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Chapter

Silica-Supported Gold 
Nanocatalyst for CO Oxidation
Ziyauddin S. Qureshi and EA Jaseer

Abstract

Even though gold is inert in its bulk practice, greatly disseminated gold nanopar-
ticles (Au NPs) with dimensions less than 5 nm have been found to be active for a 
number of oxygen transfer reactions, particularly for low-temperature CO oxidation. 
The catalytic activity not only be subject to the particle size of Au but also on the 
nature of the support and the synthesis method of the catalyst. These factors are 
frequently inter-related such that their separate contributions cannot be easily unrav-
eled. Also, the activity of a supported Au catalyst is ruled by a complex combination 
of contributions of the particle morphology, metal dispersion, and electronic proper-
ties of the gold. Higher catalytic activity is being observed for Au NPs supported on 
reducible metal oxides such as TiO2, Co3O4, CeO2, and Fe2O3. However, silica is an 
inert, inexpensive, and convenient support that can be shaped into a host of attrac-
tive and varied morphologies. In this chapter, the study of CO oxidation catalyzed by 
mono- and bimetallic Au NPs over various silica supports is discussed in detail.

Keywords: gold nanoparticles, silica supports, mono-/bimetallic gold nanoparticles, 
CO oxidation, heterogeneous catalysis

1. Introduction

Since the revelation of the earliest inspiring studies [1], catalysis by Au NPs has 
been in the limelight of chemical research and it has been recognized as a vital tool 
for a wide range of transformations such as selective oxidations and hydrogenations 
of organic substrates [2–6], water-gas shift reaction [7–9], acetylene hydrochlorina-
tion [10, 11], direct synthesis of hydrogen peroxide [12], reduction of NO to N2  
[13, 14], and the addition of nucleophiles to acetylenes [15]. Particularly, the aerobic 
oxidation of CO by gold [16] has been a subject of constant exploration, where it 
plays a crucial role for industry and the environment [17].

Carbon monoxide is a colorless and odorless gas [18]. Due to its high affinity 
with hemoglobin, it is enormously toxic for humans and animals. Its long-term 
exposure should not exceed 25 ppm in 8 h, where more and more obvious harm-
ful effects are observed above this limit up to the lethal concentration of around 
650–700 ppm. Massive amount of CO is continuously being emitted (1.09 billion 
tons in 2000), frequently from transportation, power plants, and industrial and 
domestic doings [19]. CO is also an originator of ground-level ozone, which can 
cause several severe respiratory problems. Also, it is not well soluble in water 
(23 mLCO(g) L

−1
H2O(l)), which also limits its removal from air by means of aque-

ous treatments. So its oxidation into CO2 is a key solution for CO reduction in air 
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depollution managements. To achieve CO elimination, it is necessary to design 
catalysts, which permits the oxidation reaction with a sufficient rate.

Au NPs supported over metal oxides demonstrate high catalytic activity for 
CO oxidation under mild conditions and even below room temperature [20]. 
Concerning the structure-activity relationship, Au NPs size has been witnessed 
to play a key role in this transformation, with a finest activity observed for gold 
clusters in the size range of 2–5 nm [21]. The nature of the support and the way the 
Au NPs is being prepared and interacted are significant [22]. Till the beginning 
of the twentieth century, scarce oxides such as hopcalite have been identified to 
oxidize CO at ambient temperature. Hopcalite is composed of a binary amorphous 
Mn–Cu oxide, whose texture will get stabilized by the addition of CaO, Al2O3, or 
bentonite clay [23]. Later, several oxides have been investigated and higher catalytic 
activity are being observed for Au NPs supported on various reducible metal oxides 
such as TiO2, [24] Co3O4, [25] CeO2, [26], and Fe2O3 [27]. However, silica is an inert, 
inexpensive, and convenient support that can be shaped into a host of attractive and 
varied morphologies [28]. Silica-based mesoporous supports have been acclaimed 
in precise for high surface area, high accessibility of the catalytically active center, 
and reduced particle sintering [29]. However, it is still challenging to make properly 
sized, well-dispersed, and uniform Au NPs placed within the nanopores of the 
material without conceding mass transfer and morphological properties [30]. Gold 
alloy (bimetallic nanocatalysts) along with other metals such as Pd, Cu, and Ag, 
also found to exhibit high and exceptional catalytic activity compared to Au alone.

There are few reviews on different facets of gold catalysis [31–37]. This chapter 
will offer an overview of the different possible methodologies available for the 
synthesis of silica supported especially mono and bimetallic gold nanocatalyst for 
CO oxidation. The key advantages or limits for the proposed methods are shortly 
discussed; in some cases, the most important features of the presented methodolo-
gies are highlighted from an industrial point of view.

1.1 Methods to synthesize gold nanocatalyst supported on silica for CO oxidation

1.1.1 Post-synthetic treatment of silica before gold loading

Schuth et al. reported the method for the preparation of an active gold catalyst 
for CO oxidation, supported on silica, made by a novel solution technique [38]. 
The surface of SBA-15 was functionalized by treating with positively charged 
groups, and [AuCl4]− species into the channel structure through ion exchange. 
Later on reduction with NaBH4, resulted a highly dispersed Au NPs in the channels 
system of the mesoporous host. This composite material showed a reaction rate of 
2.7 × 10−4 mmolg−1cats−1 for CO oxidation. The Au NPs to some extent get stabilized 
by the pore system of SBA-15. Still, the interaction is relatively weak and sintering 
was observed around 100°C, which was confirmed from TEM images of Au/SBA-15. 
The authors conclude that a specific interaction between gold and the support is not 
compulsory for the generation of very active gold-based catalysts.

Datye et al. demonstrated a novel silica geometry, which allows to trap 
nanoparticles and limit the mobility of species that lead to thermal sintering [39]. 
Mesoporous silica was prepared by two different methods, spontaneous self-
assembly of amphiphilic molecules (batch synthesis) and evaporation-induced self-
assembly (aerosol synthesis). To deposit gold inside the pores of mesoporous silica, 
firstly silica surface was functionalized with organic amine then treated with Au 
precursor. These reduced catalysts were tested for CO oxidation with 20% CO and 
10% O2 from room temperature up to 400°C. Results showed that the hexagonal 
structure inside aerosol silica shells support to contain the Au NPs within the pore 
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structure and protect the active part from gas phase poisons, allowing facile access 
to gas phase species as related to straight pores in MCM-41.

Datye et al. further investigated the role of pore size and structure in control-
ling the thermal sintering of Au NPs on mesoporous silica [40]. The phenomenon 
of sintering of Au NPs is dependent on pore size, pore wall thickness (strength of 
pores), and pore connectivity. Au was placed on mesoporous silica samples with a 
varied range of pore sizes and pore arrangements (2-D hexagonal, 3-D hexagonal, 
and cubic) (Figure 1). Later, all catalysts were reduced at 200°C in flow of H2 and 
then used for CO oxidation at temperatures ranging from 25 to 400°C. Among all 
samples, SBA-15 with the thickest pore walls was found most active at regulatory 
growth of the Au particles.

Mou et al. have prepared the Au NPs embedded within the mesoporous 
silica’s and used as catalysts for CO oxidation [41]. The silane APTS (H2N(CH2)3-
Si(OMe)3) was used for the surface-functionalization of mesoporous silica such as 
MCM-41, MCM-48, and SBA-15. The catalysts were activated by calcinations and 
later reduced with H2 reduction at 600°C. The catalysts were found to be active for 
CO oxidation, reaching a very high activity values as 7.0 × 10−3 mmolg−1cats−1 at 

Figure 1. 
Au particle size distributions after reduction at 200°C for 2 h in flowing hydrogen. Pore sizes of the samples 
are calculated using BJH theory. Average Au particle sizes are number averages. Reproduced with permission, 
copyright 2018, American Chemical Society.
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80°C as compared to the results from catalysts made with the standard precipita-
tion-deposition method. Studies also recommend that the CO conversion increases 
with decreasing size of Au NPs.

Rombi et al. [42] have functionalized SBA-15 with new mercaptopropyltrime-
thoxysilane (MPS) and used for the preparation of supported gold nanocatalyst for 
the low-temperature CO oxidation reaction. It has been observed that, the presence 
of organic residues and the size of the Au NPs intensely affect catalytic activity. 
High temperature calcination (300–560°C) in air followed by treatment (600°C) 
under H2 atmosphere only leads to the formation of homogeneously small size Au 
spherical nanocrystals dispersed inside the SBA-15 channels with average crystal 
sizes of about 6.5 nm. The catalysts were first calcined at 560°C and then reduced 
under H2/He 600°C. Though, regardless of their large particle size, remarkable 
catalytic activity for CO oxidation was observed, while the as-made catalysts were 
found to be inactive for CO oxidation at low temperatures. Gold was found mostly 
in metallic Au(0) state, due to the strong interaction between the mercapto func-
tional groups and Au, positively charged Auδ+ species also exist.

SBA-15 functionalization with 3-MPS has been used by Ferino et al. to make 
a supported gold catalyst for the low-temperature CO oxidation [43]. Catalytic 
runs were studied by varying different reaction parameters such as atmospheric 
pressure, temperature 40–150°C, and different thermal treatments of the sample 
prior to reaction. The catalyst was pretreated toward different thermal treatments, 
that is, calcination in air, treatment in H2 atmosphere, and calcination followed 
by H2 treatment. It has been observed that, the pre-treatment conditions sturdily 
affect not only the gold particle size but also the nature of the Au surface species. A 
substantial catalytic activity for CO oxidation was observed for the catalysts treated 
at 600°C in H2/He atmosphere, only after the removal of functionalizing agent by 
an earlier high-temperature calcination (Table 1).

Rombi et al. further slightly modified the procedure for the preparation of silica-
supported gold catalyst for CO oxidation by functionalizing the silica surface with 
3-MPS, anchoring gold using HAuCl4 solution, and later reducing it with sodium 
citrate [44]. Before the catalytic runs, the Au/SiO2–SH catalyst was submitted to 
different thermal treatments. It has been achieved a notable CO conversion when 
the catalyst was calcined in air at 560°C and afterward treated in H2/He at 600°C or 
directly treated in H2/He at 600°C.

1.1.2 Direct synthesis

Lin et al. have studied CO oxidation over Au/SiO2 and Au/TiO2 catalysts [45]. 
It has been found that, after a high-temperature reduction (HTR) at 500°C, TiO2-
supported Au became very active for CO oxidation at 40°C, an order of magnitude 

Table 1. 
Catalytic performance of the Au/SBA-15-SH sample for the low-temperature CO oxidation reaction.
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more active than Au/SiO2. However a low-temperature reduction (LTR) at 200°C 
made an Au/TiO2 catalyst with very low activity. It has been observed that, a HTR 
step followed by calcination at 400°C and a LTR step (HTR/C/LTR) provided the 
most active Au/TiO2 catalyst of all, which at 40°C 100-fold more active than a typi-
cal 2% Pd/Al2O3 catalyst and also found to be stable above temperature 127°C, while 
a sharp reduction in activity was observed with the other Au/TiO2 (HTR) sample. 
Besides, the activity of the Au/SiO2 catalyst was ten-fold higher than the Au/TiO2 
(LTR) sample but ten-fold lower than the Au/TiO2 (HTR/C/LTR) catalyst. Later, 
Cl analysis disclosed that the Au/TiO2 (LTR) sample retained around 50% of the 
Cl from the Au precursor, while the other three catalysts retained only 16%, which 
gave a final Cl/Au ratio of 0.5; subsequently, the low activity of the Au/TiO2 (LTR) 
sample may be due to its high chloride content. However, the inhibitive role of Cl 
impurity has not yet been established.

Au catalysts supported over mesoporous silica and titania supports were made 
by Overbury et al. and tested for the oxidation of CO [46]. Two methods were 
used for the preparation of silica-supported catalysts using triamine as complexing 
ligands, which lead to mesoporous silica with wormhole and hexagonal structures. 
The use of triamine ligands is the essential for the synthesis of uniformly sized 
2–3 nm Au MPs in the silica pores. While over mesoporous titania, high gold 
dispersions were obtained without using functional ligand. It was noticed that, Au 
supported on titania showed a much higher activity for CO oxidation, even the Au 
particle sizes were essentially equal on the titania and the wormhole silica support. 
The results advise that the presence of small size Au NPs (2–3 nm) alone is not 
very satisfactory to achieve high activity in CO oxidation (Figure 2). Instead, the 
support also impacts the activity through other possible ways such as stabilization 
of active sub-nanometer particles, formation of active oxygen-containing reactant 
intermediates (such as hydroxyls or O2), or stabilization of optimal Au structures.

Effect of moisture on the catalytic activity for CO oxidation over three gold 
catalysts prepared over TiO2, Al2O3, and SiO2 supports were investigated by Date et al. 
[47]. A varied range of concentrations was studied, from about 0.1 to 6000 ppm H2O.

Figure 2. 
CO conversion (points) is shown as function of temperature for different supported Au catalysts. Reproduced 
with permission, copyright 2018, Springer.
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It has been observed that, the degree of rate of improvement rest on the type of 
support used: high for insulating Al2O3 and SiO2 and moderate for semiconducting 
TiO2. The effect of moisture becomes notable only above about 200 ppm H2O for 
Au/Al2O3, while the activity for Au/SiO2 decreases significantly with a decrease 
in moisture to about 0.3 ppm. While the catalytic activity of Au/TiO2 at about 
3000 ppm H2O is very high and reaches full CO conversion (100%). The authors 
also proposed as a mechanism model that moisture improves the catalytic activities 
for no less than two orders of magnitude and the effect of moisture depends over 
the type of metal oxides used. Moisture plays dual role in the reaction: one is the 
activation of oxygen and other is the decomposition of carbonate.

Dai et al. demonstrated the surface sol-gel process (SSP) for the modification of 
silica mesopores surfaces and the tuning of mesopore diameters [48]. The proce-
dure involves the preparation of one or multilayers of titanium oxide over SBA-15 
[49]. This layer-by layer approach controls the mesopore diameters with monolayer 
precision (Figure 3). Ultra-small Au NPs were effectively prepared on surface-
modified SBA-15 via a deposition-precipitation method without the restriction of 
surface isoelectric point (Figure 3). These developed materials are found very active 
catalysts for CO oxidation.

Corma et al. presented a modified sol-gel approach for the preparation of Au 
NPs embedded in silica, and Au NPs are capped with two different thiol molecules, 
1-dodecanethiol (DT) and 3-mercaptopropyltrimethoxysilane (MPMS), which lead 
to high-surface area Au/SiO2 catalysts [50]. The synthesis comprises the forma-
tion of a three-component metal-organic-inorganic structure collected of Au NPs 
capped with alkanethiols and partly functionalized with alkoxysilane groups, and 
polymerized with tetraethyl orthosilicate (TEOS). Upon calcination, the material 
becomes highly active catalyst for the CO oxidation at low temperatures, the same 
as that obtained with gold on TiO2. This clearly specifies that it is possible to attain 
highly active gold-silica catalysts by a liquid-based method, as long as accessible 
small gold particles and strong metal-support interactions exist.

The structure and oxidation state of gold clusters of different sizes supported 
over various metal oxides (Al2O3, TiO2, and SiO2) were studied to different CO 
oxidation conditions that were investigated by Bokhoven et al. using in situ X-ray 
absorption spectroscopy at the Au L3 edge [51]. During catalysis, only phase 
detected in all catalysts was Au0 with no other oxidation states. For the most active 
catalyst with small size gold particles (Au/Al2O3), difference in the electronic struc-
ture of the gold clusters in changing reaction conditions was observed by XANES 
spectroscopy and attributed to the adsorption of CO on the metallic gold clusters. 

Figure 3. 
Pore-size distribution as function of the number of TiO2 layers (left), Z-contrast TEM image of ultra-small Au 
NPs on ordered mesoporous materials (right). The bright spots (0.8–1.0 nm) correspond to Au NPs. Reproduced 
with permission, copyright 2018, American Chemical Society.
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Further FEFF8 calculations confirmed that the changes in the XANES signature 
of Au/Al2O3 could be due to the back donation of d-electrons into the π∗ orbitals 
of CO. For Au/Al2O3, Au-O backscattering was also seen in the EXAFS, suggest-
ing weak cluster-support interactions. Nevertheless for Au/SiO2 and Au/TiO2, the 
structure of the gold clusters remained unaffected throughout all experiments.

It is well recognized that several-supported metal particles are subjected to 
the geometric/electronic variations when treated in oxidizing atmosphere at high 
temperatures [52–53]. Recently, Huang et al. examined the effect of oxygen treat-
ment on the catalytic performance of Au/SiO2 catalysts toward CO oxidation [54]. 
The Au/SiO2 catalysts were synthesized using deposition-precipitation practice. It 
was observed that, the as-prepared Au/SiO2 catalyst executes a poor catalytic activ-
ity, which is because of the relatively large size of Au particles. After treating the 
catalyst in O2 at temperatures higher than 800°C efficiently enhances the catalytic 
activity with the agglomeration of Au particles. However, TEM results reveal the co-
existence of uniformly well-dispersed ultrafine Au particles over the surface. XPS 
results disclose that after the oxygen pretreatment at temperatures above 800°C, the 
Au 4f binding energy moves to higher binding energy. Remarkably, dealing of the 
Au/SiO2 catalyst in He at 800°C also displays the similar geometric and electronic 
structure changes of Au particles. Therefore, the enhancement effect as that in O2, 
indicates that the Au-O2 interactions at high temperatures do not contribute greatly 
to the progress of catalytic activity. The authors proposed that evaporation- 
deposition mechanism of gold particles treated at high temperatures, which 
accounts for the formation of ultrafine Au particles, is responsible for the improve-
ment of the catalytic activity (Figure 4).

Figure 4. 
The CO conversion of Au/SiO2-O2-800 and Au/SiO2-He-800 catalysts. Reproduced with permission, copyright 
2018, Elsevier.
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MCM-41 was fused with Au NPs by Mokhonoana et al. [55] using ethylene-
diamine through a modified deposition-precipitation method, where ethylene-
diamine operated as both base and complexing agent for the Au(III) species. 
Synthesis involves the mixing aqueous solution of HAuCl4 separately with both the 
as-synthesized MCM-41 (still containing CTABr) and the calcined MCM-41 for 1 h.  
pH was adjusted to 10 using 1 M ethylenediamine solution. Resulting slurry was 
agitated at room temperature for 13 h, and the recovered solids were filtered, 
washed with warm water to eliminate the chloride ions, dried and calcined at 
500°C for 12 h (for the as-synthesized MCM-41) or 400°C for 4 h (for the calcined 
MCM-41).

It has been observed that, subsequent catalysts with (4 and 5% nominal Au 
loading, respectively), having average Au NPs of 12 and 10 nm, respectively, holds 
the ordered structure and high surface area of the MCM-41 material. Nevertheless, 
calcination at 500°C results in aggregation and migration of Au NPs to the surface. 
Still, both catalysts show good activity in the CO oxidation at T > 250°C.

Huang et al. investigated that, NaOH additive to Au/SiO2 catalyst considerably 
improves the catalytic activity of inert in catalyzing CO oxidation at temperatures 
below 150°C, while Au/NaOH/SiO2 catalyst with a NaOH:Au atomic ratio of 6 is 
active at room temperature [56]. It has been witnessed that both particle size distri-
bution and the electronic structure of Au NPs remain equal in Au/SiO2 and  
Au/NaOH/SiO2 catalysts, where hydroxyls excite the activation of O2 on “inert”  
Au NPs, which benefits to catalyze CO oxidation even at room temperature. 
Further, density functional theory (DFT) calculation results also proves the defin-
ing role of COOH in hydroxyls-induced activation of O2 on the Au(111) surface.

The impact of pretreatments effect for gold supported over hexagonal meso-
porous silica (HMS) with He, O2, and H2 on the physicochemical and catalytic 
properties has been studied by Pestryakov et al. [57]. It has been investigated 
that, gold supported on mesoporous silica forms different states such as Au3+ and 
Au+ ions, neutral, partly charged gold clusters, and metal NPs of varied sizes. 
It is noted that as-prepared catalyst with Au3+ ions does not show any catalytic 
activity in CO oxidation. While reduced pretreated catalysts increases the 
catalytic activity and its oxidative treatments deactivate the catalyst. Catalytic 
tests demonstrate that, reduced samples contain several regions with various 
catalytic behaviors at 20–200°C, 200–400°C, and >400°C; this is because of the 
co-existence of gold active sites of varied forms. Further, a comparative analysis 
using XPS, UV-visible spectroscopy, FTIR and catalytic data shows that Auδ+

n 
clusters or/and Au+ ions are responsible for the activity in the low-temperature 
region (i.e. <200°C); while neutral Aun clusters are found to be active in the 
temperature range 200–400°C; and Au NPs catalyze the high-temperature CO 
oxidation.

Vinod et al. have proposed and confirmed the theory of active sites. They have 
examined the role of interfaces for the CO oxidation reaction for trisoctahedral 
(TOH) Au NPs adorned with nano oxides of CeO2 and TiO2 encapsulated in 
porous silica system [58]. The TEM images display that size of TOH morphology 
of the Au NPs is ∼70 nm, which shows the high index facets with unvarying defect 
sites. Its atomic model shows the existence of {221} and {331} high index planes, 
which carries {111} terrace and mono atomic {110} step atoms as reported earlier 
[59]. Further, line profile analysis of HRTEM image from the surface of the TOH 
particle reveals the existence of step-terrace geometry. These oxides adorned and 
silica-encapsulated system were found to display substantial activity and stability 
for CO oxidation at room temperature; nevertheless, the Au particle size was above 
the optimum range. This is due to the conservation of morphology and thereby the 
active centers due to encapsulation.
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1.1.3  Synthesis of Au/SiO2 using cationic gold complex [Au(en)2]Cl3 
(en = ethylenediamine)

Dai et al. reported a unique deposition-precipitation (DP) method for the 
preparation of highly active Au catalysts supported over mesoporous silica (SBA-
15) using a gold cationic complex precursor [Au(en)2]

3+ via a wet chemical process 
[60] (Figure 5). This new DP procedure comprises the use a cationic gold precursor 
instead of anionic AuCl4

−, which is facilitated by ion-exchange route. The subse-
quent mesoporous catalyst is found to be extremely active for CO oxidation reaction 
at room temperature and even below 0°C. Its catalytic activity is found to be much 
greater than that of silica-supported Au catalysts formerly prepared through solu-
tion techniques.

In addition, pH of the gold precursor solution founds to play a key role in deter-
mining the catalytic activity through the regulation of [Au(en)2]

3+ deprotonation 
reaction and the surface interaction of silica with the gold precursor (Figure 6). It is 
also observed that these mesoporous gold silica catalyst are highly resistant toward 
sintering because of the stabilization of Au NPs within mesopores. The authors 
projected that this synthesis strategy of silica-supported gold catalysts is entirely 
solution-based and can be applied to prepare gold catalysts supported over different 
kinds of silica materials (e.g., silica particles and microporous zeolites).

Gies et al. and coworkers have deposited Au NPs around 3 nm particles inside the 
channels of mesoporous silica-TiO2-MCM-48 using deposition techniques [61]. It 

Figure 5. 
TEM images [(a) dark field, (b) bright field and (c) size distribution histogram] of the Au catalyst supported 
on SBA-15 (synthesized at pH of 9.6 and reduced at 150 °C).
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has been revealed that, Au NPs catalyst over mesoporous silica not only converts CO 
to CO2 at 50% level at −20°C but also stable against sintering up to at least 200°C.

Dai et al. [62] described a novel method for the synthesis, characterization, and 
catalytic behavior of small and well-dispersed Au NPs on Au/Cab-O-Sil fumed SiO2 
and Au/MOx/SiO2 catalysts using Au(en)2Cl3 (en = ethylenediamine) as the pre-
cursor. It has been found that, these Au/SiO2 catalysts are extremely active for CO 
oxidation below 0°C. Pretreating of as-synthesized Au/SiO2 in H2-Ar at 150°C and in 
O2-He at 500°C is found to be very cooperative for high activity with optimum gold 
loading of 1.1 and 2.5 wt%. Furthermore, the post-treatment of calcined (and acti-
vated) Au/SiO2 in different media motivates the activity in CO oxidation. Moreover, 
the addition of metal oxide dopants also has been used to tune the catalytic activity.

Wu et al. investigated the nature of Au species over Au/SiO2 catalyst after 
oxidative and reductive pretreatments and also their role in room temperature 
CO oxidation using operando diffuse reflectance infrared spectroscopy (DRIFT) 
coupled with quadruple mass spectrometry (QMS) [63]. It has been observed that, 
the oxidative pretreatment of catalyst leads to a cationic Au species, which is inac-
tive for CO oxidation at rt. However, in situ reduction of the cationic Au during CO 
oxidation leads to the formation of Au(0) species, which is active for CO oxidation. 
It is recognized that the reductive pretreatment results in a Au(0) species, which 
have sturdier interaction with the support and thus are more active for CO oxida-
tion than those on oxidatively treated catalyst. It is also shown that, water has two 
positive effects in CO oxidation reaction on Au/SiO2: activating O2 species and 
supporting the reduction of Au species.

Figure 6. 
Light-off curves of the Au catalysts supported on SBA-15, synthesized in the solutions of Au(en)2Cl3 with 
different pH values. Reproduced with permission, copyright 2018, American Chemical Society.
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1.1.4 Chemical vapor deposition

To elucidate the effect of metal oxide support on the catalytic activity of gold 
for CO oxidation, Okumura et al. have deposited gold on SiO2, Al2O3, and TiO2 with 
high dispersion by chemical vapor deposition (CVD) of an organo-gold complex 
[64]. The results show that orders of TOF values for CO oxidation at 0°C are similar 
among Au/Al2O3, Au/SiO2, and Au/TiO2. Further, it was demonstrated that, the 
deposition of gold particles on the support with strong interaction is a major key 
controlling factor for the evolution of catalytic activity for CO oxidation at temper-
ature 0°C (and not at −70°C) and the nature of the support is not a dominant factor.

Similarly, silica-supported Au NPs of size 1.4 nm were prepared by organo-
metallic chemical vapor deposition method (Au/SiO2-CVD) by Claus et al. [65]. 
Furthermore, the synthesized catalysts show a notable activity for CO oxidation at 
low temperature.

Okumura et al. have deposited gold on Al2O3, SiO2, MCM-41, TiO2, SiO2-Al2O3, 
and active carbon (AC) support by gas-phase grafting (GG) of an organo-gold 
complex with high dispersion to display the effect of support in CO oxidation [66]. 
It has been found that, order of TOF values for CO oxidation at 0 °C are similar 
among Au/Al2O3, Au/SiO2, and Au/TiO2, this clearly shows the deposition of Au 
NPs on the supports with strong interaction which play important role in catalytic 
activity. Whereas semi-conductive or reducible nature of the support is not a 
presiding factor for CO oxidation at 0 °C. Au/SiO2-Al2O3 and Au/AC shows lower 
catalytic activities due to acidic and nonmetal-oxide supports respectively.

Veith et al. reported a new way to prepare small size Au NPs (2.5 nm) over a 
fumed silica support, using the physical vapor deposition technique of magne-
tron sputtering [67]. These Au/SiO2 catalysts are found to be structurally stable 
when heated in air to 500°C for several weeks or during a CO oxidation reaction. 
However, under these annealing conditions, traditional Au/TiO2 catalysts rapidly 
sinter to form large 13.9 nm gold clusters, resulting in a fivefold decrease in activ-
ity. The authors witnessed that the stability of Au/SiO2 is usually accredited to the 
absence of residual impurities (ensured by the halide-free production method) and 
a strong bond between gold and defects at the silica surface (about 3 eV per bond) is 
calculated from density functional theory (DFT) calculations. Properties that make 
the material worthy of study include the ability to easily reactivate the catalyst, 
thermal stability, and the unique gold-support interactions.

1.1.5 Synthesis by dispersion of gold colloids or pre-synthesized AuNPs

McFarland et al. examined the reactivity of gold clusters (8–22 nm diameter) 
supported on different metal oxides TiO2, ZnO, ZrO2, and SiO2 in a continuous flow 
reactor [68]. Synthesis involves the encapsulation of gold clusters within diblock 
copolymer [polystyrene81,000-block-poly(2-vinylpyridine)14,200] in toluene solution, 
impregnated onto the bulk supports, and reduced by calcination at temperature 
300°C. TiO2 > ZrO2 > ZnO order of support-dependent sintering was observed in 
air at 300°C. Au nanoclusters on TiO2 found to exhibit the highest activity for CO 
oxidation compared to other metal oxide supports.

1.1.6 New methods

Guczi et al. [69] have reported a new method for the preparation of Au NPs 
sizes of about 50–100 × 20–30 × 2–7 nm along with spheres of 5–10 nm diameter 
over SiO2/Si(100) by Ar+ ion implantation of a bulk-like Au/SiO2/Si(100) thin film 
of 10 nm thickness. Photoemission spectra show that during size reduction, Au 5d 
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valence band of Au NPs shows a change in the valence band density state, and hence 
the catalytic activity in the CO oxidation increases. Moreover, it has been observed 
that, at high-temperature catalytic tests, both size and valence band of the Au NPs 
get returned to its typical bulk gold, which consequently curbed its catalytic activity.

Margitfalvi et al. reported a novel process for the preparation of silica-supported 
nanosized gold catalysts using HAuCl4 gold precursor and ammonia solution. This 
gold catalyst showed relatively high catalytic activity in CO oxidation in a broad 
temperature region [70]. It was identified that, uniform well deposition of gold 
over silica support takes place because of the electrostatic interaction between the 
silica surface and the positively charged gold amine complexes resulting due to the 
being of ammonia solution, which avoids the growth of particle during hydrogen 
treatment at 350°C; this subsequently results in a highly dispersed gold particles 
over the silica surface. Margitfalvi et al. also observed that the presence of moisture 
in reactant mixture increases the catalytic activity of Au/SiO2 catalysts, while TOS 
study reveals the unstability of Au/SiO2 catalysts.

Coperet et al. and coworkers, described a novel route for the direct prepara-
tion of Au NP (1.8 nm) on partially dehydroxylated silica at 700°C [SiO2-(700)] by 
surface organometallic chemistry [71]. Method involves the controlled formation 
of well-defined and dispersed Au NPs functionalized over passivated silica surface 
with a AuI complex, {Au[N(SiMe3)2]}4, followed by mild reduction under H2 at 
300°C (Figure 7). This methodology results in a very efficient tailor-made gold 

Figure 7. 
(A) Schematic route for the preparation of AuNP on passivated silica by SOMC (2.79 wt% Au). 
(B) (a) HR-TEM image and (b) size distribution histogram of AuNPs over passivated silica  
by SOMC.
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catalyst, suitable not only for liquid phase aerobic epoxidation of trans-stilbene 
but also for oxidation of CO.

Recently, we have described a facile route for the synthesis of Au NPs of different 
average sizes (ranging from 1 to 2, 3 to 5, and 11 to 13 nm) on to the fibrous silica nano-
spheres (KCC-1) either by immobilizing pre-made Au NPs on amine-functionalized 
KCC-1 (Au/KCC-1-NH2) or by grafting HAuCl4 on Au/KCC-1-NH2 followed by 
reduction by NaBH4, CO, and citrate [72]. It’s been important to note that size and the 
location of the Au NPs over the support were found to influence by the preparation 
method (Figure 8). These catalysts were then tested for the oxidation of CO. The cata-
lytic activity of the Au NPs over KCC-1 was proved to be size dependent (Figure 9).

Recently, Fan et al. have prepared an exceptional pollen-structured hierarchically 
meso-/macroporous silica spheres (PHMSs) created from unique rape pollen grains 
and a triblock copolymer poly(ethylene oxide-block-propylene oxide-block-ethylene 
oxide) (P123) as templates [73]. The PHMSs are enclosed of mesoporous walls, which 
create a macroporous structure repeating the net-like morphology of the pollen 
grain exine. This newly structured catalyst found to exhibit a high BET surface area 
of 626 m2 g−1 and uniform mesopores of average pore size less than 5 nm. Au NPs 
supported on PHMSs (Au 6.8 wt%) show a higher CO conversion at an ambient tem-
perature (30°C), compared to those supported on typical mesoporous silica SBA-15. 
Furthermore, the effects of silica support on the catalytic activity have been discov-
ered from the calculation of diffusion coefficients and simulation of gas diffusion 
in both PHMSs and SBA-15. Catalytic performance for CO oxidation proves that the 
hierarchical PHMSs facilitate better gas diffusion than the nonhierarchical SBA-15.

Figure 8. 
HR-TEM images and size histogram of Au/KCC-1-NH2-a1 (a–c), Au/KCC-1-NH2-a2 (d–f), and Au/KCC-1-
NH2-b1 (g–i). Reproduced with permission, copyright 2018, Wiley.
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Yang et al. reported an improved strategy for the preparation of SBA-15-
supported metal nanoparticles [74]. Supported Au nanoparticle catalyst Au/SBA-15 
exhibited significantly higher activities in the oxidation of CO by molecular oxygen 
after adding polyvinylpyrrolidone (PVP) to the reaction system. Earlier, it has been 
reported that, PVP could strongly interact with the soluble Au NPs in water solvent, 
leading to high activity in oxidation reaction [75–76].

Recently, Behm et al. have developed an improved catalytic system for the 
stability of metal oxide-supported Au catalysts for low-temperature CO oxida-
tion reaction [77]. Effect of mesoporous silica SBA-15 substrate on the catalytic 
activity and stability of Au/TiO2 catalysts has been explored, where the catalyst 
system composed of a SBA-15 support surface modified by a monolayer of TiOx 
and Au NPs on top. Later, TiOx surface layers were systematically increased without 
changing the Au loading and particle size. Kinetic measurements were calculated at 
three different temperatures (30, 80, and 180°C). It was noted that catalyst surface 
modification with Ti has distinct effect, the performance of these catalysts increases 
significantly with Ti concentration and also with reaction temperature.

1.2 Au-M bimetallic nanoparticles on various silica support for the CO  
oxidation reaction

Recent research reveals that bimetallic nanoparticles often exhibit better cata-
lytic performances compared with the monometallic counterparts. This has led to 
a great interest in both academic and industrial fields. The interaction between the 
two components of bimetallic catalysts is mostly understood in terms of assemble 
and ligand effects, where one component may act as a spacer to separate the active 
sites [78] or as an electronic modifier to the other component [79]. The catalytic 
performances of bimetallic nanoparticles are subject to depend on several factors, 

Figure 9. 
Turn over frequency (TOF S−1) for CO oxidation over Au/KCC-1-NH2-a1, Au/KCC-1-NH2-a2 and Au/KCC-
1-NH2-b1 after H2 treatment at 300°C for 1 h. Reproduced with permission, copyright 2018, Wiley.
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such as nanostructure, surface composition, particle size, and shape. The most 
important features which differentiate a bimetallic catalyst from monometallic 
catalysts are the surface compositions and tunable nanostructures. A bimetallic 
nanostructure could be a random alloy, a core-shell structure, or just mixed mono-
metallic nanoparticles, which give rise to different catalytic activities.

There are several literature reports in account, for the effect of second metals 
like Ti [78–88], Cu [89–92], Fe [93–95], Ag [96–98], Ce [99–100], Al [101–102], Co 
[103], Pd [104], Pt [105], and Sn [106] to the Au NPs for the activity of CO oxida-
tion. It has been established that, synergistic effects of both the metals improve 
the catalytic performance in CO oxidation reaction. Type of bimetallic catalysts, 
support, size of the Au NPs, and the gold loading are showing remarkable effects on 
the activity of the reaction (Table 2).

Bimetallic 

catalyst

Support Au loading 

(wt%)

Au size (nm) Temperature (°C) Ref.

Au-Ti Silica aerogel 0.1–20 2.0 −50–70 [80]

Silica aerogel 3.4–6.7 1.4–6.4 −50–70 [81]

Silica aerogel 5.0 2.0 [82]

SBA-15 1.7–3.6 3.0–15 200 [83]

SBA-15 — 0.8–1.0 −40 (T50) [84]

SBA-15 1 3–4 50 [85]

MCM-48 3.0–7.5 <1 17–27 [86]

MCM-48 — — <0 [87]

Silica 1.4–2.0 6.6–7.2 160 [88]

MCM-41 — <3 350 [89]

Silica

SBA-15

1.8–2.5 2.9–10.2 120 (T50) [90]

Au-Cu SiO2 2 (Au-Cu) 14 (Au-Cu 

colloidal)

150 [91]

SiO2 2 (Au-Cu) 10 300 [92]

SiO2 4.6 

(Au-Cu)

4 (Au-Cu) 25–300 [93]

SBA-15 6 (Au-Cu) ~3 0 [94]

Au-Fe SBA-15 0.5–0.8 <4 20 [95]

Hexagonal 

mesoporous silica 

(HMS)

0.4–5.1 3.3–4.5 25 (Au 5.1 wt%)–

300 (Au 0.4 wt%)

[96]

Mesoporous silica 0.4–2.0 >5 −5 [97]

Au-Ag Silica 4.9–5.6

(Au-Ag)

~3

(Au-Ag)

0 [98]

MCM 8 (Au-Ag) 6–7 RT [99]

MCM 5

(Au-Ag)

4–6

(Au-Ag)

30 [100]

Au-Ce SBA-15 1.3–2.7 4.4–26 160–170 [101]

SBA-15 2 3–6 150–350 [102]

Au-Al SBA-15 3–17 3 80 [103]

SBA-15 15–20 2.7 80 [104]
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2. Conclusions

The synthesis of stable Au NPs and metal oxide support introduces new possibil-
ities for catalysis since their properties are neither those of the bulk materials or of 
the isolated atoms. Optimum activity for, in particular, CO oxidation is practical for 
gold clusters in the 2–5 nm range. Furthermore, these gold nanoparticles can have a 
strong interaction with the support and an electron relocation may happen within 
either directions. These interactions can result in the formation of stabilized surface 
charged species, which act as Lewis acids comparable to as of salts in solution or in 
the corresponding transition metal complexes.

Mono- and bimetallic gold nanocatalysts have been made over a variety of metal 
oxides supports. In particular, silica is being considered a suitable support for Au 
NPs using appropriate synthesis methods. Au NPs can be supported over a series 
of different mesoporous silicas, such as SBA-15, SBA-16, MCM-41, and MCM-48. 
These silica-supported gold nanocatalysts are found to exhibit exceptional catalytic 
properties. Most common methods for the modification of silica support is either 
by direct or post-grafting functionalization with amine or thiol groups, where these 
groups show dual performances, as ligand for improving the interaction between 
the metal precursors and the silica surface; and mild reductants under basic condi-
tions for in situ reduction of Au(III).

Several active silica-supported gold nanocatalysts have been prepared by func-
tionalizing the mesoporous silica support by direct or subsequent incorporation of 
the gold precursor. Major problems related to these processes include particle size, 
gold loading, uniform dispersion Au NPs, and ligand removal during calcination, 
which contribute to the aggregation of Au NPs, metal leaching, and low stability.

Finally, it is precise to say that silica-supported gold nanocatalyst has become a 
hot topic of research for CO oxidation; conversely, there are still many challenges 
ahead for the improvement of silica-supported gold nanocatalyst filling the main 
necessities of any catalyst such as easy and low-cost synthesis method, high activity, 
selectivity, and greater stability at lower temperature. Furthermore, the proof of 
identity for the active gold species is still a challenging job for CO oxidation reac-
tions catalyzed by gold.

Bimetallic 

catalyst

Support Au loading 

(wt%)

Au size (nm) Temperature (°C) Ref.

Au-Co SBA-15 2 <5 0 [105]

Au-Pd Silica fume 5.9–77.3 4–12 150–250 [106]

Au-Pt Silica — 3.5–4.6 280 [107]

Au-Sn SiO2 2.6–3.0 — 200 [108]

Au-Co

Au-Fe

MCM-41 

Aerosol-silica

5 3–8 >400 [109]

Au-Ti

Au-Ce

SBA-15 0.6–2.5 2.9–5.0 Au-Ti 150

Au-Ce 50

[110]

Au-Co

Au-Fe

Au-Cu

Stober silica 1 5 (Au-M) 300 [111]

Au-Fe

Au-Ce

Au-Ti

Hexagonal 

mesoporous silica 

(HMS)

2.8–3.4 0.5–6 Au-Fe 150

Au-Ce 200

Au-Ti 200

[112]

Table 2. 
Au-M bimetallic catalysts with different types of silica supports for the CO oxidation reaction.
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