxis by activation of QseC 
and by using the serine receptor Tsr. In the quest for novel antimicrobial drugs and 
therapeutic targets, two-component system (QseBC) can play an important role to 
inhibit biofilm formation by blocking the binding of epinephrine or norepineph-
rine to QseC, as a result to reduce QseB/QseC signaling and decrease virulence and 
motility [113]. Studies have also suggested that the removal of QseC in EHEC and 
UPEC causes an excessive activation of response regulator QseB, owing to par-
ticular QseC phosphatase activity required for deactivation of QseB. The optimal 
strategy behind targeting the phosphate activity is to interfere with common gene 
expression in QseC containing pathogens [47]. Some other studies focused on the 
FsrATC/FsrA inhibitors in E. faecalis. The expression of gelE-sprE and FsrBDC 
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control by the FsrC/FsrA leads to increase in the production of serine protease and 
gelatinase, both are crucial for the proper eDNA production [71].

5.7 Antimatrix agents

Apart from that, extracellular matrix with disrupting components is also very 
important to target the bacterial aggregates. Various observations exploited the 
inhibiting enzymes potentially involved in the modification or synthesis of cell 
wall-secreted or associated with EPS components. In these studies, use of engi-
neered or naturally occurring enzyme and use of phage therapy as an enzyme 
delivery vehicle or to interrupt with matrix integrity by taking benefits from metal 
chelators have been recommended.

5.8 Chelating agents

Metal cations such as iron, magnesium, and calcium have been associated with 
stabilizing the matrix integrity [114]. Chelating agents indicated to cause inter-
ruption in the bacterial cell membrane stability besides disrupting the bacterial 
biomass structure [39]. In vitro study showed that biofilm formation was inhibited 
in various Staphylococcus species by sodium citrate [115]. Furthermore, eradication 
of bacterial biofilms in in vitro experiments is also facilitated by tetrasodium EDTA, 
while disodium EDTA only reduced the bacterial biofilm formations in P. aeruginosa 
and Staphylococcus species [116]. Current reports suggested that the solution of 
minocycline-EDTA was used to inhibit indwelling catheter-associated infections 
especially in children. There were no adverse side effects observed in patients 
treated with the solution of minocycline-EDTA but only a limited number (21%) 
of untreated group (control) developed infections [117]. Moreover, in hemodialysis 
patients, catheter-associated bloodstream infections were observed after applying 
minocycline-EDTA [118].

5.9 Enzyme

The main mechanism of active dispersal of bacterial biofilm is through the 
formation of extracellular enzymes (proteins) that act on several structural com-
ponents (such as exopolysaccharides, surface proteins, and extracellular DNA) 
of the extracellular polymeric substances. These enzymes play an important 
role in the cell separation from the bacterial biofilm colonies and facilitate their 
planktonic discharge into the environment [119]. Through purifying and isolating 
these enzymes, therapist can apparently add them to preformed bacterial biofilms 
exogenously at raised concentrations, in order to make biofilm-associated bacte-
ria more susceptible to antimicrobials/antibiotics and to achieve interventional 
dispersal of biofilms. For this purpose, several classes of enzymes (specifically 
proteases, glycoside hydrolases, and deoxyribonucleases) have been explored for 
the eradication of bacterial biofilms [119]. The enzymes dispersin-B and DNase-I 
have gained greater attention as possible antibiofilm agents, especially in response 
to Gram-positive bacteria. The DNase effect depends on its capability to interrupt 
the eDNA that is established within the bacterial biomass structure [73]. The treat-
ment of DNase prevents biofilm formation in Enterococcus and Staphylococcus and 
dispersed bacterial biofilm [73]. For the treatment of patients with cystic fibrosis 
(CF), a recombinant enzyme (pulmozyme) is used in some cases [37]. However, 
treatment with dispersin-B represented to be more effective in response to S. aureus 
and S. epidermidis [77]. In vitro studies indicated that engineered dispersin-B used 
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bacteriophage machinery in order to replicate during the stationary phase of cell 
growth, hence causing disruption of complete E. coli biofilms [120].

6. Conclusion

Currently, the removal of bacterial biofilm is the most challenging task for the 
clinicians and microbiologists. Antibiotics are not the best choice for the treatment 
of infections caused by bacteria forming biofilm. Biofilm formation allows the 
pathogen to adhere to the host surface under extreme condition and is resistant 
against a wide range of antibiotics. The choice of drug depends on the charac-
teristics of the biofilm such as composition, age, solidity, and type of pathogens. 
These are the major components influencing the microbial susceptibility. As the 
bacterial biofilm matures, it enhances the accumulation of exopolymeric substance 
(EPS), attaches with the oxygen and nutrient gradients that effect bacterial growth 
rates and metabolism of cells, becomes impermeable, and reduces the activity of 
antimicrobial agents. This leads to resistance to most antibiotic regime. Therefore, 
novel potential therapeutic strategies should be considered to curb bacterial 
biofilm formation at specific stage without harming the pathogen. Antiadhesion 
and antimatrix agents are exciting strategies that may be used pending further 
investigation.
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