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Abstract

Material characterization plays an important role in many applications that are called as
security, military, communication, bioengineering, medical treatment, food industry, and
material processing, since it is useful to identify other properties such as stress-strain
relation, bio content, moisture content, materials density, etc. Therefore, the dielectric
properties of materials should be achieved with high accuracy using appropriate mea-
surement techniques and extraction techniques. There are many measurement methods to
obtain the dielectric properties of materials, which can be divided into two categories: up
conversion and down conversion methods. A microwave measurement method can be
called as frequency up conversion, while THz time-domain spectroscopy (THz-TDS)
system is a frequency down conversion method. The selection of more convenient mea-
surement method depends on some parameters such as frequency range, material phase,
and temperature. In this chapter, the measurement methods and extraction techniques
will be discussed, and alternative ways will be presented with experimental and simula-
tion results.

Keywords: complex permittivity, dielectric materials, free space measurement, material
characterization, Newton-Raphson, terahertz radiation, THz, time-domain spectroscopy

1. Introduction

The complex permittivity of materials is independent of available measurement methods. This

parameter has an important place for material characterization in electrical and electronics

engineering. It can be used to recognize the interaction between a material and an electromag-

netic radiation. In many applications, knowing of some parameters of the material, which is
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distribution, and reproduction in any medium, provided the original work is properly cited.



cheaper than trial-error method, facilitates the work of engineers. Therefore, materials charac-

terization and measurement methods are increasingly gaining importance at mm waves and

THz frequency ranges. For instance, the knowledge of behavior of materials in these frequency

ranges is essential to design and produce new equipment for astronomy or remote sensing

applications.

It is possible to divide the measurement methods into two categories as up and down fre-

quency conversion methods. In this context, the optical measurement methods can be called as

a down-conversion method, and its aim is to decrease the frequency from 1014 Hz to 1012 or

1011 Hz. The well-known down conversion (optical) measurement method is Terahertz time-

domain spectroscopy (THz-TDS). Usually, a femtosecond laser source is used to excite receiver

and transmitter photoconductive antennas. Millimeter wave or microwave measurement

methods can be called as an up-conversion method because of using frequency extenders to

obtain the hundreds of GHz, and the purpose of it is to increase the frequency from 1010 Hz to

1011 Hz. The most preferred method is free space measurement (FSM) method in this category.

Generally, a sample is placed between two horn antennas, and the measurement process is

controlled by a Vector Network Analyzer (VNA).

Many different extraction techniques were investigated to obtain the high accuracy for the

dielectric parameters, and they are usually divided into two groups as analytical (Nicolson-

Ross-Weir [NRW] or NIST Iterative) and numerical (Newton-Raphson or Genetic Algorithm)

techniques. In addition, the artificial intelligence (AI) methods are used to extract the dielectric

properties to provide support the numerical techniques. To obtain the dielectric constant,

numerical techniques are preferred to eliminate the associated error between sample thickness

and frequency. However, there is an initial value problem in this approach. Therefore, both

analytical and numerical techniques should be tried to achieve the most accurate result.

2. Dielectric properties of materials for material characterization

The dielectric properties of a material are related to other properties of that material. Humidity

and temperature in the environment, the density of the material, its structure, the amount of

water in it, and the porosity can change the dielectric properties of the material for the

frequencies of microwave, millimeter wave, and THz [1, 2]. Besides, the thickness of the

material, the chemical composition, and especially, the permanent dipole moment also affect

the dielectric properties of a material. In addition, the effects of electromagnetic interference

are needed to take in the account considering the environmental conditions [3].

The complex permittivity, which is an internal characteristic of material independent of the

measurement technique, is accepted an important value of material characterization for elec-

trical engineering [4]. Dielectric constant and loss tangent, which are electrical characteristics of

material, play an important role in the propagation of the electromagnetic energy in the

insulating medium. Therefore, the permittivity determines the propagation speed of the elec-

tromagnetic wave and the amount of stored energy on the material.
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The dielectric properties of a material consist of relative dielectric constant εrð Þ and magnetic

permeability constant μr

� �

, which are represented by the equations ε ¼ ε0εr and μ ¼ μ0μr.

ε0 ¼ 8:52x10�12 F=mð Þ and μ0 ¼ 4πx10�7 H=mð Þ are the values of permittivity and permeabil-

ity of the cavity, respectively [5]. When an electromagnetic wave is applied to a material, the

interaction of the material is expressed by two basic functions: permittivity and permeability.

The complex permittivity consists of real and imaginary parts as seen on Eq. 1 [6]:

ε ¼ εr � jεi (1)

where εr is real, which represents stored electric field energy on the material, and εi is imagi-

nary, which is amount of electric field loss. In case j ¼ �1 on Eq. 1, the rate of imaginary εi=ε
0 0� �

over real εr=ε
0ð Þ is called as loss tangent seen on Eq. 2.

tan δð Þ ¼ εi=εr (2)

The imaginary part is also correlated with electrical conductivity (σ) as seen on εi ¼ σ=ε0ω,

where ω is angular frequency. Orthogonal axis representation of real and imaginary parts of

complex permittivity is seen in Figure 1.

The propagation of the electromagnetic wave in a material depends on its permittivity and

permeability. When the impedance of the waveguide in the material Zð Þ is lower than free

space impedance Z0ð Þ, impedance mismatch occurs. During the propagation through the

material, some of the energy are transmitted, and some are also reflected. In other words,

material and electromagnetic wave interaction occur in three ways: reflection, absorption, and

transmission [5].

Propagation speed of the waveguide through the material vmð Þ is lower than speed of light cð Þ.

Since the frequency fð Þ is constant, the wavelength λmð Þ is seen shorter than free space

Figure 1. Representation of complex permittivity.
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wavelength λ0ð Þ. Transition and propagation of a waveguide to a single layer material are seen

in Figure 2 [7].

In an electromagnetic field, propagation paisley expression of a transverse electromagnetic

(TEM) plane wave on þz direction is displayed as E z;ωð Þ ¼ E0e
�γz , where the angular fre-

quency is calculated as ω ¼ 2πf and γ represents the propagation of the waveguide [8].

3. Measurement methods

Two different measurements, which are optic and microwave methods, are used in material

characterization processes of THz frequency range. THz waves have unique properties such as

being able to pass through some materials, which are not so permeable for other parts of the

electromagnetic spectrum, or reflecting from some materials close to 100%, being harmless

compared to X-rays, and having the ability to distinguish between different materials. The

change of wavelength and frequency related to the THz gap is shown in Figure 3.

The time-domain spectroscopy (TDS) system, which is created in parallel with technological

developments, is still expensive due to its most important component femtosecond lasers, and

Figure 2. Interaction of electromagnetic wave with material.

Figure 3. Showing a part of electromagnetic spectrum.
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it is generally not reliable and stable enough for long-term industrial use. To solve the prob-

lems of laser source in TDS system, Multimode Laser Diode (MLD), which is smaller, simpler,

cheaper, stable, and commercially available, is used alternatively. Although MLD-TDS is

weaker than traditional THz-TDS in terms of radiant power, radiation efficiency, and spectrum

width, it has been shown in some studies that these points can be improved [9–11].

The microwave measurement systems including frequency up conversion methods are actively

used in material characterization processes in THz frequency domain as an alternative to

conventional TDS systems. However, only one of these methods cannot be used effectively on

whole frequency band to measure the dielectric properties of the material. Moreover, several

difficulties were seen in measuring lossy and low-loss materials with high accuracy. Therefore,

different methods are needed for each band and material loss [6, 12]. The factors, such as

measured frequency range, the expected value of the permittivity, required measurement

accuracy, properties of the material (homogeneous, isotropic), and form of the material (solid,

liquid, and gas), must be taken into consideration during the method determination. In addi-

tion, conditions such as sample size constraints, temperature, contact/noncontact measure-

ment, and destructive/nondestructive measurement must be considered [12, 13].

Although the analyzed material differs according to where they are applied, the basic process

is to completely determine the dielectric properties. In this framework, researches have been

carried out on the analysis of many kinds of materials, and the results are shared. Some

researches attempted to determine the effects of ambient conditions, which are created for the

preservation of foods and preservation of freshness for a long time in food industry, on the

material by the change in the permittivity [14, 15]. Successful studies have been conducted to

examine the effect of changes in humidity on the freshness of the food [16, 17].

There is no single measurement technique for all conditions in the direction of these items. For

this reason, a more precise measurement can be performed after determining which measure-

ment method is suitable. If desired frequency range is high, free space measurement (FSM)

method is the most suitable one by considering current technology.

3.1. Free space measurement method

Since the fact that it is aimed to work in THz frequency range, free space measurement method

that is one of microwave measurement methods is at the foreground due to many advantages.

FSM method especially offers the possibility of especially nondestructive and noncontact

measurements, characterization of solid-liquid-powder materials, and measuring solid mate-

rials except very small ones.

Generally, measurement techniques, which are used in microwave and millimeter wave

frequency regions, can be classified into two groups as resonant and nonresonant methods.

Materials can be analyzed at single or discrete frequencies with resonant method. But with

the nonresonant method, the analysis of materials can be pursued over a wide frequency

band [6]. Recently, the most preferred methods of analysis for frequency bands above 1 GHz

are listed as waveguide, coaxial probe, resonant cavity, and free-ambient measurement

method [5, 18].
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Nonresonant methods are used to determine electrical and magnetic properties over a wide

frequency range, but resonant methods are better suited for calculating only single frequency

[19]. Commonly used methods, which are including basic functions that must be included in a

measurement method, are compared in Table 1, where ND is Nondestructive, S is Solid, L is

Liquid, and G is Gas [5, 6]. Some of these techniques are more suitable for solid materials and

others for liquids. It is also important that the analysis method is simple, as well as cheap [20].

FSM method has better dynamic capacity and spectral resolution than other methods [21].

However, FSM method could not be widening unless development of measuring devices for

last decade [22]. Thus, measurement of the complex permittivity is possible over a wide

frequency range by means of advanced measuring equipment and the FSM method accurately

[23]. The FSM method consists of two antennas connected to a Vector Network Analyzer

(VNA), and between the two antennas a sample holder in which the material to be measured

is placed as shown in Figure 4 [9, 24].

The quartz plates are not required in measurement setup if measurements are taken for solids

like Teflon or glass. Because sagging of solid materials can be neglected when the sample

FSM Waveguide Coaxial probe

Dielectric features ɛr-μr
ɛr-μr

ɛr

S-parameter S11-S21 S11-S21 S11

Frequency band Wide Discrete Wide

Dimension Large Medium Little

Testing procedure ND Destructive ND

Sample preparation Easy Hard Easy

Form of material S-L-G S S-L

Monitoring Very easy Hard Easy

Table 1. Comparison of commonly used microwave measurement methods.

Figure 4. Schematic representation of FSM method.
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holder is properly placed [7]. VNA is standard equipment of microwave and millimeter wave

measurement systems for simultaneous measurement of S-parameters, which are used for

calculating dielectric features of materials [22].

3.1.1. Features of FSM method

The accuracy of the measurements is increased by a high time domain solution with FSM

method, even requiring a simple test setup for installation [25]. FSM method provides to mea-

sure S parameters under the conditions as contactless, nondestructive, and high temperature

with wide frequency range and different substance forms and especially for nonhomogeneous

materials. It is preferred to coaxial and waveguide measurement methods, since it does not need

sample preparation [18, 26]. Another disadvantage of waveguide method is seen as leakage

around the sample and limitation of sizing sample [27]. Moreover, waveguide and coaxial

measurement methods both need for proper preparation of the sample. This requirement causes

limitation of measurement accuracy for nonprocessable substances [28].

Spot focus can be achieved using lenses that will minimize the diffraction effect for high

accuracy measurements [23, 26]. The antenna gain can also be increased, thanks to lenses that

align the beam and reduce the diameter [29]. Additionally, the measurement errors can be

reduced by TRL calibrations and VNA gating techniques [27]. Selecting the size of the sample

larger also provides reduction of the diffraction effect. But larger specimens cause sagging

problem especially nonrigids [7]. Even when the optimum thickness is achieved at the sample,

another measurement error can be seen because the phase that is on the sample may not be

planar. To prevent this, the effect of thickness must be taken into account in order to match the

center of the sample with the point of the thinnest beam, which is aligned through the lens [30].

3.1.2. Measurement with FSM method

A software was developed for analysis and defining the material. Therefore, firstly, the mate-

rials, which had been analyzed in microwave and millimeter wave frequency bands, were

measured and compared with other studies in the literature to confirm and ensure the accu-

racy of the developed software. The calculation techniques were optimized for the analysis of

the data obtained by the FSM method, which constitutes a significant part of the study. Most

appropriate algorithm was determined to use the output of characterizations for recognition of

materials, and the results were proved.

Several experiment setups of FSM method were used to show the interaction of the electro-

magnetic waveguide with the material at different angles for determination of the dielectric

properties of a material. In this system, the signals, which are reflected and transmitted from

the sample surface, are collected as shown in Figure 4. FSM method is preferred for all

measurements over than 75 GHz. At other frequencies, the antennas and distances between

them were changed to keep the system as reliable. In order to be able to measure in the

frequency range of 75–325 GHz by FSM method, four different experimental setups were

required. For this reason, antenna structures (WR10, WR8.0, WR5.1, andWR3.4) were changed,

and measurements were taken in four different stages up to 325 GHz. To be able to measure

up to 500 GHz (between 325 and 500 GHz), WR2.2 antenna structure must be used in the

fifth stage.
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Measurementsweremade in the75–325GHz frequency rangewithoutusingaparabolicmirror. The

results of analyzedmaterials (Paper, Ultralam, PVC, Glass, Teflon, L1000HF, Rexolite, and RO3003)

are seen in Figure 5. Newton-Raphson technique was used in the calculations. Lowest and highest

values were entered for prediction of the algorithm instead of classic initial value assignment. Only

specified S21ð Þ parameter of thematerials is used for determining the complex permittivity.

For the first time, an analysis of the materials given in Figure 5 has been made and shared in

this frequency range. Due to the different measurement methods and using of different calcu-

lation techniques, little negligible differences can be obtained in the results. As the frequency

band expands, the change in the dielectric constant values is not constant. For this reason, the

thickness and dielectric constant values of each material are shown in Table 2. Ultralam,

L1000HF, RO3003, and Rexolite materials measured different thicknesses as they are supplied

from the manufacturer with different dimensions.

Figure 5. The dielectric constants of materials obtained by FSM method.

Material Thickness (mm) Dielectric constant

Paper 0.15 2.10–2.14

Ultralam 0.17 2.95–3.10

PVC 0.25 2.90–3.05

Glass 3 4.12–4.16

Teflon 4 1.98–2.05

L1000HF 3.20 9.95–10.05

Rexolite 12.85 2.52–2.55

RO3003 1.53 2.99–3.05

Table 2. Measurement of materials in W-band (75–110 GHz).
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3.2. Multimode laser diode: time-domain spectroscopy (MLD-TDS) system

Various methods such as poorman’s THz-TDS, Quasi-TDS (QTDS), and MLD-TDS are

invented to obtain THz signal. In last two decades, the studies about multimode laser diode

(MLD) that one of them can be grouped in three as THz pulse generation, sample analysis, and

2D imaging [10, 31–33]. Photoconductive antennas provide THz radiation by generating cur-

rent ripple at pico-second time interval. To do this, a sudden fluctuation of the beam from the

MLD is used [34, 35]. The idea of generating THz pulses from an MLD with this feature has

been proposed by Hangyo. In his study, MLD-induced Photo-Conductive Antenna (PCA) is

shown to be capable of producing THz pulses, and the THz pulse was measured with a

bolometer that was sensitive to temperature change instead of antenna [33, 36]. In this first

study, Hyodo and his colleagues used an experimental setup and added MLD instead of a

dual-chip microchip laser as a beam source [36, 37]. In later researches, similar systems have

been established, and obtaining THz pulses are aimed with different antenna structures. In

addition, the dielectric constant and refractive index of the sample were measured to define the

material [11, 34, 38].

3.2.1. Features of MLD for TDS system

Spectroscopy systems determine the response of the material to electromagnetic fields. THz-

TDS system can be simply expressed in terms of production and detection of THz radiation in

time domain. Two optical arms are seen in such systems in the same experimental setup as one

for production and the other for detection. Ultra-fast lasers (UFL) are used as a beam source in

this system. THz radiation is produced by one of the two branches of the incoming beam. THz

waveform is obtained as a function of time, while the detection beam is scanned by interfero-

metric steps. The first measurement of THz waveform is used as reference information. Spectro-

scopic information about the sample is obtained by examining the measurements of THz-TDS

under the Fourier Transform (FD). In general, the time shift in main THz peak, the change on

refractive index, and amplitude are related with power absorption of the sample [39].

MLD is proposed as an alternative cheaper and smaller beam source to design TDS systems,

which are frequently used in material characterization and imaging processes [36]. The

researches show that the signals obtained via MLD are like those obtained via the TDS one.

THz pulse can be generated between the frequencies of 0.1–1 THz [10, 36].

PCAs are electrical components of MLD-THz spectroscopy system, and others are passive

components. When the system is installed, first the passive components, then the electrical

components are placed. The test setup consists of the generation and detection paths. The

beam paths and system components of MLD-TDS are shown in Figure 6.

The working principle of the developed MLD measurement system is like the THz-TDS

system. The light beam, from the MLD, is divided into two by the beam splitter. The beam,

which follows the two paths known as generation and detection arms, is focused on the

antennas by the objective lens. The signals emitted by the antennas are directed by parabolic

mirrors. PCA, a device made of a semiconductor material, known changed the electrical

conductivity when interacting with light, can convert infrared rays to THz. By exciting with
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laser beams focusing on the photoconductive antenna, the carriers are accelerated. Thus, the

conductivity is increased and the photoaxis is created by a voltage signal from the function

generator THz signal, radiating from the silicon lens face of the antenna, producing THz

electric field. The relationship between the light intensity induced by the lock-in amplifier and

the THz electric field is obtained as a function of the delay time. The delay time generated for

the THz pulse is mechanically designed. Voltage/current values obtained from the locked

amplifier are stored by LabVIEW software and plotted THz wave profile by time.

When previous researches are analyzed, only very low energy THz signals could be obtained.

If the energy goes up, the nonlinear effect will decrease. However, this is an undesirable

situation in MLD-TDS systems. Obtained signal should be at least 25 times of the noise. But

the magnitude of obtained THz pulse by MLD is one hundredth or millionth of the magnitude

of the pulsed system [15]. Therefore, the diameters of the parabolic mirrors should be large and

positioned as close to the antenna as possible. The focal length of the parabolic mirror should

be small, and the solid angle should be large to obtain higher signal. And of course, used

antenna should be compatible with MLD-TDS systems.

3.2.2. Measurement with MLD-TDS system

The parabolic mirrors are used in the system for better collecting and aligning of generated

THz signals, and the ambient conditions are most effective factors in weakening THz signal. If

the focal points of the parabolic mirrors are less than 10 cm, the power of THz signal can be

maintained. Since THz signals produced by MLD-TDS have very low amplitude values (Volt

Figure 6. Schematic representation of MLD-TDS system.

Electrical and Electronic Properties of Materials92



or Ampere) than THz-TDS systems, the signal should align meticulously and the distance of

the catheter should be short.

In the material characterization process with TDS systems, firstly, the refractive index should be

calculated to determine the dielectric constant. Refractive index is given by amplitude difference

between sampled and unsampled measurements in pico-seconds the shift of the THz signal. The

waveform of obtained data, from w/o sample measurements of PVC sample, is seen in Figure 7.

This spectroscopy system consists of MLD, driver, and cooler. Mostly, the softwares called Origin

and Pkgraph are used for analysis. Origin was preferred for this study because of visual advan-

tages of its interface.

Two different equations are used to calculate the refractive index depending on time and

frequency. The refractive index can be obtained via Eq. 3, where ∆t (s) is the shift of THz signal

that is interacted with the sample. c and d represent speed of light (mm/s) and thickness of the

material (mm), respectively.

n ¼ c∆t

2d
(3)

n ¼ ffiffiffiffiffiffiffiffiffi

εrμr

p
(4)

The complex permittivity εð Þ of PVC was calculated by using Eq. 4 and expressed as shown in

Figure 8. Signal degradation occurs after frequency of 0.6 THz on the measurements results

obtained with MLD spectroscopy system. But signal quality is observed promising up to 0.8

THz for some material measurements. The measurement capability of the system is suitable up

to about 1.2 THz, but the diagram of the signal is limited to 0.8 THz for more accurate material

characterization.

Quality of THz signal obtained via MLD-TDS is not as good as ultra-short femtosecond laser

source using TDS systems, but the measurement results of MLD-TDS are at least as successful

Figure 7. The measuring of PVC material by MLD-TDS system.
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as them. Researches on MLD-TDS systems are increasing because of being cheaper and more

compact than THz-TDS. In this study, cheaper laser driver and cooler were used instead of

conventional ones. Cooling is very important subject for MLD not to shift on mode spacing,

which prevents THz signal generation, and if the limit current value to be applied to MLD is

exceeded while supplying laser driver circuit, MLD will run like a standard LED emitting

808-nm laser beam.

3.3. Quasi-optical FSM method

The distance between the antennas should be kept within a certain range for generating planar

wave while using FSM method. The distance between the antennas can be reduced by forming

the planar waveguide at a shorter distance using the lens and parabolic mirrors. When parabolic

mirrors are used to generate better THz signals and send aligning the center of the sample, the

name of the system is revised as Quasi-Optical. Parabolic mirrors ensure more accurate data by

focusing THz signal on the sample, and it enables to measure little-sized samples by FSMmethod

[12]. Thus, sizing limitation problem of FSM method is already solved as seen in Figure 9.

Very precise adjustment is required to put parabolic mirrors since they align incoming beam.

Normally, incoming beam is aligned by using infrared camera before PCA. Generated THz

signal is directed to parabolic mirror, where it is aligned circular before sending next parabolic

mirror. Aligning THz signal with the infrared camera is not so complicated since the wave-

length of the beam is around 800 nm, but this is not so easy for FSMmethod. Repeat and repeat

measurement may be needed while determining the position of the parabolic mirrors.

Before interpreting the results of measurements made with quasi-optical FSMmethod, some of

mathematical approaches are needed to be clarified. When there is difficulty of generating THz

signal with FSM method, highly likely expected error signals and unwanted situations should

be eliminated. Some of signal correction techniques should be applied to correct the measured

signals as seen below.

Figure 8. The complex permittivity of PVC sample.
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Two different measurements are taken as with and without sample to perform the signal

correction process, and the transmission S21ð Þ and the reflection S11ð Þ parameters are revised

by considering these measurements as seen in Eq. 5 and 6, where m, c, a, and l represent

material, correction, air (empty), thickness of the material, respectively, and β can be obtained

via Eq. 7.

S21_c ¼
S21_m

S21_ae
jβlð Þ (5)

S11_c ¼
S11_m � S11_a

S21_ae
jβlð Þ (6)

β ¼ 2πf
ffiffiffiffiffiffiffiffiffiffi

ε0μ0

p
(7)

However, some filtering methods may be needed if noise and error signals still exist. In this

study, measurements were made at a frequency band of 140–500 GHz. Measurements of the

material up to 325 GHz can be performed by using Quasi-optical FSM correctly even repeated

a few times, when the calibration is done in a proper method. But for measurement at the band

of 325–500 GHz, some of noise and error signals may still exist, even though signal correction

Figure 9. Schematic representation of quasi-optical FSM method.
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steps have been made. The Singular Spectrum Analysis (SSA) method should be applied to

remove them after using Eq. 5 and 7 as seen in Figure 10.

Obtained revised transmission parameter S21ð Þ is used to calculate dielectric constant of the

materials as shown in Figure 11. The high transmission amplitude parameter of the measured

materials plays a facilitating role in the measurement. The dielectric constant of PMMA is seen

about 2.6 (F/m) up to frequency of 325 GHz, but it decreases to 2.55 (F/m) for higher frequen-

cies. For PVC, it is similar with about 2.9 (F/m) up to 325 GHz and 2.87 (F/m) at the band of

325–500 GHz.

Figure 10. Corrected signal of PVC sample.

Figure 11. The results of complex permittivity obtained via quasi-optical TDS.
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4. Extraction techniques

Before measurements, the study includes the calibration, which is performed to collect the

correct data, and the extraction, where the dielectric properties are determined after measure-

ments. Different calibrating techniques were applied and compared in the studies [40–42]. The

most basic extraction technique Nicolson-Ross-Weir (NRW) is widely used for extracting the

dielectric properties [43, 44]. Numerical methods, such as Newton-Raphson (N-R), Genetic

Algorithm (GA), and Root Finding Algorithm (RFA), are used as well beside of this analytical

method. Artificial neural networks (ANN) algorithms, which can be learned by analysis of

obtained data from calculation, are also used in estimating the complex permittivity [45–47].

The results, obtained from analyzed data by these extraction techniques, give an approximate

value to the results of the mathematical theory. By optimizing these analytical and numerical

techniques, the complex permittivity and refractive index of materials can be extracted with a

smaller error rate and higher accuracy. To obtain more accurate results, the extraction tech-

niques should be compared according to the above criteria and the most suitable one should be

determined. Collected data by VNA are needed to purify from errors and noise. Indeed, the

accuracy of the calibration is deteriorated especially while long-term measurements. Because

of the difficulties of recalibration, filtering process is preferred.

4.1. Analytical and numerical extraction techniques

Basically, the complex permittivity and permeability of the materials are extracted by reflection

(S21) and/or transmission (S11) parameters, which are called as scattering parameters [48]. In

these processes, many techniques such as Nicholson-Ross-Weir (NRW), NIST, Root Find Algo-

rithm (RFA), and Genetic Algorithm (GA) are used [45, 49]. The techniques used in the

extraction process can be divided into two main categories as analytical and numerical. Details

of most preferred NRW (analytical) and Newton-Raphson (numerical) extraction techniques

are given in this study.

Analytical techniques generally require precise and explicit expression. For this reason, expres-

sions are understandable and easy to use. However, in the NRW extraction technique, the

equations become unstable and erroneous at a certain interval of the sample thickness. Therefore,

analytical techniques are unstable for universal computational solutions [29, 50]. An iterative

extraction method is proposed for dielectric materials to come from above resonances (to remove

instantaneous peaks), when the sample thickness is greater than half the wavelength [51]. Unlike

analytical techniques, numerical solution techniques, which are iterative methods, cover a wide

range of algorithms. The biggest disadvantage of numerical extraction techniques is that it is

necessary to estimate the value to be extracted before starting the extraction methods [29, 50].

4.2. Nicolson-Ross-Weir technique

The complex permittivity extraction technique, called NRW, was developed by Nicolson, Ross,

and Weir [43, 44]. In this technique, transmission Tð Þ and reflection Γð Þ coefficients are

extracted by using S-parameters. The NRW extraction technique is also the basis of other
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techniques as it is relatively simple among other techniques [4]. In calculations, in FSM

method, the cut-off wavelength (λcÞ is expressed as infinite, and the cut-off frequency fcð Þ is

expressed as a value very close to zero [5].

The dielectric constant of the material (εr) is calculated with the NRW technique by using S-

parameters measured by the Vector Network Analyzer (VNA) and following the process steps

[52]. Reflection coefficient Γð Þ is expressed with Eq. 8, where Γj j < 1 is required to find correct

root. Unknown X is expressed by placing S-parameters as seen on Eq. 9, and transmission

coefficient Tð Þ can be calculated by Eq. 10. Also, the expression of a special equation of the

inverse triangle (capital lambda) is calculated as seen on Eq. 11.

Γ ¼ X∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2 � 1
p

(8)

X ¼
S211 � S221 þ 1

2S11
(9)

T ¼
S11 þ S21 � Γ

1� Γ S11 þ S21ð Þ
(10)

1

Λ2
¼

j

2πd
ln Tð Þ

� �2

(11)

λog can be calculated by using cut-off wavelength λc and free space wavelength λo as seen on

Eq. 12, and the complex permittivity and permeability are calculated by Eq. 13 and 14,

respectively. Eq. 8 and 9 are the basis for many analytical and numerical solutions.

λog ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
λ2
0

� 1
λ2
c

q (12)

μ∗ ¼
λog

Λ

1þ Γ

1� Γ

� �

(13)

ε∗ ¼
λ2
o

1
Λ2 þ

1
λ2
c

� �

μ∗
(14)

4.3. Newton-Raphson technique

Thanks to the iterative structure of the Newton-Raphson (N-R) technique, the best solution can

be found. Only the transmission S11ð Þ or the reflection S21ð Þ parameter is enough to extract the

complex permittivity. Normally, NRW technique requires these two parameters both for the

extraction. If one of the reflection or transmission parameter is weak on measurement of

the sample, N-R extraction technique should be selected [45, 49]. The transmission parameter

S21 needs to be redefined for N-R technique as seen on Eq. 15 [21].

S21 ¼
T 1� Γ2
� �

1� T2Γ2
(15)
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Transmission Tð Þ and Reflection Γð Þ coefficients are expressing interaction between material

and electromagnetic wave. If the transmission S21ð Þ parameter seen on Eq. 15 is revised for the

N-R technique, real ið Þ and imaginary rð Þ parts of complex permittivity are obtained as seen on

Eq. 16 and 17, respectively. Measured parameter is indexed by mð Þ. Tolerance value is obtained
by taking the derivatives of Eq. 16 and 17 as seen on Eq. 18.

φ εr; εið Þ ¼ S21_r εr; εið Þ � S21m_r (16)

ϕ εr; εið Þ ¼ S21_i εr; εið Þ � S21m_i (17)

D ¼

dS21_r

dεr

� �

dS21_r

dεi

� �

dS21_i

dεr

� �

dS21_i

dεi

� �

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

(18)

And next unknown values of εr and εi can be calculated by Eq. 19 and 20, where h and k are

correction for the results, and o is initial value. The iteration is repeated until the desired value

is obtained in this technique.

εr ¼ εr_0 þ h (19)

εi ¼ εi_0 þ k (20)

4.4. Comparison of analytical and numerical techniques

It is observed that the studies using NRW technique have different algorithms. Therefore,

before the comparison, it is needed to have a decision which NRWalgorithm will be compared

with N-R. In this study, five different NRW algorithms, which are named as NRW1, NRW2,

NRW3, NRW4 and NRW5, were evaluated.

According to NRW1, cut-off wavelength (λcÞ and the cut-off frequency fcð Þ are used to obtain

the complex permittivity εð ) by using Eq. 21. According to NRW2, the V1 and V2 values are

represented sum and gap of S parameters as seen on Eq. 22 and 23, and impedance Zð Þ can be

calculated by these values as seen on Eq. 24.

λog ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
λ
2
0

� 1
λ
2
c

q (21)

V1 ¼ S21 þ S11 (22)

V2 ¼ S21 � S11 (23)

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ V1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ V2

p (24)

The use of S-parameters in terms of voltage sum and difference is also seen in the NRW3

algorithm. X and transmission coefficient T are calculated as seen on Eq. 25 and 26, respec-

tively, instead of calculating impedance Zð Þ value.

Measurement Methods and Extraction Techniques to Obtain the Dielectric Properties of Materials
http://dx.doi.org/10.5772/intechopen.80276

99



X ¼
1� V1V2

V1 � V2
(25)

T ¼
V1 � Γ

1� V1Γ
(26)

As seen in Eq. 26, transmission coefficient T is calculated, which is different to Eq. 10. In NRW4

algorithm, impedance Zð Þ value is calculated by using transmission S11ð Þ and reflection S21ð Þ

parameters directly as seen on Eq. 27.

Z ¼
S11 þ 1ð Þ2 � S21

2

S11 � 1ð Þ2 � S21
2

(27)

In NRW5, impedance Zð Þ value that had been calculated by a different method is used to find

the transmission coefficient T as seen on Eq. 28, which is not equal to Eq. 10 and 26.

T ¼
S21 Zþ 1ð Þ

1� S11ð Þ Z� 1ð Þ
(28)

As seen on these comparisons between NRW algorithms, it can be modeled with different

approaches and used in material characterization. Although NRW cannot be used in the

analysis of very thick materials, it is needed to demonstrate the accuracy of another technique

incase used for analysis. Therefore, many studies have been compared with NRW in the

literature.

The differences in NRW extraction technique (such as NRW1, NRW2, and NRW5) may also be

applied to other extraction techniques. To prove this, the NRW algorithms were compared with

the Newton-Raphson (N-R) results in the same way as seen above. The real and imaginary parts

Figure 12. Comparison of Newton-Raphson and NRW techniques.
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of the complex permittivity were examined. The results of the best performing algorithms

(NRWs andN-R) are shown at the frequency band of 20–26.5 GHz on a thickness of 2 mmTeflon

sample as seen in Figure 12 [53]. According to results, the approaches of NRW3 and NRW5 are

one-to-one overlap, and therefore, the results of NRW3 were removed from the Figure 12.

5. Comparison of FSM and MLD-TDS measurement methods

When the literature is reviewed, generally the dielectric properties of materials are analyzed

with TDS in THz frequency region above 100 GHz. In recent years, using frequencies with

FSM method are increased up to 500 GHz. Obtained results by the FSM method are compared

to THz-TDS in the frequency down conversion methods by some researches. In this study, the

results of FSM were compared with MLD-TDS system, which is cheaper than THz-TDS

method. Two different measurement methods (FSM and MLD-TDS) were compared for differ-

ent materials of various thicknesses, and necessary calculations were analyzed.

The results of complex permittivity of four samples are seen in Figure 13. As seen on the results,

the values are close to each other except for a little gap. Although the systems are different,

produced THz pulses will have same frequency. But it is noticed that not only operating in

different medium but also the differences of extraction techniques affect the results.

These methods are preferred by various applications because of noncontact and nondestruc-

tive measurement possibilities, even they have different working principles. Before having a

decision, which method is better, the subjects mentioned in Table 3 and the measurement

results should be considered as well.

The FSM method is disadvantageous to TDS because it requires a very expensive device such

as the Vector Network Analyzer (VNA). In TDS method, cheaper laser diodes are used instead

of expensive laser sources. FSM setup is simpler, because of having fewer components, and

installation and testing measurement accuracy of TDS system take longer time. But performing

broadband measurement with TDS is possible at one time contrary to FSM.

Due to antenna designs and productions are classified according to specific wave lengths,

more than one antenna set is needed for wide band measurement or the measurement must

be limited in a certain frequency band. For this reason, the discrete measurement is a limitation

for FSM method.

FSM is advantageous when measuring length is concerned. Once the calibration process has

been completed, the transmitted and reflected signals can be measured within seconds. But it

is not possible for TDS. Only one w/o sample measurement takes 15 minutes. Though some

displacement slider designs, which can measure 60 times per second, is pushed on the market

to recover this, the price is needed to consider.

The stability of TDS method is adversely affected by the large number of components in the

system. In addition, even if the system is protected in a housing, micron size displacement over

time can cause to change laser beam path. In this case, the accuracy of measurement cannot be

survived. From time to time, calibration or re-installation of measurement system may be
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needed. In FSM method, even if there is any adjustment malfunction, the measurement can be

continued by performing the calibration in a short time.

Comparisons made in this study are important in confirming that the results are obtained by

using FSM method recently in THz frequency domain measurements. Although the

Figure 13. Comparison of complex permittivity with two different systems.

FSM MLD-TDS

Measurement frequency Discrete Wide

Installation length Short Long

Measurement length Short Long

Calculation length Long Long

System devices Few Many

Stability Good Not bad

Sensitivity Good Medium

Cost Expensive Cheap

Table 3. Comparison of FSM and MLD-TDS methods.
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bandwidth is narrow, FSM has a good spectral resolution and dynamic range around 0.3 THz.

The real parts of the complex permittivity values obtained by both methods are overlapped,

but the results of the TDS system are better for the imaginary parts, probably because of

multiple reflections effect in FSM. In TDS, measurements below 100 GHz, which are already

outside the THz frequency domain, are not within the desired range due to the poor signal-to-

noise ratio, and they are generally not shared. The measurement methods both have advan-

tages in certain directions, and so they may be selected to use up to needs and priorities of the

measurement will be done. FSM can provide more accurate results for the measurements in a

certain frequency range, but TDS system can be offered for a wider frequency range as most

efficient solution. These methods of measurement, thanks to developing technology, are being

optimized for medical, biology, food, security, military, and other subjects to offer solutions to

the problems.

6. Conclusion

In this chapter, measurement methods and extraction techniques used in material characteri-

zation are examined, and newmaterials were measured to show the accuracy and contribution

of the proposed extraction techniques. The results of two different measurement methods with

advantages relative to each other were compared, and approximate values were obtained as

well as previously published studies. Thus, the usability of the FSM method in the THz

frequency range has been shown using the results. Despite some disadvantages, TDS system,

which uses the MLD as a light source, is more preferable than the FSM because it has a

broadband spectrum measurement capability.

S-parameters collected during material measurement process were used to extract the dielec-

tric properties with various extraction techniques, and successful results were obtained. By

using Nicolson-Ross-Weir (NRW) method, which is the most basic calculation technique,

various algorithms are compared and the Newton-Raphson approach which is the numerical

analysis method is verified.

It must be provided that the generated THz signal is collimated to interact well with the material.

In this context, the parabolic mirror, which is an optical component, can be preferred in order to

efficiently use the FSM method in the THz frequency range. Due to the optical component used

in the measurement method, the new system is called optical-like FSM. Due to the advantage of

this system, hybrid systems consisting of optical and microwave measurement methods in the

frequency range of 0.5–1 THz are predicted to be used more widely in the future.
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