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Abstract

Lignocellulosic biomass such as sugarcane bagasse (SCB) is a renewable and abundant 
source for ethanol production. Sugarcane bagasse is composed of cellulose, hemicellu-
lose, lignin, extractives, and several inorganic materials. Pretreatment methods of SCB 
are necessary for the successful conversion of SCB to ethanol. Each pretreatment process 
has a specific effect on the cellulose, hemicellulose, and lignin fraction. The conversion 
of SCB to ethanol typically consists of four main steps: pretreatment, enzymatic hydro-
lysis, fermentation, and distillation. Hence, different pretreatment methods should be 
chosen according to the process design for the following hydrolysis, fermentation, and 
distillation steps. There are many types of pretreatments such as physical, chemical, 
physico-chemical, and biological pretreatments. This chapter reviews the chemical and 
physico-chemical pretreatment methods of SCB which are often used by many research-
ers for ethanol production. Different chemical and physico-chemical pretreatment meth-
ods of SCB are introduced and discussed based on relevance to the sugar yield, lignin 
removal, and cellulose content after pretreatment.

Keywords: sugarcane bagasse, pretreatment, ethanol

1. Introduction

According to the latest report produced by the United Nations Food and Agricultural 

Organization, there are 10 largest sugarcane producing countries in the world in 2018. The 
10 countries are Brazil, India, China, Thailand, Pakistan, Mexico, Colombia, Indonesia, 
Philippines, and United States. About 540 million metric tons per year of sugarcane bagasse 

are produced globally [1]. Table 1 presents sugarcane bagasse production annually for several 
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countries. Sugarcane bagasse is the solid residue obtained after extraction of the juice from 

sugar cane (Saccharum officinarum) and can be a potential substrate for ethanol production 

since it has high sugar content and is a renewable, cheap, and readily available feedstock.

Sugarcane bagasse is mainly composed of cellulose (33–36%), hemicellulose (28–30%), and 

lignin (17–24%). Cellulose is the most abundant polysaccharide polymer which comprised 

of a linear chain of β(1 → 4) linked D-glucose units that generates crystalline regions and 
consequently increases resistance to the hydrolytic process. Hemicellulose is the second most 

abundant polysaccharide after cellulose and is a short and highly branched polymers which 

comprised of pentose (xylose and arabinose) and hexose (mannose, glucose, and galactose) 

sugars. It possesses a heteropolysaccharide composition that varies according to the source. 

Sugarcane bagasse hemicellulose is composed of heteroxylans, with a predominance of 

xylose. Hence, it can be chemically hydrolyzed more easily than cellulose. Lignins are com-

plex phenylpropanoid polymers formed by the polymerization of aromatic alcohols. The 
combination of the cellulose-hemicellulose-lignin matrix is conferring resistance to enzymatic 

and chemical degradation [10, 11]. Bagasse could represent the main lignocellulosic biomass 

in many tropical countries since it is available at the sugar factory without additional cost and 

contains high sugar and low lignin content [12].

Production of bioethanol from SCB has a major advantage, like its less carbon intensive, than 
fossil fuel which reduces air pollution [13]. The bioethanol produced from lignocellulosic 
materials is named as second-generation (2G) ethanol or cellulosic ethanol, while the first gen-

eration ethanol is produced from sucrose (juice extracted from sugarcane, sugarbeet, or sweet 

sorghum) or starch (typically extracted from grains) [14]. The second-generation ethanol pro-

duction from lignocellulosic biomass has been considered to be the biofuel with the greatest 

potential to replace oil-based fuels ([15, 16], and it can be produced from various lignocel-

lulosic biomasses such as wood, agricultural, or forest residues. Typically, bioethanol can be 
produced in a four-step process, that is, pretreatment, enzymatic hydrolysis, fermentation, 

and distillation (Figure 1), where hydrolysis and fermentation may be combined. Currently, 

bioethanol is produced mostly in U.S and Brazil (Table 2) [17].

Country Sugarcane bagasse production (million metric ton/year) References

Brazil 181 [2]

India 101.3 [3]

China 80 [4]

Thailand 20 [5]

Mexico 15 [6]

Colombia 7 [7]

Philippines 5.1 [8]

United States 3.5 [9]

Table 1. Sugarcane bagasse production annually for several countries.
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2. Pretreatment

The main objective of the pretreatments is to break down the lignin structure and disrupt the 
crystalline structure of cellulose for enhancing enzymes accessibility to the cellulose during 

the hydrolysis step [18]. These pretreatments may be biological, chemical, and physical pro-

cesses that are used individually, combined, and/or sequentially [19, 20]. The natural struc-

ture of lignocellulosic material is extremely recalcitrant to enzymatic hydrolysis. Therefore, 
the pretreatment step is required for efficient enzymatic hydrolysis of cellulose by removal 
of lignin and hemicellulose, reduction of cellulose crystallinity and increase the porosity of 

the biomass [21]. Each pretreatment has a different effect on the cellulose, hemicellulose, and 
lignin fraction.

It is necessary to choose suitable pretreatment methods for SCB since different lignocellu-

losic materials have different physico-chemical characteristics [22]. An efficient pretreatment 
should (1) improve the formation of fermentable sugars, (2) avoid the loss or degradation of 

carbohydrates, (3) avoid the formation of inhibitory by-products, and (4) be cost-effective [23]. 

According to Puligundla et al. [24], an ideal pretreatment should be economically efficient, 

Figure 1. A four-step process for ethanol production from biomass.

Country Bioethanol production (million gallon)

United State 15,250

Brazil 7295

European Union 1377

China 835

Rest of World 490

Canada 436

Thailand 322

Argentina 264

India 225

Table 2. Bioethanol production by country, million gallons, 2017 [17].
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low energy consumption, and producing less or no residues. High digestibility of cellulose 

and versatility of feedstock are also important in the pretreatment process. In addition, other 
factors such as low sugar decomposition, low water or high solids, and low chemical con-

sumption during the process should be considered. Besides that, the pretreatment should be 

performed at low operational risk and safe.

2.1. Chemical pretreatment

2.1.1. Dilute acid pretreatment

There are two types of acid pretreatments either using concentrated acid or diluted acids. 
Concentrated acid hydrolysis can be performed at a low temperature (30–60°C) using acid 

with the concentration around 40–80%. High sugar yield can be obtained using this method, 

however, requires large volumes of acid which are toxic and corrosive. Thus, corrosion resis-

tant reactors are needed if concentrated acid is employed. Furthermore, the acid concentration 

must be recovered after hydrolysis to make the process economically feasible [10]. The devel-
opment of effective acid recovery technologies has made this process renewed its interest [25]. 

On the other hand, dilute acid hydrolysis is the most widely used and has been considered 

to be one of the treatment methods with greater potential for wide-scale application. This 
process can be performed using diluted acids in the range of 0.5–6% and high temperatures 

from 120–170°C, with variable treatment times from minutes up to an hour.

Dilute acid pretreatment has received numerous research interests, and it has been success-

fully developed for pretreatment of lignocellulosic biomass. Dilute acid pretreatments are 

normally used to degrade the hemicellulosic fraction and increase the biomass porosity, 

improving the enzymatic hydrolysis of cellulose. The dilute acid pretreatment is important to 
weaken the glycosidic bond in the hemicellulose and lignin-hemicellulose bond and the lig-

nin bond. This will lead to the dissolution of the sugar in the hemicellulose and also increase 
the porosity of the plant cell wall for effective enzyme digestibility [26]. Acid pretreatment is 

a very commonly used technology for biomass to ethanol conversion due to its low cost and 

the fact that the used acids are easily available. However, acid pretreatments can cause side 

effects such as the formation of furan and short chain aliphatic acid derivatives, which are 
considered strong inhibitors in microbial fermentation [27, 28].

Several different acids used in pretreatments of SCB, including dilute sulfuric acid [29–35], 

dilute hydrochloric acid [36], dilute phosphoric acid [32, 37], and dilute nitric acid [38], have 

been reported. High hydrolysis yields have been obtained when lignocellulosic biomass was 

pretreated with dilute sulfuric acid compared with hydrochloric, phosphoric, and nitric acid 

[22]. Sulfuric (H
2
SO

4
) and phosphoric (H

3
PO

4
) acids are widely used for acid pretreatment 

since they are relatively inexpensive and efficient in hydrolyzing lignocellulose. H
3
PO

4
 also 

gives less negative impact on the environment compared to H
2
SO

4
, meanwhile hydrochloric 

(HCl) acid had better penetration to biomass and more volatile and easier to recover than 
H

2
SO

4
 [39]; similarly, nitric acid (HNO

3
) possesses good cellulose to sugar conversion rates 

[40]. However, both acids are expensive compared to H
2
SO

4
. Sulfuric acid is the most com-

monly used acid in the pretreatment of SCB [41, 42]. Table 2 shows the yield of sugar at 

different types of acid pretreatment of SCB.
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According to Table 3, the acid concentration used in the range of 0.5–6.0%, temperature 

120–170°C and time is around 10 to 300 min. Dilute acid at moderate temperature effectively 
removes most of the hemicelluloses and recovers as dissolved sugars.

2.1.2. Alkali pretreatment

Beside acid pretreatment, alkaline pretreatment is also one of the chemical pretreatment 
technologies receiving numerous attention for SCB pretreatment. It employs various bases, 
including sodium hydroxide (NaOH) [43–53], calcium hydroxide (Ca(OH)

2
) [54, 55], potas-

sium hydroxide (KOH) [56], aqueous ammonia (NH
3
) [57], ammonia hydroxide (NH

4
OH) in 

combination with hydrogen peroxide (H
2
O

2
) [58], NaOH in combination with Ca(OH)

2
 (lime) 

[59], and NaOH in combination with H
2
O

2
 [60]. Alkaline pretreatment is basically a deligni-

fication process. It disrupts the cell wall of SCB by (1) dissolving hemicelluloses, lignin, and 
silica, (2) hydrolyzing uronic and acetic esters, and (3) swelling cellulose under mild condi-

tions. This process results in two fractions, a liquid (hemicellulose oligomers and lignin) and a 
solid fraction (cellulose). Table 4 depicts the composition of lignin in SCB and pretreated SCB 

with NaOH. It shows that the lignin content decreased when SCB was pretreated with NaOH 

for all different pretreatment conditions.

The physical structure and chemical composition of the substrate as well as the treatment condi-
tions are important factors for the effectiveness of alkaline pretreatment. In general, alkaline 
pretreatment is more effective on hardwood, herbaceous crops, and agricultural residues with a 
low lignin content than on softwood with a high lignin content [61]. Although hydroxides are not 

expensive, the drawback of this process is that it consumes a lot of water for washing the sodium 
(or calcium) salts that incorporate into the biomass so that the treatment of a large amount of 

Type of acid Pretreatment conditions Yield of sugar References

mg/g g/L

Sulfuric acid 1.5% H
2
SO

4
, 170°C, 15 min 350 [29]

0.5% H
2
SO

4
, 120 °C, 120 min 452.27 [30]

2.0% H
2
SO

4
, 155°C, 10 min 22.74 [31]

0.5% H
2
SO

4
, 130°C, 15 min 414.9 [32]

1.25% H
2
SO

4
, 121°C, 2 h 59.1 [33]

0.5% H
2
SO

4
, 121°C, 60 min 24.5 [34]

2.5% H
2
SO

4
, 140°C, 30 min 30.29 [35]

Hydrochloric acid 1.2% HCl, 121°C, 4 h 37.21 [36]

Phosphoric acid 3.5% H
3
PO

4
, 130°C, 180min 404.5 [32]

4% H
3
PO

4
, 122°C, 300 min 23.2 [37]

Nitric acid 6% HNO
3
, 122°C, 9.3 min 23.51 [38]

Table 3. Yield of sugar at different types of acid pretreatment of SCB.
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salts becomes a challenging issue for alkaline pretreatment. In addition, some enzyme inhibitors 
can be generated during lignin depolymerization [62]. In comparison with other pretreatment 

technologies, alkali pretreatment usually uses lower temperatures and pressures, even ambient 
conditions. Pretreatment time, however, is recorded in terms of hours such as 24 hours or days 

that are much longer than other pretreatment processes [63].

Alkaline pretreatments differ from acid pretreatments so that they are more efficient in lignin 
removal, substantially increasing cellulose digestibility, even after removing only part of the 

lignin. The hydrolysis of ester linkages between hemicellulose residues and lignin promotes an 
increase of porosity in the biomass, and as a result, cellulose and hemicellulose become more 

accessible to enzyme action [10, 64]. As this pretreatment results in a large fraction of both cel-

lulose and hemicellulose to remain intact, it has the potential for hydrolysis of a much larger 

fraction of the pretreated biomass, releasing glucose from cellulose and additional pentose 

sugars from hemicellulose. In addition, this occurs in an environment free of strong acids and 

fermentation inhibitors. Under these conditions, the degradation of sugars is minimal [65]. 

Sodium hydroxide shows the greatest lignin degradation when compared to other alkalis, such 
as sodium carbonate, ammonium hydroxide, calcium hydroxide, and hydrogen peroxide.

Lime (calcium hydroxide) pretreatment is another attractive alkali pretreatment technology 
due to the low formation of fermentation inhibitors, which increases pH and provides a low-

cost alternative for lignin solubilization where the process is removing approximately 33% of 

lignin and 100% of acetyl groups. Even though the action of lime is slower than other pretreat-

ments, lime is much cheaper than other alkalis and has low toxicity to the environment and 
safe handling [66]. The effectiveness of lime pretreatment in improving sugarcane bagasse 
susceptibility to enzymatic hydrolysis was studied by Rabelo et al. [54]. The result showed 
that lime pretreatment improved the enzymatic digestibility of SCB.

Lignin (% w/w) Pretreatment conditions References

SCB Pretreated SCB

21.5 10.6 1.0% NaOH, 120°C, 10 min [43]

27.9 9.2 0.9% NaOH, 80°C, 2 h [44]

25.4 7.8 2% NaOH, 121°C, 30 min [45]

18.0 1.8 15% NaOH, 175°C, 15 min [46]

17.8 4.3 4% NaOH, 121°C, 30 min [47]

25.0 9.0 2.5% NaOH, 126°C, 45 min [48]

30.1 18.5 1.0% NaOH, 120°C, 60 min [49]

23.4 5.2 5% NaOH, 121°C, 60 min [50]

25* 6 1% NaOH, 100°C, 30 min [51]

34.3* 5.7 1% NaOH, 100°C, 1 h [52]

22.0 9.5 2.0% NaOH, 120°C, 40 min [53]

*Lignin content of SCB pretreated by steam explosion.

Table 4. Composition of lignin in SCB and pretreated SCB.
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2.1.3. Organosolv pretreatments

The organosolv process is a delignification process, with varying simultaneous hemicellulose 
solubilization. The organosolv process uses organic or aqueous organic solvent mixtures with 
or without an acid or alkali catalysts to extract lignin from lignocellulosic biomass. Numerous 
organic solvent mixtures including methanol, ethanol, acetone, ethylene glycol, triethylene 

glycol, and tetrahydrofurfuryl alcohol have been used. The advantages of ethanol as a solvent 
are that it is produced in many biorefineries. It is easily replenished and recycled as a solvent 
for the pretreatment process. Ethanol is also inexpensive and less toxic to humans compared 

to other solvents such as methanol [67].

The ethanol organosolv process is among the chemical pretreatment being studied for the 
conversion of SCB to ethanol. In this pretreatment, high degrees of delignification can be 
achieved for SCB following ethanol organosolv pretreatment using formic acid as a catalyst. 

The degree of delignification increased with increasing pretreatment temperature. The maxi-
mum degree of delignification of sugarcane bagasse reached 80% at 210°C [68]. Mesa et al. 
[69] reported that the combination of a dilute-acid pretreatment followed by the organosolv 

pretreatment with NaOH at a temperature of 195°C for 60 min using 30% (v/v) was an effi-

cient technique for SCB fractionation for the subsequent use on the enzymatic hydrolysis 

process, since yielded a residual solid material containing 67.3% (w/w) glucose. Novo et al. 

[70] showed that one of the best pretreatment conditions for lignin removal from SCB by the 

organosolv method could be achieved at 190°C and 150 min.

Beside ethanol, glycerol is an excellent solvent for organosolv pretreatment [71]. Glycerol, a 

high-boiling-point organic solvent derived from the oleochemical industry as a by-product 

has become very attractive. Martı́n et al. [72] studied the effect of glycerol pretreatment on 
the main components of SCB. The result shows that the glycerol acted more selectively on 
lignin than on xylan where cellulose was almost completely recovered in the pretreated sol-

ids, accounting for 72% (g/g) of the pretreated substrate. Meanwhile, Novo et al. [70] reported 

that the glycerol pretreatment attained good cellulose preservation (>91%) and 80% lignin 
removal. However, Zhang et al. [73] found that >96% of the cellulose was recovered, whereas 
the lignin and hemicellulose removal were almost 60 and 80%, respectively, when SCB was 

treated with an acid-catalyzed glycerol organosolv pretreatment.

2.2. Physico-chemical pretreatment

2.2.1. Steam explosion pretreatment

Steam explosion is one of the most efficient methods to deconstruct the plant cell wall macro-

molecular organization [19, 74]. This process occurs both chemically and physically by reveal-
ing the lignocellulosic materials to high temperatures ranging from 160 to 260°C for reaction 

times varying from 2 to 30 min in the saturated steam either in the absence or presence of an 

exogenous acid or basic catalyst. The steam is able to expand the cell wall of the polysaccharide 
fiber and destroys cell structure into small pieces and breaks down the lignin network. This 
process would increase the accessibility of the enzyme to cellulose by exposing internal cel-

lulose surface, which acetyl groups of hemicellulose can be hydrolyzed to acetic acid [75, 76].  

The physical forces cause partial hemicellulose solubilization and lignin reorganization. The 
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major variables that affect steam explosion pretreatment efficacy include biomass origin, par-

ticle size, temperature, residence time, and moisture content [77, 78].

When pretreatment is performed in the presence of an acid catalyst such as sulfuric (H
2
SO

4
) or 

phosphoric (H
3
PO

4
) acids, the need for time and temperature decreases substantially depend-

ing on the strength of the acid and its actual concentration in relation to the dry mass of 

the biomass. In addition, this process can remove hemicelluloses almost completely, whereas 

lignin is modified to a deeper extend, thus making the cellulosic materials more susceptible 
to enzymatic or acid hydrolysis [27, 74, 79]. There are several advantages of steam explosion 
pretreatment which includes lower environmental impact, cost-effectiveness, greater energy 
efficiency, and less or no chemical usage [22]. Also, to obtain the same particle size of the 

substrate, steam explosion method requires a 70% lower energy consumption compared to 

the conventional mechanical process [10]. The main drawbacks of steam explosion pretreat-
ment are the partial degradation of hemicelluloses and the formation of toxic components 

that could affect the enzymatic hydrolysis and fermentation process [76].

2.2.2. Liquid hot water

According to Sánchez et al. [80], liquid hot water (LHW) pretreatment is performed at various 

temperatures from 160 to 240°C in the liquid state with water instead of steam. The LHW pro-

cess primarily maximizes the solubilization of hemicellulose, partial removal of lignin, and 

making cellulose more accessible to the enzyme. In addition, the formation of the undesir-

able side products in liquid fraction can be reduced due to solubilized hemicellulose mostly 

appears in oligomers forms [18]. The LHW pretreatment cleaves hemicellulose linkages and 
liberates various acids during the process. These acids help to hydrolyze hemicellulose to 
monomeric sugars, which can be subsequently degraded to aldehydes (i.e., furfural from five 
carbon sugars and HMF from six carbon sugars). LHW has a great potential to be chosen as a 
pretreatment step in the biorefinery process as it can be considered as a green technology [81].

During high temperature pretreatment processes, water molecules penetrate the biomass 

cell wall and hydrate cellulose, with the partial removal of hemicellulose and minor amount 

of lignin [82]. The advantage of using the neutral method compared to the dilute-acid and 
alkaline catalyzed pretreatments is to avoid the chemical use in excess, because pH close to 
neutral does not cause corrosion from occurring, and the formation of excess furans during 

sugar degradation reactions can be eluded. [83]. However, sugar release yields from LHW 

pretreated biomass are lower than diluted acid pretreated biomass, otherwise higher pre-

treatment temperature and longer residence time are required for comparable performance 

[84]. The LHW has a few advantages compared to other pretreatment methods such as no 
additional catalysts or chemicals, operates at relatively moderate temperature, high hemicel-

luloses recovery, low levels of inhibitory by-products and cost-effective [85].

Table 5 presents the comparison between the cellulose content before and after pretreatment 

of LHW and steam explosion. The temperature range used in LHW is around 170–200°C, 
whereas in steam explosion the temperature is in the range of 180–195°C. Compared to the 

untreated SCB, cellulose content increased in pretreated SCB for both LHW and steam explo-

sion pretreatments. The LHW pretreatment of SCB led to an excellent preservation of glu-

can (cellulose) fraction [88]. Meanwhile, steam explosion with and aid of H
2
SO

4
 acid during 
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pretreatment also increases the cellulose content in the pretreated SCB [91]. The increment of 
cellulose in pretreated SCB is related to the lignin removal during the pretreatment process 

either in LHW or steam explosion.

2.3. Biological pretreatment

Biological pretreatment of lignocellulosic biomass is considered as an efficient, ecofriendly, 
and cheap alternative [94]. The biological pretreatment of lignocellulosic biomass is usually 
performed using cellulolytic and hemicellulolytic microorganisms. The commonly used micro-

organisms are filamentous fungi which are ubiquitous and can be isolated from the soil, living 
plants or lignocellulosic waste materials [95]. White-rot fungi have been reported as the most 

effective microorganisms for the pretreatment of most of the lignocellulosic materials [96]. 

These microorganisms degrade lignin through the action of lignin-degrading enzymes such as 
peroxidases and laccases [97]. Brown-rot fungi mainly attack cellulose, while white and soft rot 
fungi attack both cellulose and lignin [10]. Table 6 shows the type of fungal species commonly 

used in biological pretreatment. The biological pretreatment appears to be a promising tech-

nique and has very apparent advantages, including low-capital cost, low energy requirement, 

no chemical requirement, and mild environmental conditions. However, the main disadvan-

tages are the long incubation time, low efficiency, considerable loss of carbohydrate require-

ment of careful control of growth conditions, and space restrain its applications [98].

Jiraprasertwong et al. [99] investigated the effect of different microbial strains on biologi-
cal pretreatment of SCB for enzymatic hydrolysis. The results showed that the pretreatment 
with the white-rot fungus gave the highest glucose concentration around two-fold higher 

when compared with the others. Hernández et al. [100] reported that SCB pretreated with 

Pycnoporus sanguineus promotes better lignin decay, glucose release, and hydrolysis yields. 
Studies by Khuong et al. [101] have shown that the initial moisture content of the bagasse 

was found to affect biological delignification by MG-60, and the 75% moisture content was 

Physico-chemical 

pretreatment

Pretreatment conditions Cellulose content of SCB (%) Reference

Before 

pretreatment

After 

pretreatment

Liquid hot water Temp. 200°C, time 10 min, LSR 4 39.5 41.7 [86]

Temp. 200°C, time 30 min, LSR 10 37.53 53.02 [87]

Temp. 180°C, time 20 min, LSR 9 43.43 66.53 [88]

Temp. 170°C, time 60 min, LSR 3 42.6 48.5 [89]

Steam explosion Temp. 180°C, time 5 min, LSR 20 42.8 49.1 [90]

Temp. 190°C, time 10 min, LSR 10, 
impregnated with 4%(v/v) H

2
SO

4

50.7 61.4 [91]

Temp. 195°C, time 7.5 min 36.9 62.8 [92]

Temp. 190°C, time 15 min 43.1 57.5 [93]

LSR: liquid solid ratio.

Table 5. Cellulose content of SCB before and after pretreatment by LWH and steam explosion.
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suitable for selective lignin degradation and subsequent ethanol production when white-rot 

fungus Phlebia sp. MG-60 was applied to sugarcane bagasse.

3. Conclusions

There are several pretreatment methods available for SCB; however, the final choice for the 
selection of pretreatment methods depends upon the effective delignification or hemicellu-

lose removal, low sugar loss, time savings, being economic, and causing less environmental 

pollution. Each pretreatment method has its own advantages and disadvantages. Instead of 

performing the chemical pretreatment alone, it is good to combine the pretreatment with 

other physico-chemical pretreatment such as steam explosion in order to improve the sugar 

yield and increase the lignin removal from SCB. The combination of pretreatment is a promis-

ing method to improve enzymatic hydrolysis and ethanol production from SCB.
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Type of fungus Fungal species

White rot Phanerochaete chrysosporium

Pleurotus ostreatus

Cyathus stercoreus

Penicillium sp.

Brown rot Aspergillus niger

Fomitopsis palustris

Gloeophyllum trabeum

Soft rot Trichoderma reesei

Table 6. Type of fungal species commonly used in biological pretreatment.
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