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Chapter

Cyanobacteria Growth Kinetics
Leda Giannuzzi

Abstract

Harmful cyanobacterial blooms are a global problem for freshwater ecosystems 
used for drinking water supply and recreational purposes. Cyanobacteria also 
produce a wide variety of toxic secondary metabolites, called cyanotoxins. High 
water temperatures have been known to lead to cyanobacterial bloom development 
in temperate and semiarid regions. Increased temperatures as a result of climate 
change could therefore favor the growth of cyanobacteria, thus augmenting the 
risks associated with the blooms. Though temperature is the main factor affecting 
the growth kinetics of bacteria, the availability of nutrients such as nitrogen and 
phosphorus also plays a significant role. This chapter studies the growth kinetics of 
toxin-producing Microcystis aeruginosa and evaluates potential risks to the popula-
tion in scenarios of climate change and the presence of nutrients. The most suitable 
control methods for mitigation are also evaluated.

Keywords: modeling of cyanobacterial, harmful cyanobacterial, Microcystis 
aeruginosa, growth kinetics, control of harmful cyanobacterial

1. Introduction

Eutrophication resulting from harmful cyanobacterial blooms is a frequent 
nuisance phenomenon in freshwater lakes and estuaries around the world, pos-
ing a serious threat to aquatic ecosystems and human health [1, 2]. Cyanobacteria 
thus constitute a global problem in freshwater ecosystems used for drinking water 
and recreational purposes [3]. The potential damage to water supplies, recreation, 
tourism, aquaculture, and agriculture could have a substantial economic and social 
impact. The most commonly occurring genera of cyanobacteria include Microcystis, 
Oscillatoria, Anabaena, and Aphanizomenon.

For well over a century, many animal and human poisonings have been associated 
with Cyanobacteria and their toxins; the death of livestock, wildlife, and pets due to 
ingestion of water containing toxic cyanobacterial cells or toxins released by the cells 
has been extensively documented. Human poisonings have also been reported [4]. 
The occurrence of toxic cyanobacteria has become a worldwide problem [5, 6].

One group of toxic compounds synthesized by several cyanobacteria 
(Microcystis, Anabaena, Planktothrix, and Nostoc) comprises numerous hepatotoxic 
cyclic heptapeptide microcystins [7, 8].

In Argentina, in recent decades, blooms have been recorded in rivers, lakes, 
coastal lagoons, and estuaries throughout the country, demonstrating the geo-
graphical extent of the problem. An increase has been detected both in the number 
of responsible species and in the frequency and intensity of the harmful events. 
The genera most commonly associated with the development of toxic blooms are 
Microcystis and Dolichospermum (ex Anabaena), and the most cited cyanotoxins are 
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microcystins [9–11]. In 2014, a series of harmful episodes caused by cyanobacteria 
blooms associated with water treatment systems in different parts of Argentina 
occurred. The presence of cyanobacteria and cyanotoxins has been reported in 
several sources of drinking water. Microcystis colony cells and microcystins were 
detected in water in the cities of La Plata and Ensenada, Buenos Aires, Argentina, in 
2006 [12], evidencing the inefficiency of the water treatment plant.

Giannuzzi et al. [13] reported an acute case of cyanobacterial poisoning in the 
Salto Grande dam, Argentina, which occurred in January 2007. A young man acci-
dentally became immersed in an intense bloom of Microcystis spp. with 48.6 μg L−1 of 
microcystin-LR in water samples. The patient was hospitalized in intensive care and 
diagnosed with an atypical pneumonia. A week after exposure, the patient devel-
oped hepatotoxicosis with a significant increase in hepatic damage biomarkers (ALT, 
AST, and γGT). Complete recovery took 20 days. It is not known whether there was 
an eventual chronic intoxication after the acute poisoning. In the year 2000 in Bahía 
Blanca (Buenos Aires, Argentina), alterations were detected in the organoleptic 
characteristics of the water network (unpleasant odor and taste), product of the 
liberation of geosmin by Dolichospermum circinalis blooms. This episode coincided 
with the appearance of dermal and respiratory problems in the population [14].

The duration of cyanobacterial blooms in temperate zones can last 2–4 months 
during the summer period, whereas in tropical and subtropical regions of Australia, 
China, and Brazil, they can sometimes persist all year round [15].

The major factors that influence the growth of cyanobacteria are light, tempera-
ture, and the nutrients composition of the suspending medium.

High water temperatures have been known to lead to cyanobacterial bloom 
development in temperate [16–18] and semiarid regions [19]. Increasing air and 
water temperatures as a result of climate change are likely to promote a faster algal 
growth rate [20, 21].

Nitrogen (N) and/or phosphorus (P) levels can also positively affect cyanobacte-
rial growth in lakes and river. The absolute and relative concentrations of these 
nutrients affect the growth rate, abundance, and composition of phytoplankton in 
lake water [22] as commonly measured in terms of their trophic state, defined as 
the total weight of biomass in a given water body at the time of measurement [23]. 
Many studies show that phosphorus is the limiting nutrient in freshwater bodies 
[24, 25], and other studies show the relationship between cyanobacterial abundance 
and phosphorus concentrations in lakes [26, 27].

The trophic state of a lake generally increases with increases in total nitrogen 
(TN) and total phosphorus (TP) concentrations. Resolving lake or river eutrophica-
tion problems calls for a better understanding of the water and air temperature-
dependence of algal blooms.

A high P concentration is considered to be the main cause of Microcystis blooms 
in the Nakdong River of Korea [28, 29]. Schindler [30, 31] report that N is unlikely 
to be the limiting factor for blooms because of the presence of N2-fixing cyanobac-
terium in water bodies. Phosphate (PO4

3−) is released from the sediment during 
summer, absorbed by Microcystis and stored in the bottom layer [32, 33]; using its 
gas vacuole, the Microcystis then moves toward the high-intensity light at the surface 
to generate blooms [34–36].

Provided factors such as illumination and nutrients remain saturating, and the 
photosynthetic and specific maximal growth rate responses of different algal spe-
cies to temperature can be compared [34].

Physiological properties within a single species, including photosynthetic 
response, can change according to the growth conditions [37]. Photoperiodicity- 
and light intensity-dependent changes in photosynthetic parameters and different 
pigments such as chlorophyll a and phycocyanin are to be expected.
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The general consensus is that the optimum growth temperature for cyanobacte-
ria is higher than that for most algae. Paerl [38] reported the optimum temperature 
to be higher than 25°C, overlapping with that of green algae (27–32.8°C) but clearly 
differing from that of dinoflagellates (17–27°C) and diatoms (17–22°C). Crettaz 
Minaglia [39] reported the optimum growth temperature for native M. aeruginosa to 
be 33.39 ± 0.55°C.

Lürling [40] found similar optimal temperatures for two strains of M. aeruginosa 
(30.0–32.5°C). These data suggest that the native strain of M. aeruginosa is able to 
compete favorably with other phytoplankton species, producing more frequent 
blooming events in scenarios of climate change.

Paerl [41] reported that higher temperatures (up to 25°C) due to climate change 
may lead to increased cyanobacterial growth rates and thus higher cyanobacterial 
dominance in temperate water bodies [17, 20]. This trend would be further facili-
tated by cyanobacterial buoyancy, which aids their proliferation in increasingly 
stratified conditions because decreasing water viscosity at higher temperatures 
results in higher flotation velocities of buoyant cyanobacteria [19, 42].

Many authors describe an inverse relationship between temperature and micro-
cystin production.

Crettaz Minaglia [39] found that the production of MC-LR decreased with 
increasing temperature, coinciding with the findings of [43–50].

van der Westhuizen [51] reported that optimal growth conditions do not coincide 
with the production of toxins. Similarly, Gorham [43] affirmed that the optimum 
temperature for growth (30–35°C) differed from that for optimal toxicity (25°C).

In an interesting paper, Mowe et al. [52] suggest that higher mean water tempera-
tures resulting from climate change will generally not affect Microcystis spp. growth 
rates in Singapore, except for increases in M. ichthyoblabe strains. However, depending 
on the species, the toxin cell ratio may increase under moderate warming scenarios.

Further studies on the temperature dependency of the different physiological 
processes affecting growth (e.g., carbon fixation, photorespiration, and respiration) 
are required in order to better understand the differences in temperature sensitivity 
between Microcystis growth and toxins production.

2. Modeling M. aeruginosa growth

An evaluation of microbiological cyanobacterial processes calls for kinetics 
studies examining the rates of production of cells and their metabolites and the 
effects of various factors on these rates.

One of the basic tools in microbiology is growth kinetics, defined as the relation-
ship between a specific growth rate and parameters such as temperature, pH, light 
intensity, short wavelength radiations, pH, and nutrients.

A convenient way to evaluate laboratory-based bacteria growth systems under 
different abiotic factors is to examine the parameters characterizing the three phases 
of bacterial growth: the lag phase, the exponential phase, and the stationary phase.

During the lag phase, which can last from 1 hour up to several days, there is 
very little change in the number of bacteria cells because while they are adapting to 
the growth conditions, they are still immature and unable to reproduce. This is the 
period when the synthesis of RNA, enzymes, and other molecules occurs.

The exponential phase is characterized by cell doubling. The number of new 
bacteria appearing per unit time is proportional to the present population. With 
no limitations in place, doubling continues at a constant rate, leading to a doubling 
of the number of cells and the rate of population increase with each consecutive 
time period. Plotting the logarithm of cell number against time produces a straight 
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line, the slope of which indicates the specific growth rate of the organism, which is 
a measure of the number of divisions per cell per unit time. The actual rate of this 
growth depends on the growth conditions, which affect the frequency of cell divi-
sion events and the probability of both daughter cells surviving. Under controlled 
conditions, the cyanobacteria population can be doubled four times a day and then 
tripled. However, this exponential growth eventually comes to an end when the 
medium becomes depleted of nutrients and enriched with waste.

The stationary phase results when the death rate is equal to the growth rate, 
often because of the depletion of an essential nutrient and/or the formation of an 
inhibitory product such as an organic acid, giving rise to a “smooth,” horizontal line 
on the curve.

The final phase is the death phase. Bacterial death can be the result of lack of 
nutrients, environmental temperature above or below the tolerance band for the 
species, or other deleterious conditions.

Modeling a cyanobacterial growth curve allows one to reduce recorded data to a 
limited number of parameters of interest such as the specific growth rate, lag phase 
duration, and maximum population density.

The growth models found in the literature describe only the number of organ-
isms and do not include substrate consumption as would a model based on the 
Monod equation. However, the substrate level is not of interest in our application 
since we assume there to be sufficient substrate to allow cyanobacterial growth.

An assessment of natural populations of Microcystis aeruginosa requires data on 
pure culture growth under well-defined conditions.

Studying the growth kinetics of Microcystis in relation to nutrient concentrations 
is very important for management purposes [53].

In batch culture methods, the culture is not maintained at a specific growth stage 
with constant addition and removal of culture medium and cells [54].

This makes it an appropriate method for our M. aeruginosa study since the 
natural ecosystem is not steady state either: weather-related factors cause changes 
in nutrient loading, resulting in varying nutrient concentrations, with no expected 
resupply of nutrients to the water column. Microcystis habitats are therefore more 
like batch experiments than continuous cultures able to reach a steady state [55].

The basic batch culture growth model emphasizes aspects of bacterial growth, 
which may differ from the growth of other organisms. Plotting an experimentally 
determined cell number or cell mass concentration (or their logarithms) against 
time gives rise to a characteristic curve.

For the purpose of modeling the growth of M. aeruginosa, three primary con-
tinuous population models can be used.

The simplest is a linear function based on the exponential or Malthus model, 
called a simple exponential growth model. This model assumes that the growth rate 
of the population is proportional to its density

  lnN = ln  ( N  0  )  + μ ∗ t  (1)

where N(t) is the population at time t, N0 is the initial population, μ is a constant 
indicating the rate of growth, and t is time. The parameter μ is called the specific 
growth rate and is expressed in reciprocal time units.

This model is widely used in microorganisms and is also very useful for describ-
ing the population growth of many organisms over short periods of time, there 
being no space or resource limitations.

During a batch cultivation, the specific growth rate changes continuously from 
zero to a maximum value, μmax. The value of the maximum specific growth rate 
depends on the type of microorganism and on physical and chemical cultivation 
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conditions (temperature, pH, medium composition, light, etc.). Under given 
culture conditions, it is constant and represents an important characteristic of the 
process.

The specific growth rate (μ) can be calculated between successive sampling 
points from a simple first-order rate law using the equation

  μ =    
ln    N  1   ___ 

 N  0  
  
 _____  t  1   − t    
0
    (2)

where N0 is the cell number per mL culture at time t0 and N1 is the cell number at 
time t1.

The main parameter characterizing the growth rate is the specific growth rate, 
which can be used to express other growth parameters given below.

The relationship between the specific growth rate (μ) and cell number doubling 
time (td) can be obtained by inserting into the equation N = 2N0 and t = td.

   t  d   =   ln 2 ___ μ   =    0.693 __________ μ    (3)

Yet another model is the logistic or Verhulst model (Eq. (4)), a quadratic 
function based on the previous model under the assumption that the population 
cannot grow indefinitely and faster. In this model, μ is not a constant, but is a 
linearly increasing function of population density. This model has two equilib-
rium points defined as N values where the growth velocity is zero. These points 
correspond to N = 0 and N = K (load capacity). The load capacity refers to the 
maximum population that its environment can sustain in terms of resource or 
space availability.

  N (t)  =   K __________ 
1 +   

K −  N  0  
 _____ 

 N  0  
    e   −μ.t 

    (4)

where N(t) is the final population, N0 is the initial population, μ is a constant 
that indicates the growth rate, t is time, and K is the load capacity.

Growth rate (μ) is commonly expressed in the literature as a function of light, 
nutrient, pH, ionic conditions, and temperature. Modeling the growth rate is based 
on simply multiplying the functions upon which growth is dependent:

  μ = f (N)  ∗ f (I)  ∗ f (T)   (5)

where μ (time−1) is the cyanobacterial growth rate and f(I), f(N), and f(T) 
are the effects of irradiance, nutrients, and temperature on the growth rate, 
respectively.

Another method to calculate the three parameters of the three phases of bacte-
rial growth mentioned earlier is using the modified Gompertz equation, a double 
exponential function based on four parameters, which describes an asymmetric 
sigmoid curve Eq. (6) [56].

The Gompertz model is one of the most widely used and recommended models 
from which lag time, maximum growth rate, and maximum population density 
(stationary phase) can be obtained directly from nonlinear regression of the cell 
numbers versus time data [57, 58].

A Gompertz model describing the growth of M. aeruginosa would be a good fit 
for analyzing the effect of temperature, irradiance, and nutrients on the parameters 
of kinetic growth curves in batch culture.
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  log  (N)  = a + c × exp  (− exp  (− b ×  (t − m) ) )   (6)

where log(N) is the decimal logarithm of the cell counts (log (cell mL−1), t is 
time (days), and a is the logarithm of the asymptotic counts when time decreases 
indefinitely (roughly equivalent to the logarithm of the initial levels of cyanobac-
teria (log (cell mL−1)), c is the logarithm of the asymptotic counts when time is 
increased indefinitely (the number of log cycles of growth) (log (cell mL−1)), b is 
the growth rate relative to time (days−1), and m is the required time to reach the 
maximum growth rate (days).

The maximum or specific growth rate (μ) value is defined as the tangent in 
the inflection point and was calculated as μ = b.c/e with e = 2.7182 (days−1). The 
lag phase duration (LPD) is defined as the t-axis intercept of this tangent, the 
asymptote, and was calculated as LPD = m − 1/b, (days); the maximum population 
density MPD = a + c (log (cell mL−1) was derived from these parameters [59].

The value of modeling has been recognized for a number of years. Accurate 
and well-validated models are able to predict the behavior of dynamically chang-
ing systems and provide data and insights that would be difficult or impossible to 
obtain by conventional field.

Figure 1 shows a detail of M. aeruginosa isolated from the environment. When 
these cells are grown in culture medium, they lose their capacity to colonies form. In 
this review, the Gompertz equation was applied to M. aeruginosa growth in culture 
media (BG11) at different temperatures. The cells mL−1 data were fitted to the 
Gompertz equation by nonlinear regression using the program Systat (Systat Inc., 
version 5.0). The selected algorithm calculates the set of parameters with the lowest 
residual sum of squares and a 95% confidence interval for M. aeruginosa growth.

In a previous work, we informed two additional kinetic parameters: generation 
time (GT) and the relative lag phase duration (RLPD). Generation time was defined 
as the time for the bacterial population to double in cell numbers and was calculated 
by dividing μ values by 0.301 (equivalent to log10 2); GT is thus a measure of the 
metabolic rate in a new environment. The RLPD, defined by the amount of work to 
be done in adjusting to a new environment and the rate at which that work is done, 
was calculated by dividing LPD by GT [39].

For M. aeruginosa, the growth rate shows a lag phase followed by an exponential 
phase and finally a decreasing growth rate down to zero, resulting in a maximum 
value of the number of cells (Figure 2). During the experiment, the number of 
cells mL−1 increased exponentially in all cultures after a lag phase. Figure 2 shows 
M. aeruginosa counts growing in BG11 modified medium at 26, 28, 30, and 35°C.

By examining these parameters, the blooming behavior of M. aeruginosa can be pre-
dicted and early warning signs recognized in time to take preventive action. Although 
some authors have performed laboratory experiments using M. aeruginosa under dif-
ferent temperature conditions, irradiance and N:P ratio [51, 60–64], and modeled their 
growth, they only applied the linear growth model to the exponential phase of the curve.

The Gompertz parameters of these curves were reported by Crettaz Minaglia 
et al. [39]. It can be seen that as the temperature increases, the value of μ increases 
and LPD decreases. Thus, when the temperature changed from 26 to 35°C, the μ val-
ues increased from 0.18 to 0.24 days−1, and LPD decreased from 4.10 to 0.75 days, 
nonsignificant differences were found for the MPD values (7.25–7.10 log CFU mL−1). 
The GT parameter ranged from 1.67 to 1.25 days, and RLPD from 2.40 to 0.60.

The ratio of the specific growth rate to the lag time duration was approximately 
constant, suggesting a linear relationship between lag phase and the reciprocal 
of the growth rate. This finding was corroborated by Crettaz Minaglia [39], who 
reported that the lag phase showed a linear behavior with the reciprocal specific 
growth rate for M. aeruginosa. The correlation coefficient (R2) was 0.86.
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Lyck [61] reported specific growth rate values ranging from 0.52 to 0.54 day−1 
calculated between successive sampling times according to a simple first-order rate 
function using cell concentration (cells mL−1).

In reviewing available literature on the effects of temperature on growth rates, 
Canale and Vogel [65] concluded that as temperature increased, the highest growth 
rates for broad phytoplankton groups changed from diatoms, via green algae to 
cyanobacteria (blue-green algae). Species-specific responses are, however, highly 
variable [66].

The specific growth rate and lag phase duration are known to be affected by 
many variables, and the cyanobacterial responses to changes in the environment are 
complex and difficult to characterize. Figure 3 shows an example of the variation 

Figure 2. 
Effect of temperature on M. aeruginosa growth in culture media: (a) 25, (b) 28, (c) 30, and (d) 36°C.

Figure 1. 
Light microscopy image of a Microcystis aeruginosa colony isolated from the environment (kindness of Ricardo 
Echenique).
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in the specific growth rate with changes in temperature (26, 30, and 36°C), nutrient 
(N/P 10, 100, and 150), and irradiance (30, 50, 70 μmol photon m−2 s−1) conditions 
for M. aeruginosa growing in culture medium. For combined temperature and the 
N/P ratio, we chose the Arrhenius-type temperature dependence model for each 
irradiance as the starting point for developing a model including both temperature 
and N/P effect. After fitting to different models, those with the highest correlation 
coefficients and the lowest errors in the estimated parameters were selected. The 
following Eq. (7) was obtained by stepwise analysis with statistical SYSTAT soft-
ware and describes both the inverse absolute temperature effect (25, 30, and 36°C) 
and N/P ratio dependence (10, 100, and 150) on the specific growth rate.

  lnμ = K1 + K2 ∗   1 __ 
T

   + K3 ∗  (    N __ 
P

     
2

 )   (7)

The percent variance was very high at 98.8%, indicating a very good fit of 
the model to the data. The parameter K2 was 0.89, 2.25, and 1.56 for 30, 50, 
and 70 μmol photons m−2 s−1, respectively. The values of K2 = Ea/R where Ea is 
the activation energy of μ (KJ mol−1) applied Eq. (7) and R is the gas constant 
(8.31 KJ K−1 mol−1). In the present study, Ea was 7.40, 18.69, and 12.96 KJ K−1 mol−1 
for 30, 50, and 70 μmol photons m−2 s−1, respectively.

Figure 3a–c shows examples of a surface response plot corresponding to Eq. (7) 
obtained by fitting ln μ of M. aeruginosa versus temperature and N/P ratio.

Using the model reported here, we determined the combined effects of the N/P 
ratio and temperature on specific growth rates in controlled laboratory assays, thus 
enabling us to predict M. aeruginosa growth under different conditions from those 
tested experimentally in this work, but within the studied range of temperatures 
and N/P ratio.

The Gompertz model was successfully tested with the experimental data for M. 
aeruginosa at different temperature, ration N/P, and light intensity (data not show). 
It is very important to test the model under different conditions or to verify the 
model for other species of cyanobacteria and diatoms.

However, many open questions remain concerning the validity of applying 
laboratory-observed growth kinetics to environmental growth conditions, 
with diverging data being reported for pure cultures growing with single 
substrates.

Although our model only takes into account temperature and N/P ratio, it would 
be important to extend the modeling to other factors such as pH and elements such 
as metals (Fe, Mn, etc.). Further studies are required to gain deeper insight into the 
factors that influence growth in order to better predict aspects related to M. aerugi-
nosa blooms.

Figure 3. 
Surface response plots showing the dependence of specific growth rate parameters of M. aeruginosa on 
temperature and N/P ratio: (a) 30, (b) 50, and (c) 70 μmol photons m−2 s−1.
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3. Cyanobacterial control

Cyanobacterial blooms can lead to the accumulation of cyanotoxins in aquatic 
animals, eventually posing a high risk to human health as well.

In the current scenario of growing problems associated with cyanobacterial 
blooms and their toxins, an environmentally compatible control strategy is urgently 
required. The removal of harmful cyanobacterial blooms is a crucial step for the 
adequate maintenance of water supplies and for the safety of food and aquatic prod-
ucts. Controlling cyanobacterial blooms is likely to become an even more challeng-
ing task in the future due to global warming effects.

Despite the availability of control methods for cyanobacterial blooms, it has not 
yet been possible to prevent the excessive proliferation of these organisms, which 
have adapted so successfully to water surfaces. The effectiveness of control methods 
naturally varies according to the circumstances (type and size of the lake, reten-
tion time, degree of alteration, quantity of nutrient load, quality and quantity of 
sediments, season, amount of aquatic life, etc.); they are not universal and their use 
may be restricted to particular circumstances.

The preferred method for preventing these blooms is to reduce the availability 
of nutrients, especially phosphorus, the main cause of the massive presence of 
cyanobacteria. This implies the rehabilitation of point and nonpoint sources of 
nutrients (discharge of effluents, drift of chemical substances from agriculture, 
and erosion of urban and forest areas) [67]. In those cases where nutrient reduction 
is not possible, more drastic, short-term action has been proposed in the form of 
chemical, physical, and biological approaches [68], each with its advantages and 
disadvantages for application to the control of harmful algal blooms.

A widely adopted chemical approach is the addition of algaecide (copper sul-
fate), oxidants (chlorine, potassium permanganate), and flocculants (FeCl3, AlCl3, 
polyaluminum chloride) etc., all of which have proven to be efficient in removing 
cyanobacteria cells. However, though chemical approaches can take rapid effect in 
removing algal blooms, they can cause secondary pollution of aquatic environments 
[69]. Their main disadvantage is that they do not selectively target harmful cyano-
bacteria and can lead to the elimination or damage to nonharmful algae or benefi-
cial organisms. Depending on the oxidant and cyanotoxin type, some oxidants can 
cause the release of toxins, and the subsequent rapid oxidation of the toxins must 
therefore be assured [70].

The application of chemical agents to lakes and water bodies often leads to the 
collapse of aquatic ecosystems.

Hydrogen peroxide (HP) is selective for cyanobacteria (vs. eukaryotic algae and 
higher plants) and poses no serious long-term threats to the system because of its 
rapid decomposition without producing persistent toxic chemicals or by-products 
that cause esthetic odor or color issues. It has been reported that HP has potential 
for removing Microcystis sp. and microcystins in different environments. Lakes 
dominated by M. aeruginosa, Aphanizomenon, and Dolichospermum (formerly called 
Anabaena) have been successfully treated with HP [71]. It is important to assess the 
impact of HP on elements of the ecosystem such as larval fish, macroinvertebrates, 
and zooplankton.

Physical approaches, such as mixing lake waters using an air compressor, 
ultrasonic damage to algal cells and pressure devices to collapse cyanobacterial gas 
vesicles, have also been proposed to control algal blooms. Other treatments such as 
the mechanical removal of cyanobacterial biomass and sediments and hypolimnetic 
aeration and oxygenation have also been described.
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The most apparent merit of physical approaches for the removal of algae as 
opposed to chemical manipulations is that they are less likely to give rise to second-
ary pollution. However, the physical removal of algae is energy intensive and tends 
to be of low efficiency. Moreover, injury to nontarget organisms by energy-intensive 
treatments also limits the field application on a large scale [72].

Though biological approaches to controlling toxic cyanobacteria and harm-
ful cyanobacterial blooms tend to be environmentally friendly, their efficiency is 
determined by many biotic and abiotic factors in the environment. It is well known 
that MCs can be degraded by local bacterial communities frequently exposed to 
cyanobacterial blooms.

The removal of MCs has been reported by a group of microorganisms generi-
cally referred to as a consortium [73].

Furthermore, a large group of bacteria able to degrade MCs has been isolated, 
Sphingomonadaceae being the most studied family. Most of these organisms have 
been identified as Sphingomonas [74] and Sphingopyxis [75].

Some biologically derived bioactive substances inhibit the growth of aquatic 
bloom-forming cyanobacteria [76–78], including plant extracts and identified 
natural chemicals from plants and microorganisms.

Aquatic plants such as Stratiotes aloides [79] Myriophyllum spicatum [80], 
Phragmites communis [81], Ceratophyllum demersum and Najas marina spp., 
Intermedia [82], and extracts of Ephedra equisetina root have been reported to 
inhibit the growth of cyanobacteria. Most of these substances are biodegraded in 
natural environments. However, actual field applications to control harmful cya-
nobacteria are currently very limited owing to the high cost of algicide preparations 
and low algae-removal efficiency compared to chemical algicides.

In view of the paucity of studies on the ecological and public health risks 
associated with most antialgal substances, their application should be very carefully 
evaluated. Only ecologically safe and easily applicable substances should be used for 
cyanobacterial growth control.

4. Conclusions

Mathematical modeling applied to M. aeruginosa growth is an efficient tool to 
predict the effect of different variable as temperature, irradiance, and nutrients 
on the kinetic parameters. The current study provides quantitative evidence of the 
effects of temperature, irradiance, and nutrients on M. aeruginosa growth. The 
above data suggest that the native strain of M. aeruginosa is able to compete favor-
ably with other phytoplankton species, producing more frequent blooming events 
in scenarios of climate change. In the current scenario of growing problems associ-
ated with cyanobacterial blooms and their toxins, an environmentally compatible 
control strategy is urgently required. However, the use of control agents, whether 
physical, chemical, and biological, is not yet sufficiently safe due to certain harmful 
effects on the environment. Only ecologically safe and easily applicable substances 
should be used for cyanobacterial growth control.
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