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Chapter

Wnt Signaling and Genetic Bone 
Diseases
Yanqin Lu and Jinxiang Han

Abstract

The Wnt signal transduction plays a vital role in regulating development 
throughout the animal kingdom. The Wnt signal transduction is complex, including 
Wnt ligands, receptors, coreceptors, transducers, transcription factors, antagonists, 
agonists and their modulators, and target genes. It is classified into β-catenin-
dependent canonical and independent non-canonical Wnt (mainly planar cell 
polarity and Wnt/Ca2+) signaling pathways. Wnt signaling pathway is causative to 
multiple human diseases. Gene mutations from the components of WNT signaling 
machinery have been identified to relate with low or high bone mass diseases, such 
as osteogenesis imperfecta, Robinow syndrome, osteoporosis-pseudoglioma syn-
drome, and sclerosteosis. In this review, we provide an update of the Wnt signaling 
pathway and the bone diseases caused by the aberrant components of the pathways.

Keywords: Wnt, Wnt signaling pathway, genetic bone diseases

1. Introduction

The Wnt1 gene (originally named Int1) was identified in 1982 as a gene activated 
by integration of mouse mammary tumor virus (MMTV) proviral DNA in virally 
induced breast tumors [1]. The Int1 proto-oncogene is highly conserved in many 
species, the fly wingless (Wg) gene in Drosophila, functions in controlling segment 
polarity during larval development and also activated in cancer, was found to be a 
homolog of Wnt1 [2]. Later, McMahon and Moon found that ectopic expression of 
Int1 in Xenopus leads to dual axis formation, when mouse Int1 RNA was injected 
into Xenopus embryos. Duplication of axial structures was abolished by substitu-
tion of a single, conserved cysteine residue of Int1 [3]. Later, more and more Wnt 
family members were identified.

2. Wnt and its secretion

2.1 Wnt proteins and their structure

Till now, Wnt family currently includes 19 secreted lipid-modified glycopro-
teins in most mammalian genomes, including the human genome. They fall into 
12 conserved Wnt subfamilies, of which at least 11 of these occur in the genome 
of a Cnidaria, highlighting the vital role of Wnt family members in the process 
of organismal patterning throughout the animal kingdom [4]. In humans, Wnt1 
and Wnt10b are located adjacent to each other on chromosome 12, and they are 
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transcribed in opposite directions. Wnt6 and Wnt10a are located adjacent to each 
other on chromosome 2 and transcribed from the same strand of DNA. Other Wnt 
genes are prone to be clustered within the human genome also, including Wnt2 
and Wnt16, Wnt3a and Wnt14, and Wnt3 and Wnt15 [5]. Wnt1-Wnt6-Wnt10 is an 
ancient cluster of Wnt genes in a common ancestor of vertebrates and arthropods 
and this cluster was duplicated leading to Wnt1-Wnt6-Wnt10a and Wnt1-Wnt6-
Wnt10b cluster in vertebrates [5]. Based on their ability to induce transformation of 
the epithelial cell line C57MG, Wnt family are classified into highly transformation 
members, which includes Wnt1, Wnt2, Wnt3, and Wnt3a, and nontransformation 
members including Wnt4, Wnt5a, Wnt5b, and Wnt7b. High transformation mem-
bers are related to Wnt/β-catenin canonical pathway and nontransformation mem-
bers are related to noncanonical Wnt pathways. Wnt6 and Wnt7a are categorized as 
intermediate transformation members, leading to weak morphological changes [6].

Wnt genes encode proteins of ~350–400 residues in length, with molecular weight 
of about 40 kDa in size. Little is known about the structure of Wnts for their highly 
hydrophobic characteristics. In 2012, the 3D structure of Xenopus Wnt8 protein as 
bound to mouse Frizzled-8 cysteine-rich domain (CRD) was solved. XWnt8 is consist 
of an N-terminal α-helical domain (NTD) that includes the lipid-modified thumb and 
a C-terminal cysteine-rich region (CTD). They resemble the extended thumb and 
index fingers to project into a pocket in the opposite side of Fzd-CRD [7].

2.2 Posttranslational modifications of Wnts in the ER and Golgi apparatus

Wnt proteins share some features in common. They have an amino-terminal 
signal peptide that targets them to the ER and undergo a series of posttranslational 
modifications in the secretory pathway before transporting into the extracellular 
space. Wnts contain several charged residues and 23–25 cysteines on average, and 
some of them participate in inter- and intramolecular disulfide bonds, leading to 
Wnt folding and multimerization [7, 8]. All Wnt proteins (except Drosophila WntD) 
undergo posttranslational acylation and glycosylation [9]. There are two conserved 
residues of fatty acylation reported till now. The first acylation is palmitate attached 
to a conserved cysteine residue 77 in murine Wnt3a through a thioester linkage. 
The second lipid modification was identified at the position of serine 209 in murine 
Wnt3a protein. This conserved residue is modified by a monounsaturated fatty acid, 
palmitoleic acid [10–12]. This lipid posttranslational modification leads to extremely 
hydrophobicity of Wnts and restrict Wnt proteins to membranes by injecting into 
the lipid bilayer [9, 11]. Cys77 mutant leads to the loss of Wnt3a activity without 
affecting secretion, while Wnt3a Ser209Ala mutant is retained in the ER and secre-
tion is blocked [10, 11]. Crystal structure of XWnt8 discovered that only conserved 
serine (corresponding to serine 209 in murine Wnt3a) is acylated. Cys77 is involved 
in the formation of disulfide bond with a second conserved cysteine [7]. Till now, 
Drosophila WntD is the only nonlipidated member of Wnt family [13]. Monoacylation 
is further corroborated by the lack of Cys77 palmitoylation study [14, 15]. This serine 
acylation is essential for Wnt binding to the coreceptor Frizzled, Wnt secretion and 
binding to the chaperone Wntless [7, 16, 17].

The attachment of palmitoleate to Wnt’s conserved serine is mediated through 
substrate specificity by acyltransferase Porcupine, which is homologous to the 
superfamily of acyltransferase enzymes localized to the endoplasmic reticulum (ER). 
Mutation of Porcupine impeded Wnt acylation activity in vitro [18]. Wnt palmi-
toylation is reversible and it can be removed by Notum, the serine hydrolase, and this 
deacylase activity is specific for Wnt proteins [19, 20]. Hence, Notum’s inhibitors have 
potential for treating degenerative diseases by targeting Wnt signaling [21].
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N-Glycosylation is another common posttranslational modification of Wnt 
ligands, and nitrogen atom of multiple asparagine residues of Wnts is attached to 
oligosaccharide. This modification precedes palmitoylation and is independent of it 
[22, 23]. The number and position of N-glycosylation vary in different Wnt mem-
bers [24]. The role of Wnt protein’s N-glycosylation is unclear, but usually, it influ-
ences secretion, but not folding and structure [9]. For Wg protein, which has two 
known N-glycosylation, Asn103 and Asn414, Wg mutant can activate downstream 
signaling in both autocrine and paracrine signaling, despite reduced secretion 
ability. Loss of N-glycosylation of Wnt1 impairs paracrine signaling. For Wnt3a and 
Wnt5a, N-glycosylation is essential for secretion, but not for the activity of Wnt5a 
protein [23, 25]. Porcupine plays an important role in both lipid and glycosylated 
modifications of Wnts and its mutant displayed a decreased N-glycosylation activity 
[8–10, 26].

Besides acylation and N-glycosylation of Wnt proteins, several other modifica-
tions are included in the posttranslational modification. Posttranslational tyrosine 
sulfation of Wnt5a and Wnt11 is essential for the formation of Wnt5a/Wnt11 
complexes, which induce the efficient signaling in the context of Xenopus axis 
formation [27]. Wnt1 is attached to glycosylphosphatidylinositol (GPI) anchor on 
the leaflet of the plasma membrane by the glycolipid tail. PGAP1 gene participates 
in this modification by creating a hydrophobic Wnt1 that is retained in the ER [28].

2.3 Secretion and release of Wnt proteins

After posttranslational palmitoylation and N-glycosylation, mature Wnt pro-
teins are then transported from the Golgi to the plasma membrane for secretion 
by the conserved multipass transmembrane Wntless (Wls) receptor (known as 
GPR177 in mammals) [29]. Wnt secretion could not proceed with the absence of 
Wls, but other signaling proteins are not influenced by the removal of Wls [30–32]. 
Wls knockout mice exhibit impairment of body axis formation, and a phenotype 
mimics the deficiency of Wnt3. Wls is activated by β-catenin and LEF/TCF-
dependent transcription and its mutants impede Wnt secretion and signaling [33]. 
Wls is essential for Wnt signaling, and tissue-specific knockouts of Wls impede 
varieties of processes including bone mass, skin homeostasis, peripheral lung dif-
ferentiation, and pulmonary vascular development [34–36].

Endogenous Wls contains a carboxy-terminal ER-targeting signal, which directs 
Wls localizing predominantly in the ER, where it binds with acylated Wnt proteins 
[16, 37]. P24 protein family, which acts as cargo receptor for Wnt in the early secre-
tory pathway, is essential for proper export of Wg from the ER [38–40]. Sec22 is 
packaged together with Wg and p24 during the early secretory phase of Wg and it 
functions as the vesicle SNARE (soluble NSF attachment protein receptor) [40].

The detailed mechanisms for Wnt secretion are not clear. Wnts-Wls complex 
transport from ER to plasma membrane is COPII vesicles dependent. Once arriving 
at the plasm membrane, Wnt is then released from plasm membrane and binds to 
lipoprotein particles or heparin sulfate proteoglycans (HSPGs) [41, 42]. The other 
theory supports that Wnt-Wls complex keeps together and internalizes at plasm 
membrane and dissociates from each other in endosomes. Then, Wnts is released 
through a recycling endosomal pathway and Wls is transported back to TGN through 
a retromer-dependent pathway [42–44]. Dpy23 and Vps35 are reported to regulate 
recycling of C. elegans Mig-14, which is the homolog of Wls. Wls is restricted to the 
plasma membrane with the Dyp23 mutant [45]. Retromer complex consists of Vps35, 
Vps29, Vps26, Vps10, Vps5, and Vps17 in yeast [46–48]. Vps35, Vps29, and Vps26 
subcomplexes mediate cargo recognition and retrieve Vps10p from endosomes to 
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the Golgi [47]. Vps35 mutant has no influence on the transportation of Wls to plasm 
membrane and endocytosis, but the retromer-dependent shuttle to the Golgi is inac-
cessible, and endocytosed Wls progresses to MVBs and lysosomes for degradation 
[43, 44, 49]. Vps5 and Vps17 are membrane-bound subcomplexes of retromer, and 
they are sorting nexins (SNX) with a phosphoinositide-binding SNX-phox homol-
ogy (SNX-PX) domain [50]. Nexins SNX1, SNX2, SNX5, and SNX6 are SNX-BAR 
coat complex that interact with cargo-selective Vps35-Vps29-Vps26 complex. They 
are needed for most of the retromer cargo proteins, but not for the process of Wls 
recycling [50, 51]. Wls recycling specifically relies on SNX3, the retromer without 
BAR domain [51, 52]. SNX3 cointeracts with Wls and Vps26 on early endosomes 
and helps the association of the cargo-selective complex to Wls [51]. Wls recycled 
in Golgi further retrogrades transport to ER, which is mediated by the conserved C 
terminal sequence of Wls targeting ER. This process is currently COPI dependent 
and requires ER-Golgi intermediate compartment ERGIC2, though retrieval mecha-
nisms need further investigation [37, 53]. Recently, miR-307a is found to inhibit Wg 
secretion by targeting Wls, and its overexpression induces ER stress specifically in 
the Wg-expressing cells. KKVY motif of Wg is responsible for its retrieval and ER 
stress [53].

Wnts are classic morphogens, which play an important role in tissue patterning by 
activating their target genes in a concentration-dependent manner and act in short 
and long range way [14, 54]. Various carriers have been identified that associate with 
extracellular Wnts, which include exovesicles [55], exosomes [56, 57], lipoprotein 
[41, 58], cytonemes (filopodia-like protrusions) [59–61], and Swim (secreted Wnt-
interacting molecule) belonging to lipocalin family of protein [62]. These secreted 
Wnts associate to specific receptors on target cells to activate either canonical Wnt/β-
catenin pathway or noncanonical Wnt/Ca2+ pathway.

3. Wnt signaling pathway

3.1 The canonical Wnt signaling pathway

The Wnt signaling pathway serves many important functions in body axis 
patterning, embryonic development, cell proliferation, and differentiation. In 
the absence of Wnt signaling, β-catenin is phosphorylated and ubiquitinated to 
keep low level by forming β-catenin destruction complex. The complex includes 
β-catenin, axin, casein kinase-1 (CK1), glycogen synthase kinase-3β (GSK-3β), 
and the adenomatous polyposis coli (APC) [63, 64]. PP2A and HSP105 are also 
involved in this complex. HSP105 recruits the phosphatase PP2A to the degrada-
tion complex to antagonize the phosphorylation of β-catenin, thus keeping the 
balance of phosphorylation-dephosphorylation [65]. Maintaining a phosphostatus 
balance of the β-catenin protein leads to its accumulation or degradation based on 
the signaling cues. The complex binds and phosphorylates β-catenin, leading to the 
ubiquitination by β-transducin repeat-containing protein (β-TrCP) ubiquitin ligase 
and subsequent proteasomal degradation [66].

In the presence of Wnt ligands, Wnt ligands bind to the specific receptor 
including Frizzled (Fzd) family member and subsequent LRP5/6 coreceptor. 
Axin is dephosphorylated and sequestered at the membrane. The binding triggers 
the recruitment of phosphoprotein disheveled (Dsh/Dvl) to form the LRP/Fzd/
Dsh complexes, inducing the phosphorylation of LRP by CK1Υ and GSK3; as a 
consequence, axin is then dephosphorylated and sequestered at the membrane and 
destruction complex is inactivated. The signalosome composed of Fzd, LRP5/6, 
Dvl, axin, GSK3, and CK1 destroys the β-catenin destruction complex [67, 68]. 
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Hence, cytosolic β-catenin accumulates and localizes to the nucleus, where it inter-
acts with TCF/LEF family members and recruits other transcriptional coactivators, 
such as CBP, TBP, and BRG-1, to induce target gene expression [69, 70].

Axin is a scaffold protein and acts as an anchor for other four proteins in 
the complex. In addition, axin participates in the LRP6 phosphorylation on the 
PPPSPxS motifs, which in turn cause the accumulation of axin in the destruction 
complex and then lead to the initiation of β-catenin signaling [71]. Recently, axin 
was found to be fully phosphorylated in the state of Wnt-off and partly phosphory-
lated in the state of Wnt-on mediated by GSK-3β [72].

The role of APC in Wnt signaling is complex and multiple. APC acts as a carrier 
for GSK-3β and axin that promotes phosphorylation and consequent ubiquitin-
dependent degradation of β-catenin [73]. It binds to β-catenin by 15 or 20-mer 
amino acid repeats. APC promotes export of β-catenin from nucleus, and hence the 
expression and transcriptional activity of nuclear β-catenin are reduced indirectly 
[74]. Meanwhile, APC downregulates the β-catenin/TCF transcription by directly 
interacting with transcriptional repressor C-terminal binding protein (CtBP) 
[75, 76]. APC may also serve as a positive regulator for Wnt signaling through 
downregulation of axin [77]. APC is vital for the phosphorylation of axin in both 
Wnt-off and Wnt-on states, the association with activated phospho-LRP6 and the 
rapid transition in axin activity [72]. Phosphorylated β-catenin requires APC for its 
targeting to ubiquitin ligase and protection from dephosphorylation mediated by 
protein phosphatase 2A (PP2A) [78]. Recently, APC was found to impede clathrin-
dependent signalosome formation in the absence of ligand [79].

GSK3-β and CK1 are both serine/threonine kinases that phosphorylate the 
N-terminal portion of cytosolic β-catenin, and phosphorylation of β-catenin begins 
at Ser45 by CK1α and then phosphorylation of residues Thr41, Ser37, and Ser33 
[80, 81]. Meanwhile, CK1, perhaps also GSK3β, phosphorylates APC on the 20-mer 
repeats. Phosphorylation of APC increases the binding affinity to β-catenin, and 
β-catenin disassociates from axin [63]. Phosphorylated β-catenin is then recog-
nized by β-TrCP1, an F-box protein component of an Skp1/Cul1/F-box (SCF)-type 
ubiquitin ligase complex [82], followed by recruitment of E3 ubiquitin ligase and 
degraded by the 26S proteasome [83].

PP2A is a cellular heterotrimeric serine-threonine protein phosphatase consist-
ing of a structural (A), a regulatory (B), and a catalytic subunit (C) [84]. PP2A 
has a dual opposite regulation role for Wnt signaling. PP2A is regarded as one 
of the members of β-catenin degradation complex [85]. PP2A dephosphorylates 
GSK3β through recruitment of DNAJB6 (DnaJ homolog subfamily B member 6) 
and HSPA8 (heat-shock cognate protein, HSC70) [86]. The B56 subunit of PP2A 
interacts with N-terminal of APC and decreases the amount of β-catenin and 
inhibits transcription of its target genes [87, 88]. Also, B56ε is required for Wnt/β-
catenin signaling downstream of the Wnt ligand and upstream of Dsh [89]. PR61 β 
regulates Wnt signaling by inhibiting Dvl- and β-catenin–dependent T-cell factor 
activation, or suppressing the downstream target genes [90]. PR55α subunit of PP2A 
acts as the positive regulator for Wnt signaling. It interacts with β-catenin directly 
and controls dephosphorylation and degradation of β-catenin. Knockdown of PR55α 
increases β-catenin phosphorylation and decreases Wnt signaling, whereas is the same 
as PR55α overexpression [91, 92]. PP2C also upregulates Wnt signaling through the 
dephosphorylation of axin [93]. Meanwhile, many subunits of PP2A, such as PR55α, 
A, C, B56α, and PR61β and Υ, are reported to interact with axin [87, 90, 91]. PR61ε 
subunit of PP2A is involved in the initiation of the Wnt pathway. PR61ε binds to Fzd 
receptor, and binding of Wnt ligands promote the interaction of LRP5/6-associated 
CK1ε and PR61ε. The latter dephosphatases CK1ε, leading to recruitment of Dvl-2 to the 
receptor complex and the initiation of the Wnt signaling [94].
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3.2 The noncanonical Wnt pathway

Due to varieties of both Wnts and their receptors and coreceptors, Wnt pathways 
are multiple and complex. There are multiple branches of β-catenin–independent 
Wnt signaling pathways. One is the Wnt/Ca2+ pathway, modulating intracellular 
Ca2+ level. The second is the Wnt/planar cell polarity (PCP) pathway, utilizing small 
Rho-like GTPases [95].

3.2.1 Wnt/PCP pathway

Polarization is a global property of cells and tissues. In addition to the ubiquitous 
epithelial apical-basal axis, many multicellular tissues also have planar cell polarity, 
orthology to apico-basal polarity [96, 97]. Compared with canonical Wnt signaling, 
various cell surface receptors have been involved in PCP signaling. PCP is composed 
of core protein complexes and Fat/Dachsous (Ds)/Fj (four-jointed) group. The lat-
ter is reported to act upstream of PCP to provide a directional information [98, 99]. 
Core protein complexes are composed of Frizzled, Flamingo (Fmi/Celsr), Van Gogh 
(Drosophila Vang or Stb/mammalian Vang), disheveled (Dsh/Dvl), Diego, and Prickle 
(Pk) [100]. The core complex within puncta is predominately stable than elsewhere in 
the junctions and highly asymmetrically organized, while core protein stoichiometry 
in both puncta and nonpuncta region is similar. The core protein is assembled around a 
stoichiometric Fz-Fmi nucleus. The amount of Fz and Stb is maintained relative to their 
binding partners for normal asymmetry [101]. In many cancers, Wnt/PCP signaling is 
upregulated and it contributes to cancer malignancy by enhancing the proliferation and 
migration, priming metastasis niches, and causing resistance to therapy [102, 103].

3.2.2 Wnt/Ca2+ signaling pathway

Wnt5a is the most common ligand for noncanonical Wnt signal transducer. It acti-
vates calcium signaling pathway by binding to receptor Fz2, 3, 4, 5, and Fz6, as well as 
coreceptor Ror1/2, which is the membrane-bound receptor tyrosine kinase [104-107]. 
Dvl, axin, and GSK organize the complex and GSK phosphorylates Ror coreceptor 
[108]. Wnt/Fz/Ror then activates phospholipase C (PLC), leading to the generation of 
diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) from membrane-bound 
phospholipid phosphatidyl inositol 4,5-bisphosphate (PIP2). Recently, SEC1413/the 
Sec14-like protein acts as GTPase proteins to mediate specific Wnt-Fz-Dvl complex 
signals downstream to phospholipase C δ4a (PLCδ4a). The binding of SEC141 to 
Wnt-Fz-Dvl complexes induces its translocation of SEC1413 to the plasma membrane, 
and then further binds to and activates PLCδ4a. In turn, PLCδ4a acts as a GTPase-
activating protein to promote the hydrolysis of Sec14l3-bound GTP to GDP [109]. IP3 
promotes the concentration of intracellular Ca2+, which activates calcineurin, 
phospho-serine/threonine specific protein phosphatase  and calcium calmodulin-
dependent protein kinase II (CaMKII). In turn, nuclear factor associated with T cells 
(NFAT) and regulatory proteins NFkB are activated. DAG activates protein kinase C 
(PKC), which further activates NFkB and CREB. Meanwhile, Wnt/Fz interaction may 
activate phosphodiesterase 6 (PDE6) in a calcium-dependent manner, leading to a 
decrease in cyclic guanosine monophosphate (cGMP) [110].

4. Wnt signaling in genetic bone diseases

Both bone modeling and remodeling are regulated by Wnt signaling, and muta-
tion of Wnt signaling components is linked to various genetic bone diseases. Table 1 
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Phenotype Phenotype 

MIM  

number

Inheri 

tance

Gene Gene 

MIM 

number

Reference

Wnt ligands

Osteogenesis 

imperfecta, type XV

615220 AR Wnt1 164820 Pyott et al. [125]

Osteoporosis, early-

onset, susceptibility to, 

autosomal dominant

615221 Wnt1 Laine et al. [127]

Tetraamelia syndrome 1 273395 AR Wnt3 165330 Niemann et al. 

[115]

Robinow syndrome, 

autosomal dominant 1

180700 AD Wnt5a 164975 Person et al. [138]

Fuhrmann syndrome 228930 AR Wnt7a 601570 Woods et al. [116]

Ulna and fibula, 

absence of, with severe 

limb deficiency

276820 AR Wnt7a 601570 Woods et al. [116]

Odontoonychodermal 

dysplasia

257980 AR Wnt10a 606268 Adaimy et al. 

[139]

Schopf-Schulz-Passarge 

syndrome

224750 AR Wnt10a 606268 Bohring et al. 

[140]

Tooth agenesis, 

selective, 4

150400 AR, AD Wnt10a 606268 Kantaputra and 

Sripathomsawat 

[111]

Split-hand/foot 

malformation 6

225300 AR Wnt10b 601906 Ugur and Tolun 

[117]

Tooth agenesis, 

selective, 8

617073 AD Wnt10b 601906 Yu et al. [112]

Receptor/coreceptor

Robinow syndrome AR FZD2 600667 White et al. [141]

Nail disorder, 

nonsyndromic 

congenital, 10

614157 AR FZD6 603409 Frojmark et al. 

[142]

Cenani-Lenz syndactyly 

syndrome

212780 AR LRP4 604270 Li et al. [143]

Sclerosteosis 2 614305 AR, AD LRP4 604270 Leupin et al. [132]

Osteopetrosis, 

autosomal dominant 1

607634 AD LRP5 603506 Van Wesenbeeck 

et al. [122], Van 

Hul et al. [123]

Osteoporosis-

pseudoglioma 

syndrome

259770 AR LRP5 603506 Gong et al. [124]

Osteosclerosis 144750 AD LRP5 603506 Van Wesenbeeck 

et al. [122]

Hyperostosis, endosteal 144750 AD LRP5 603506 Van Wesenbeeck 

et al. [122]

Van Buchem disease, 

type 2

607636 AD LRP5 603506 Van Wesenbeeck 

et al. [122], Little 

et al. [130]

Bone mineral density 

variability 1

601884 AD LRP5 603506 Nguyen et al. 

[131]
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Phenotype Phenotype 

MIM  

number

Inheri 

tance

Gene Gene 

MIM 

number

Reference

Osteoporosis 166710 AD LRP5 603506 Estrada et al. [121]

Tooth agenesis, 

selective, 7

616724 AD LRP6 603507 Massink et al. 

[113]

Brachydactyly, type B1 113000 AD ROR2 602337 Oldridge et al. 

[144]

Robinow syndrome, 

autosomal recessive

268310 AR ROR2 602337 van Bokhoven 

et al. [145], Afzal 

et al. [146]

Simpson-Golabi-

Behmel syndrome, 

type 1

312870 XLR GPC3 300037 Pilia et al. [147]

Omodysplasia 1 258315 AR GPC6 604404 Campos-Xavier 

et al. [148]

Fetal akinesia 

deformation sequence

208150 AR MUSK 601296 Tan-Sindhunata 

et al. [149]

Antagonist

Osteoarthritis 

susceptibility 1

165720 Mu SFRP3 605083 Loughlin et al. 

[150]

Pyle disease 265900 AR SFRP4 606570 Kiper et al. [129]

Craniodiaphyseal 

dysplasia, autosomal 

dominant

122860 AD SOST 605740 Kim et al. [135]

Sclerosteosis 1 269500 AR SOST 605740 Brunkow et al. 

[134]

Van Buchem disease 239100 AR SOST 605740 Balemans et al. 

[133]

Agonists

Robinow syndrome, 

autosomal dominant 2

616331 AD DVL1 601365 White et al. [151]

Robinow syndrome, 

autosomal dominant 3

616894 AD DVL3 601368 White et al. [152]

Bone mineral density, 

low, susceptibility to

615311 LGR4 606666 Styrkarsdottir 

et al. [128]

Palmoplantar 

hyperkeratosis 

with squamous cell 

carcinoma of skin and 

sex reversal

610644 AR RSPO1 609595 Parma et al. [153]

Humerofemoral 

hypoplasia with 

radiotibial ray 

deficiency

618022 RSPO2 610575 Szenker-Ravi 

et al. [114]

Tetraamelia syndrome 2 618021 RSPO2 610575 Szenker-Ravi 

et al. [114]

Anonychia congenita 206800 AR RSPO4 610573 Blaydon et al. 

[154]

Table 1. 
Wnt signaling and human genetic bone diseases.
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lists human genetic bone diseases caused by Wnt signaling disorders. Genotypic and 
phenotypic heterogeneity of genetic bone diseases–related Wnt signaling pathways 
is obvious. Tooth agenesis is caused by Wnt 10a, Wnt10b, and LRP6 by either 
autosomal dominant (AR) or autosomal recessive (AR) inheritance form [111–113]. 
Tetraamelia syndrome is skeletally characterized by limb agenesis or complete 
absence of limbs, bilateral cleft lip/palate, ankyloglossia, and mandibular hypopla-
sia with the pathogenic gene of Wnt3 and RSPO2 [114–115]. Other limb deficiency 
diseases in Wnt signaling includes Al-Awadi/Raas-Rothschild/Schinzel phocomelia 
syndrome (AARRS) (MIM 276820) and split-hand/foot malformation 6 (MIM 
225300), with pathogenic gene of Wnt7a and Wnt10b, respectively [116, 117].

Robinow syndrome (RS) is characterized by facial features, orodental abnor-
malities, and hypoplastic genitalia [118]. All autosomal-dominant (DRS) and 
recessive (RRS) genes including Wnt5a, Dvl1, Dvl3, Fzd2, and ROR2 are involved 
in the Wnt/PCP pathways. This pathway plays an important role in the patterning 
and formation of the limb-bud outgrowth and growth plate in skeletal formation 
[119, 120].

Wnt signaling pathways are related to bone diseases with osteoporosis or high 
bone mass density (BMD) diseases. LRP5 gene is responsible for osteoporosis. Loss 
of function of LRP5 mutation causes osteoporosis (MIM 166710, 607634) and 
osteoporosis pseudoglioma syndrome (MIM 259770) [121–124]. Meanwhile, osteo-
porosis genes in Wnt signaling components include Wnt1, LGR4, and SFRP4. Wnt1 
is the pathogenic gene for osteogenesis imperfect type XV (with bilateral mutations) 
and early onset osteoporosis (with heterozygous mutation) [125–127]. For LGR4, 
nonsense variation of c.376C-T is strongly associated with low bone mass density and 
osteoporotic fractures [128]. SFRP4 is the pathogenic gene for Pyle disease character-
ized by both osteoporosis and expanded trabecular metaphyses [129].

LRP5 is also the pathogenic gene for diseases with high BMD, Van Buchem 
syndrome type 2 (MIM 607636), bone mineral density variability (MIM 601884), 
osteosclerosis, and hyperostosis, endosteal (MIM 144750) [122, 130, 131]. LRP4 
mutations lead to type I sclerosteosis (MIM 614305), which is also the disease with high 
BMD [132]. Sclerosteosis (SOST) gene mutation causes the high BMD diseases of Van 
Buchem syndrome (MIM 239100), sclerosteosis 1 (MIM 269500), and craniodiaphy-
seal dysplasia (MIM 122860) [133–135]. Sclerostin encoded by SOST gene is the endog-
enous Wnt signaling inhibitor, which interacts with LRP receptors [136]. Nowadays, 
monoclonal antibody of sclerostin is being tested in human clinical trials [137].

In all, the components of Wnt signaling including Wnt ligands, their receptors, 
coreceptors, antagonists, and agonists can cause different types of genetic bone 
diseases, which are related to both canonical and noncanonical Wnt signaling path-
ways. Study of Wnt signaling in genetic bone diseases and other human diseases 
provides promises for translational medicine.

5. Conclusions

We review the current status of Wnt signaling, including the secretion of Wnt 
ligands, and how Wnts binding to surface receptors trigger different intracellular 
response and transcription of different downstream target genes. However, the 
interactions among each components and the mechanisms of these interactions 
still need further study. Meanwhile, the cross talk network between canonical and 
noncanonical Wnt signaling, Wnt signaling, and other signaling pathways remains 
unsolved fully. Mutations in the components of Wnt signaling pathways lead to 
various genetic bone diseases and other genetic diseases. Genotypic and phenotypic 
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heterozygosis is common in these genetic bone diseases. For the vital role of Wnt 
signaling components in bone diseases, potential drugs based on Wnt signaling is 
useful for treating different bone diseases.
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