We are IntechOpen, the world's leading publisher of Open Access books
 Built by scientists, for scientists

6,900

Open access books available

185,000

International authors and editors

Our authors are among the
TOP 1\%
most cited scientists

Downloads

Contributors from top 500 universities

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Vibrational Study and Crystal Structure of Barium Cesium Cyclotriphosphate Dihydrate

Soufiane Zerraf, Mustafa Belhabra, Aziz Kheireddine, Malika Tridane, Hicham Moutaabbid, Mohammed Moutaabbid and Said Belaaouad

Additional information is available at the end of the chapter
http://dx.doi.org/10.5772/intechopen. 81118

Abstract

Chemical preparation, crystal structure, thermal behavior, and IR studies are reported for the barium cesium cyclotriphosphate dihydrate $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and its anhydrous form $\mathrm{BaCs}_{4}\left(\mathrm{PO}_{3}\right)_{6}$. $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, isotypic to $\mathrm{BaTIP} \mathrm{P}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BaNH}_{4} \mathrm{P}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, is monoclinic $\mathrm{P} 21 / \mathrm{n}$ with the following unit cell dimensions: $\mathrm{a}=7.6992(2) \AA, \mathrm{b}=12.3237(3) \AA$, $\mathrm{c}=11.8023(3) \AA, \alpha=90(2)^{\circ}, \beta=101.18(5)^{\circ}, \gamma=90$. (3) ${ }^{\circ}$, and $\mathrm{Z}=4$. The total dehydration of $\mathrm{BaCsP}{ }_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is between $100^{\circ} \mathrm{C}$ and $580^{\circ} \mathrm{C}$. The IR absorption spectroscopy spectrum for the crystal confirms that most of the vibrational modes are comparable to similar cyclotriphosphates and to the calculated frequencies. The thermal properties reveal that the compound is stable until $90^{\circ} \mathrm{C}$.

Keywords: barium cesium cyclotriphosphate, crystal structure, vibrational study

1. Introduction

During a systematic investigation of cyclophosphates, types $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot \mathrm{xH}_{2} \mathrm{O}, \mathrm{BaCs}_{4}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2}$. $\mathrm{xH}_{2} \mathrm{O}, \mathrm{BaCs}_{2} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ba}_{3} \mathrm{Cs}_{2}\left(\mathrm{P}_{4} \mathrm{O}_{12}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, and $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were obtained. Barium and cesium cyclotriphosphate dihydrate, $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, was prepared for the first time by using Boulle's process [1] by Masse and Averbuch-Pouchot [2], who described it as a monohydrate. The literature provides $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ crystallizing in the monoclinic system, space group $P 2_{1} / n, \mathrm{Z}=4$ with the following unit cell parameters, $a=7.6992(2) \AA, b=12.3237(3) \AA$,
$c=11.8023$ (3) \AA, and $\beta=101.181$ (5) ${ }^{\circ}$ with a brief report of the structural refinement based on single-crystal XRD data. In the present work, we report the chemical preparation, crystalline structure, thermogravimetric analysis, and infrared study of this crystal barium and cesium cyclotriphosphate dihydrate, $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, in order to have maximum information about structure and reactivity of the solids.

2. Experimental parameters

2.1. Chemical preparation

Single crystals of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were prepared by slowly adding dilute cyclotriphosphoric acid, $\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$, to an aqueous solution of barium carbonate, BaCO_{3}, and cesium carbonate, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$, with a stoichiometric ratio of $\mathrm{Ba}-\mathrm{Cs}=1: 1$, according to the following chemical reaction:

$$
\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}+\mathrm{BaCO}_{3}+1 / 2 \mathrm{Cs}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}+3 / 2 \mathrm{CO}_{2}
$$

The solution was then slowly evaporated at room temperature for 45 days until single crystals of $\mathrm{BaCsP} 3_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ were obtained. The cyclotriphosphoric acid, $\mathrm{H}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$, used in this reaction was prepared from an aqueous solution of $\mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ passed through an ion-exchange resin "Amberlite IR120" [3]. $\mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}$ was obtained by thermal treatment of sodium dihydrogen monophosphate, $\mathrm{NaH}_{2} \mathrm{PO}_{4}$, at $530^{\circ} \mathrm{C}$ for 5 h in the air, according to the following chemical reaction [4]:

$$
3 \mathrm{NaH}_{2} \mathrm{PO}_{4} \longrightarrow \mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{9}+3 \mathrm{H}_{2} \mathrm{O}
$$

2.2. XRD, crystal data, intensity data collection, and structure

A single-crystal X-ray structure determination of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was performed by using an Oxford Xcalibur S diffractometer at 293 K .

The structure was solved by direct methods using SHELXS [5] implemented in the Olex2 program [6]. The refinement was then carried out with SHELXL by full-matrix least squares minimization and difference Fourier methods. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were generated in idealized positions, riding on the carrier atoms, with isotropic thermal parameters.

The final R 1 value is 0.0401 for 1782 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$, and full X-crystal data is presented in Table 1. The main geometrical features, bond distances, and angles are reported in Table 6.

2.3. Fourier transform infrared spectroscopy (FTIR)

A Nicolet Magna IR 560 spectrometer (resolution $1 \mathrm{~cm}^{-1}, 200$ scans) and an OMNIC software were used to characterize the stretching and bending bands between 400 and $4000 \mathrm{~cm}^{-1}$.

Table 1. Crystal data and experimental parameters for the X-ray intensity data collection for $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

3. Results and discussion

3.1. Structural analysis

The final atomic positions and anisotropic thermal parameters for the non-hydrogen atoms in the $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ structure are given in Tables 2 and 3, respectively. A projection of the $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ atomic arrangement along the c axis is given in Figure 1. It shows that all the components of the atomic arrangements are located around the two axes in order to form arrays delimiting large channels parallel to the c direction.

Atoms	X	Y	Z	$\mathrm{U}_{\text {eq }}$
Ba	0.24946(3)	0.06963(2)	0.37463(2)	0.01486(9)
Cs	1.23531(4)	0.37670(3)	0.60501(3)	0.02500(10)
P (1)	0.49653(15)	0.33939(9)	0.34729(10)	0.0135(2)
P (2)	0.75498(15)	0.17362(10)	0.42595(10)	0.0140(2)
$\mathrm{P}(3)$	0.72984(16)	$0.35936(10)$	0.57392(11)	0.0185(3)
$\mathrm{O}(1 \mathrm{i})$	0.8311(4)	0.2619(3)	0.5238(3)	0.0194(7)
$\mathrm{O}(2 \mathrm{i})$	0.6424(4)	0.2510(2)	0.3278(2)	0.0159(7)
$\mathrm{O}(3 \mathrm{i})$	0.6022(4)	0.4024(2)	0.4588(3)	0.0178(7)
$\mathrm{O}(4 \mathrm{e})$	0.8606(5)	0.4456 (3)	0.6136(4)	0.0393(10)
$\mathrm{O}(5 \mathrm{e})$	$0.6256(5)$	0.3191(3)	0.6572(3)	0.0312(9)
$\mathrm{O}(6 \mathrm{e})$	0.4740(4)	0.4168(2)	0.2497(3)	0.0212(7)
$\mathrm{O}(7 \mathrm{e})$	0.9053(4)	0.1308(3)	0.3805(3)	0.0223(8)
$\mathrm{O}(8 \mathrm{e})$	0.6306(4)	0.0994(3)	0.4691(3)	0.0201(7)
$\mathrm{O}(9 \mathrm{e})$	0.3428(4)	0.2843(3)	0.3783(3)	0.0205(7)
$\mathrm{O}(10 \mathrm{w})$	0.2195(4)	0.1274(3)	0.5953(3)	0.0233(8)
$\mathrm{O}(11 \mathrm{w})$	0.5532(5)	0.0975(3)	0.7172(3)	0.0315(9)
H(1)	0.5738	0.0941	0.7926	0.047
H(2)	0.5846	0.1617	0.6363	0.047
H(3)	0.1274	0.1017	0.6242	0.035
H(4)	0.3191	0.0980	0.6366	0.035

i, internal; e, external; w, water.

Table 2. Final atomic coordinates and U-equivalent temperature factors for $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

3.2. Barium and cesium arrangement in the structure

The barium atom, located on the twofold axis, is coordinated by two water molecules and six oxygen atoms (Figure 2), forming an almost regular dodecahedron. The Ba-O distances spread between $2.298(6)$ and $2.349(6) \AA$ A. Each BaO_{8} dodecahedron shares six oxygen atoms with two anionic rings belonging to two phosphoric layers, thus providing the cohesion between these layers (Figure 2). BaO_{8} dodecahedra do not share any edge or corner and form layers alternating with $\mathrm{P}_{3} \mathrm{O}_{9}$ ones. The shortest Ba-Ba distance is found to be $4.70731 \AA$ (Table 4).

The cesium atom occupies a general position and is coordinated to 10 external oxygen atoms and one water molecule (Figure 3). The Cs-O distances spread between 3.0278(2) and 3.5982(9) Á.

The water group, its environment, established by strong hydrogen bonds, is depicted in (Figure 3) as an ORTEP representation [7].

Atom	U11(s)	U22	U33	U23	U13	U12
Ba	$0.01483(15)$	$0.01281(16)$	$0.01595(15)$	$0.00044(10)$	$0.00056(11)$	$-0.00029(10)$
Cs	$0.02411(18)$	$0.0258(2)$	$0.02600(18)$	$0.00406(13)$	$0.00715(14)$	$0.00042(13)$
$\mathrm{P}(1)$	$0.0146(6)$	$0.0132(6)$	$0.0122(5)$	$0.0016(4)$	$0.0015(5)$	$0.0020(5)$
$\mathrm{P}(2)$	$0.0150(6)$	$0.0130(6)$	$0.0134(5)$	$0.0004(5)$	$0.0016(5)$	$0.0028(5)$
$\mathrm{P}(3)$	$0.0171(6)$	$0.0193(7)$	$0.0171(6)$	$-0.0062(5)$	$-0.0015(5)$	$0.0022(5)$
$\mathrm{O}(1 \mathrm{i})$	$0.0173(16)$	$0.0172(17)$	$0.0207(17)$	$-0.0054(14)$	$-0.0035(14)$	$0.0032(14)$
$\mathrm{O}(2 \mathrm{i})$	$0.0195(17)$	$0.0166(17)$	$0.0113(15)$	$0.0007(13)$	$0.0023(13)$	$0.0071(14)$
$\mathrm{O}(3 \mathrm{i})$	$0.0192(17)$	$0.0140(17)$	$0.0176(17)$	$-0.0035(13)$	$-0.0026(14)$	$0.0027(14)$
$\mathrm{O}(4 \mathrm{e})$	$0.025(2)$	$0.027(2)$	$0.058(3)$	$-0.0226(19)$	$-0.0086(19)$	$-0.0009(17)$
$\mathrm{O}(5 \mathrm{e})$	$0.037(2)$	$0.037(2)$	$0.0201(18)$	$0.0038(16)$	$0.0079(17)$	$0.0101(18)$
$\mathrm{O}(6 \mathrm{e})$	$0.0241(18)$	$0.0194(17)$	$0.0210(18)$	$0.0080(14)$	$0.0067(15)$	$0.0069(15)$
$\mathrm{O}(7 \mathrm{e})$	$0.0173(17)$	$0.0245(19)$	$0.0247(18)$	$-0.0051(15)$	$0.0031(15)$	$0.0064(14)$
$\mathrm{O}(8 \mathrm{e})$	$0.0201(17)$	$0.0147(17)$	$0.0253(18)$	$0.0064(14)$	$0.0042(15)$	$0.0009(14)$
$\mathrm{O}(9 \mathrm{e})$	$0.0177(17)$	$0.0185(18)$	$0.0255(18)$	$0.0026(14)$	$0.0050(15)$	$-0.0004(14)$
$\mathrm{O}(10 \mathrm{w})$	$0.0190(17)$	$0.027(2)$	$0.0236(18)$	$-0.0012(15)$	$0.0043(15)$	$0.0010(15)$
$\mathrm{O}(11 \mathrm{w})$	$0.030(2)$	$0.034(2)$	$0.028(2)$	$-0.0008(17)$	$-0.0009(18)$	$-0.0001(18)$

i, internal; e, external; w, water.

Table 3. Anisotropic thermal parameters $\left(\AA^{2}\right)$ for $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Figure 1. Projection along the c axis of the atomic arrangement in $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$.

Figure 2. The coordination of the barium atom in $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Figure 3. ORTEP representation of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ (H-bonds are represented by dashed lines). Thermal ellipsoids are scaled to enclose 50% probability.

Tetrahedron around $\mathrm{P}(1)$				
$\mathrm{P}(1)$	$\mathrm{O}(2 \mathrm{i})$	$\mathrm{O}(3 \mathrm{i})$	$\mathrm{O}(6 \mathrm{e})$	$\mathrm{O}(9 \mathrm{e})$
$\mathrm{O}(2 \mathrm{i})$	$1.6126(5)$	100.5(9)	107.8(1)	109.7(7)
$\mathrm{O}(3 \mathrm{i})$	2.4804 (3)	1.6065(6)	106.9(7)	108.7(6)
$\mathrm{O}(6 \mathrm{e})$	2.4983(3)	2.4803(1)	1.4795(3)	120.9(4)
$\mathrm{O}(9 \mathrm{e})$	2.5254(9)	$2.5046(5)$	2.5662(1)	1.4708(8)
Tetrahedron arour				
P (2)	$\mathrm{O}(1 \mathrm{i})$	$\mathrm{O}(2 \mathrm{i})$	P (2)	$\mathrm{O}(1 \mathrm{i})$
$\mathrm{O}(1 \mathrm{i})$	1.6120(2)	100.7(7)	107.4(8)	109.7(3)
$\mathrm{O}(2 \mathrm{i})$	2.4853(7)	1.6164(2)	107.3(7)	108.6(1)
$\mathrm{O}(7 \mathrm{e})$	2.4843(1)	2.4879(6)	1.4650(7)	120.7(8)
$\mathrm{O}(8 \mathrm{e})$	2.5346(1)	2.5175(5)	2.5637(8)	1.4838(6)
Tetrahedron around $\mathrm{P}(3)$				
P (3)	(O1i)	(O3i)	(O4e)	(O5e)
$\mathrm{O}(1 \mathrm{i})$	1.6058(7)	101.4(4)	107.8(7)	111.2(4)
$\mathrm{O}(3 \mathrm{i})$	$2.4836(6)$	1.6045(7)	107.4(7)	110.5(9)
$\mathrm{O}(4 \mathrm{e})$	2.4914(1)	2.48390	1.4762(3)	117.3(4)
$\mathrm{O}(5 \mathrm{e})$	2.5386(2)	2.5308(4)	2.5158(1)	1.4705(7)
$\mathrm{P}(1)-\mathrm{P}(2)$	2.8773(2)	$\mathrm{P}(2)-\mathrm{O}(1 \mathrm{i})-\mathrm{P}(3)$	129.4(1)	
$\mathrm{P}(1)-\mathrm{P}(3)$	2.9289(6)	$\mathrm{P}(1)-\mathrm{O}(2 \mathrm{i})-\mathrm{P}(3)$	131.6(6)	
$\mathrm{P}(2)-\mathrm{P}(3)$	$2.9081(6)$	$\mathrm{P}(1)-\mathrm{O}(3 \mathrm{i})-\mathrm{P}(2)$	125.8(9)	
$P(2)-P(1)-P(3)$	60.2(1)			
$P(1)-P(2)-P(3)$	60.7(2)			
$\mathrm{P}(1)-\mathrm{P}(3)-\mathrm{P}(2)$	59.1(6)			

Table 4. Main interatomic distances $\left(\mathrm{A}^{\circ}\right)$ and bond angles $\left({ }^{\circ}\right)$ in the $\mathrm{P}_{3} \mathrm{O}_{9}$ ring [8].

3.3. Characterization by infrared spectroscopy

Crystals were ground in a mortar with dry KBr powder in a ratio of 2:200 and pelleted in a press $\left(8^{*} 10^{3} \mathrm{~kg}, 30 \mathrm{~s}\right)$. Then, they were stored at $95^{\circ} \mathrm{C}$ for 1 d to dry before use.

The IR spectrum of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ illustrated in Figure 4 reveals the presence of three bands due to water molecules in the domain $4000-1600 \mathrm{~cm}^{-1}$. This confirms the existence of nonequivalent positions of water molecules in the $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ atomic arrangement: $3449 \mathrm{~cm}^{-1}$ attributed to $\mathrm{O}-\mathrm{H}$ valence vibration, around $3270 \mathrm{~cm}^{-1}$ to hydrogen bonds and $1637 \mathrm{~cm}^{-1}$ to $\delta \mathrm{HOH}$ deformation. The valence vibration bands related to the $\mathrm{P}_{3} \mathrm{O}_{9}$ cycles are expected in the domain $1400-650 \mathrm{~cm}^{-1}$, as well as possible bands due to interactions between $\mathrm{P}_{3} \mathrm{O}_{9}$ cycles and water molecules and also of water vibration modes.

Figure 4. FTIR spectrum of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ crystal.
The vibration modes of the phosphate anions usually occur in the $1400-650 \mathrm{~cm}^{-1}$ area. The two IR bands observed at 1384 and $1286 \mathrm{~cm}^{-1}$ can be attributed to the vas $\left(\mathrm{PO}_{2}\right)$ stretching vibration (Table 5). The shouldered band at $1157 \mathrm{~cm}^{-1}$ and the doublet observed at 1100 and

$v\left(\mathrm{~cm}^{-1}\right)$	Vibration
3449	$v \mathrm{OH}$
1637	

$$
\delta \mathrm{HOH}
$$

1637
1384
1286

$$
v_{\mathrm{as}} \mathrm{POP}
$$

$$
767
$$

$$
v_{\mathrm{s}} \mathrm{POP}
$$

747
685

637

$$
\begin{aligned}
& \delta \mathrm{OPO}^{-} \\
& + \\
& \rho \mathrm{OPO}^{-}
\end{aligned}
$$

Table 5. Frequencies $\left(\mathrm{cm}^{-1}\right)$ of IR absorption bands for $\mathrm{BaCsP}_{2} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.
$983 \mathrm{~cm}^{-1}$ can be assigned to $v s\left(\mathrm{PO}_{2}\right)$ and $v a s(\mathrm{POP})$, respectively. The most characteristic feature of the $\mathrm{P}_{3} \mathrm{O}_{9}$ ring anions is the occurrence of a strong intensity band near $767 \mathrm{~cm}^{-1}$ in addition to $747 \mathrm{~cm}^{-1}$ due to the $\mathrm{vs}(\mathrm{POP})$ stretching vibration. The weak peak appearing at $685 \mathrm{~cm}^{-1}$ can be assigned to vs (POP) [9]. The broad bands observed at $519 \mathrm{~cm}^{-1}$ and the weak peak at $637 \mathrm{~cm}^{-1}$ can be due to the deformation vibrations of the anionic group.

In the spectral domain $650-400 \mathrm{~cm}^{-1}$, the spectrum of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Figure 4) shows bending vibration band characteristic of phosphates with ring anions.

4. Vibrational study

The percentage of participation of each group was determined (Table 6). The geometrical parameters of the P3O9 3-ring with D3h symmetry, optimized by the MNDO [10] programs, are comparable with those obtained, by X-ray diffraction for the compounds with known structures.

${ }^{31} \mathrm{P}_{3}{ }^{16} \mathrm{O} 9{ }^{3}$	${ }^{31} \mathrm{P}_{3}{ }^{18} \mathrm{Oi}_{3}{ }^{16} \mathrm{Oe}_{6}{ }^{3-}$		${ }^{33} \mathrm{P}_{3}{ }^{16} \mathrm{O}_{9}{ }^{3 \cdot}$		${ }^{31} \mathrm{P}_{3}{ }^{16} \mathrm{Oi}_{3}{ }^{18} \mathrm{Oe}_{6}{ }^{3-}$		$\begin{gathered} \hline \% \text { of } \\ \left.{ }^{1}\right) \quad \quad \text { participation } \end{gathered}$
$v\left(\mathrm{~cm}^{-1}\right)$	$v\left(\mathrm{~cm}^{-1}\right)$	$\left.\begin{array}{c} \Delta v\left(\mathrm{~cm}^{-}\right. \\ 1 \end{array}\right)$	$v\left(\mathrm{~cm}^{-1}\right)$	$\Delta v\left(\mathrm{~cm}^{-1}\right)$	$v\left(\mathrm{~cm}^{-1}\right)$	$\left.\Delta v \mathrm{~cm}^{-1}\right)$	
1287.75	1287.52	0.23	1269.04	18.71	1249.67	38.08	
1271.80	1271.77	0.03	1253.83	17.97	1233.02	38.78	$\mathrm{vasiog}_{2}(99)$
1271.79	1271.76	0.03	1253.81	17.98	1233.01	38.78	$\mathrm{vas}_{\text {a }} \mathrm{PO}_{2}(100)$
1225.00	1179.05	45.95	1215.39	9.61	1223.98	1.02	$\mathrm{vasaP} \mathrm{POP}(98)+\mathrm{vs}_{s} \mathrm{PO}_{2}$ (2)
1224.94	1178.99	45.95	1215.23	9.71	1223.92	1.02	
1168.89	1168.79	0.10	1156.02	12.87	1127.56	41.33	$\mathrm{USSO}_{2}(100)$
1108.24	1098.42	9.82	1102.00	6.24	1062.75	45.49	$\mathrm{vasis}^{\mathrm{POP}}(18)+\mathrm{v}_{3} \mathrm{PO}_{2}(82)$
1108.21	1098.39	9.82	1101.97	6.24	1062.72	45.49	Uas POP (100)
1059.25	1011.03	48.22	1052.97	6.28	1059.01	0.24	Oas POP (100)
780.69	768.59	12.10	765.37	15.32	776.16	4.53	$\mathrm{vs}_{s} \mathrm{POP}(73)+\delta \mathrm{PO}_{2}(27)$
780.68	768.57	12.11	765.37	15.31	776.14	4.54	
670.86	659.43	11.43	663.10	7.76	660.19	10.67	$\mathrm{vs}_{s} \mathrm{POP}(52)+\delta \mathrm{PO}_{2}(48)$
558.95	536.78	22.17	555.05	3.90	552.77	6.18	$\gamma \mathrm{POP}(60)+\gamma_{\mathrm{R}} \mathrm{PO}_{2}(40)$
511.25	495.99	15.26	509.05	2.20	501.27	9.98	
436.70	433.13	3.57	432.42	4.28	422.94	13.76	
436.68	433.11	3.57	432.41	4.27	422.92	13.76	$\delta \mathrm{POP}(21)+8 \mathrm{PO}_{2}(79)$
420.07	417.52	2.55	413.15	6.92	411.17	8.90	$\gamma_{\mathrm{wPO}}^{2}(78)$
418.47	406.18	12.29	416.87	1.60	410.01	8.46	$\gamma \mathrm{POP}(59)+\gamma_{\mathrm{T}} \mathrm{PO}_{2}(41)$
418.41	406.12	12.29	416.81	1.60	409.96	8.45	
301.96	301.61	0.35	301.36	0.60	285.89	16.07	$8 \mathrm{PO}_{2}(98)$
298.71	292.63	6.08	298.22	0.49	289.41	9.30	$\delta \mathrm{POP}(40)+\gamma_{\mathrm{wPO}}^{2}$ (60)
298.67	292.59	6.08	298.18	0.49	289.37	9.30	
280.95	279.15	1.80	279.08	1.87	269.77	11.18	$\gamma \mathrm{POP}(14)+\gamma_{\mathrm{TPO}}^{2}$ (86)
280.92	279.11	1.81	279.05	1.87	269.74	11.18	
256.50	253.00	3.50	255.02	1.48	246.50	10.00	$\delta \mathrm{POP}(26)+\gamma_{w} \mathrm{PO}_{2}(74)$
256.49	252.98	3.51	255.01	1.48	246.49	10.00	$\gamma_{\mathrm{T}} \mathrm{PO}_{2}(100)$
214.13	214.13	0.00	214.13	0.00	201.88	12.25	
49.08	48.30	0.78	49.08	0.00	47.01	2.07	$\gamma \mathrm{POP}(27)+\gamma_{\mathrm{R}} \mathrm{PO}_{2}(73)$
35.78	35.11	0.67	35.77	0.01	34.39	1.39	
34.40	33.75	0.65	34.40	0.00	33.00	1.40	$\gamma \mathrm{POP}(33)+\gamma_{\mathrm{R} P \mathrm{O}_{2}(67)}$

Table 6. IR frequencies and displacements $\left(\Delta v\right.$ in cm $\left.{ }^{-1}\right)$ calculated for the $P_{3} O_{9}\left(D_{3 h}\right.$ symmetry).

All the Raman spectra available in the literature of compounds with the $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}$ cycle of $\mathrm{C}_{3 \mathrm{~h}}$ symmetry, in $\mathrm{LnP}_{3} \mathrm{O}_{9} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ [11] and $\mathrm{M}^{\mathrm{II}} \mathrm{M}^{\mathrm{I}} \mathrm{P}_{3} \mathrm{O}_{9}$ with benitoite structure 4, and cycle of Cs symmetry in $\mathrm{NiRb}_{4}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ [17, 18], $\mathrm{ZnM}_{4}^{\mathrm{I}}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{M}^{\mathrm{I}}=\mathrm{K}, \mathrm{Rb}\right)$ [12, 13], $\mathrm{M}^{\mathrm{II}} \mathrm{K}_{4}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .7 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Ni}, \mathrm{Co}\right), \mathrm{C}_{1}$ in $\mathrm{M}^{\mathrm{II}}\left(\mathrm{NH}_{4}\right)_{4}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} .4 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{M}^{\mathrm{II}}=\mathrm{Cu}, \mathrm{Co}, \mathrm{Ni}\right)[14]$, and $\mathrm{NiNa}_{4}\left(\mathrm{P}_{3} \mathrm{O}_{9}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ [15] are characterized by three intense bands situated between 1153 and 1180, 640-680, and $297-313 \mathrm{~cm}^{-1}$, which confirm the results of our calculations (Table 6). Indeed, the theory predicts on the whole four bands with $\mathrm{A}^{\prime}{ }_{1}$ modes for the $\mathrm{P}_{3} \mathrm{O}_{9}$ ring with $\mathrm{D}_{3 \mathrm{~h}}$ symmetry which are situated, according to our results, at $1169 \mathrm{~cm}^{-1}$ for vs P-Oe, $671 \mathrm{~cm}^{-1}$ for δs P-Oi, $559 \mathrm{~cm}^{-1}$ for δ sPOiP, and $302 \mathrm{~cm}^{-1}$ for $\delta \mathrm{s} \mathrm{PO}_{2}$. These four frequencies are predicted to be characteristic in any Raman spectrum of a cyclotriphosphate (with cycle of symmetry, $\mathrm{C}_{3}, \mathrm{C}_{2}, \mathrm{Cs}$, or C_{1}). These four IR fundamental frequencies have a null calculated intensity and are non-observable for $D_{3 h}$ or $C_{3 h}$ symmetries, and their appearance in any IR spectrum indicates a symmetry lower than $C_{3 h}$.

M. G.			$\Delta v\left(\mathrm{~cm}^{-1}\right)$		$v\left(\mathrm{~cm}^{-1}\right)$ in $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$			
$\mathrm{D}_{3 \mathrm{~h}} \mathrm{vcal}\left(\mathrm{cm}^{-1}\right)$	${ }^{\text {1) }}$ I/Imax	Mode (IR, Ra)				Mode (IR, Ra)	Movement	
1287.75	55.3	E " $(-,+)$	0.23	18.71	38.80	$\longrightarrow \mathrm{A}(+,+)$	1297	$v_{\text {as }} \mathrm{PO}_{2}$
								$\mathrm{Vas} \mathrm{PO}_{2}$
1271.80	0.00		0.03	17.97	38.78	$\mathrm{A}(+,+)$	1274	$v_{\text {as }} \mathrm{PO}_{2}$
1271.79	0.00	$\mathrm{E}^{\prime}(+,+)$	0.03	17.98	38.78	$\mathrm{A}^{\mathrm{A}}(+,+)$	1269	
							1211	
1225.00	100	$\mathrm{A}^{\prime}(-,-+)$	45.95	9.61	1.02	$\rightarrow \mathrm{A}(+,+)$		$\mathrm{vas}^{\text {POP }}$
1224.94	100	$\mathrm{E}^{\prime}(+,+)$	45.95	9.71	1.02	$\mathrm{a}^{\mathrm{A}(+,+)}$		$v_{\text {as }}$ POP
1168.89	0.00	$\mathrm{A}^{\prime} 2(-,-)$	0.10	12.87	41.33	$\longrightarrow A(+,+)$	1166	$v_{s} \mathrm{PO}_{2}$
1108.24	5.85	$\mathrm{E}^{\prime}(+,+)$	9.82	6.24	45.49	A(+,+)	1117	$v_{s} \mathrm{PO}_{2}$
1108.21	5.85		9.82	6.24	45.49	A(+,+)	1103	$v_{s} \mathrm{PO}_{2}$
		$\mathrm{A}^{\prime}(-,+$)						
1059.25	0.00		48.22	6.28	0.24	$\longrightarrow \mathrm{A}(+,+)$	977	
							880	vasPOP
								combination
780.69 18	18.35		12.10	15.32	4.53	$\mathrm{A}(+,+)$	760	
780.68 1	18.35		12.11	15.32	4.54	$\lambda^{\mathrm{A}(+,+)}$	743	$v_{s} \mathrm{POP}$
								$\mathrm{v}_{\text {s }} \mathrm{POP}$
670.86	0.00		11.43	7.76	10.67	$\longrightarrow \mathrm{A}(+,+)$	670	
$\Delta v\left(\mathrm{~cm}^{-1}\right)$: effect of the isotopic substitution; $\Delta v\left(\mathrm{~cm}^{-1}\right)$: difference between the calcu Value of the frequency before and after the substitution; M. G: molecular group.								

Table 7. Attribution of the observed valence IR frequencies $\left(\mathrm{cm}^{-1}\right)$ of the $\mathrm{P}_{3} \mathrm{O}_{9}$ ring $\left(\mathrm{C}_{1}\right)$ in $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$.

This allowed us an attribution of the 30 fundamental frequencies of the cycle $D_{3 h}$ on valid theoretical bases including 12 valence vibration frequencies and 18 bending vibration frequencies. The correlation between the $\mathrm{D}_{3 \mathrm{~h}}$ group and the site group C_{1} shows that the simple normal modes $\left(\mathrm{A}^{\prime}{ }_{1}, \mathrm{~A}^{\prime}{ }_{2}, \mathrm{~A}^{\prime \prime}{ }_{1}\right.$, and $\mathrm{A}^{\prime \prime}{ }_{2}$), of the $\mathrm{D}_{3 \mathrm{~h}}$ group, are resolved each into the mode A of the C_{1} group and the doubly degenerate E^{\prime} and $\mathrm{E}^{\prime \prime}$ modes are resolved into two modes and are active in IR and Raman. The factor group analysis predicts for four cycles of the unit cells of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{2 \mathrm{~h}}\right)$, respectively, 24 and 36 valence vibration bands active in IR. But, we observe in the IR spectra of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{C}_{2 \mathrm{~h}}\right)$ only six or seven bands and one inflection (Figure 4). It seems that the vibrational couplings between the $\mathrm{P}_{3} \mathrm{O}_{9}$ cycles of the unit cell are absent or very weak; thus, we will be able to interpret the IR spectrum, in the range 1400$650 \mathrm{~cm}^{-1}$, of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ according to the vibrations of an isolated cycle with local symmetry C_{1}. The values of the calculated frequencies, for the $\mathrm{D}_{3 \mathrm{~h}}$ symmetry, are close to those observed for $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ (Table 6). Table 7 gives the attribution of the observed valence frequencies, 1400-650 cm ${ }^{-1}$, of the $\mathrm{P}_{3} \mathrm{O}_{9}$ ring, with $\mathrm{D}_{3 \mathrm{~h}}$ symmetry of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

5. Thermal analysis

The curve corresponding to the TG analyses in an air atmosphere and at a heating rate of $10^{\circ} \mathrm{C}$. min^{-1} of BaCsP3O9.2H2O is given in Figure 5. The dehydration of the barium cyclotriphosphate and of cesium dihydrate BaCsP3O9.2H2O is carried out in two steps in two temperature ranges from 105 to $180^{\circ} \mathrm{C}$ and from 180 to $580^{\circ} \mathrm{C}$ (Figure 5). In the thermogravimetric (TG) curve, the first step between 95 and $180^{\circ} \mathrm{C}$ corresponds to the elimination of 1.14 water molecules; the second step from 180 to $580^{\circ} \mathrm{C}$ is due to the removal of 0.86 water molecules.

Figure 5. TG curves of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ at rising temperature $\left(10^{\circ} \mathrm{C} \mathrm{min}^{-1}\right)$.

6. Comparison of the thermal behavior of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{BaNH}_{4} \mathrm{P}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BaTlP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$

The thermal behavior of $\mathrm{BaNH}_{4} \mathrm{P}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BaTlP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ [16] was studied (Laboratory of Physical Chemistry of Materials, Ben M'sik faculty of Sciences, Casablanca, Morocco). It would be useful to compare the thermal behavior of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with that of its isotypic compounds $\mathrm{BaNH}_{4} \mathrm{P}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BaTlP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

The thermal behavior of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is different from that obtained in the case of BaTlP $3_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [16], which leads to the anhydrous barium and thallium $\mathrm{BaTlP}_{3} \mathrm{O}_{9}$ cyclotriphosphate at $280^{\circ} \mathrm{C}$. After amorphous X-ray state, $\mathrm{BaTlP}_{3} \mathrm{O}_{9}$ remains stable till its melting point at $670^{\circ} \mathrm{C}$.

$$
\mathrm{BaTlP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{70-270^{\circ} \mathrm{C}} \text { Amorphous } \mathrm{X} \text { - ray Phase }+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{300^{\circ} \mathrm{C}} \mathrm{BaTlP}_{3} \mathrm{O}_{9}
$$

The total dehydration of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$, after passing through an amorphous X -ray state, leads to monobarium polyphosphate and tetracerium $\mathrm{BaCs}_{4}\left(\mathrm{PO}_{3}\right)_{6}$ at $500^{\circ} \mathrm{C}[17,18]$.

$$
\begin{array}{rl}
\mathrm{BaCsP} & 3
\end{array} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{100-250^{\circ} \mathrm{C}} \text { Amorphous } \mathrm{X}-\text { ray Phase }+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{450^{\circ} \mathrm{C}}{ }^{1 / 4} \mathrm{BaCs}_{4}\left(\mathrm{PO}_{3}\right)_{6} \text { crystallized }
$$

7. Conclusion

The cyclotriphosphate $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ was obtained as a monocrystal by the resin exchange method. It crystallizes in the monoclinic system, space group $P 2_{1} / n, \mathrm{Z}=4$, and is an isotype of $\mathrm{BaNH}_{4} \mathrm{P}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BaTlP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$.

The crystal structure of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ was solved from 2448 independent reflections. The final value of the unweighted reliability factor is $\mathrm{R}=0.0329$. The unit cell of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ contains four $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}$ rings, each of them consists of three crystallographically independent P (1)O4, $\mathrm{P}(2) \mathrm{O}$, and $\mathrm{P}(3) \mathrm{O} 4$ tetrahedra. The three tetrahedra have no special characteristics. The $\mathrm{P}_{3} \mathrm{O}_{9}$ cycle observed in the structure of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ has no internal symmetry. The cohesion between the cycles $\mathrm{P}_{3} \mathrm{O}_{9}{ }^{3-}$ is ensured via the associated cations Cs^{+}and Ba^{2+}. The main geometrical characteristics of the three $\mathrm{P}(1) \mathrm{O} 4, \mathrm{P}(2) \mathrm{O} 4$, and $\mathrm{P}(3) \mathrm{O} 4$ tetrahedra of the $\mathrm{P}_{3} \mathrm{O}_{9}$ cycle are quite similar to those observed generally in cyclotriphosphates.

The thermogram (TG) of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ shows that dehydration takes place in two distinct steps between 70 and $560^{\circ} \mathrm{C}$.

The total removal of the water at $560^{\circ} \mathrm{C}$ is accompanied by a total destruction of the $\mathrm{BaCsP} \mathrm{B}_{3} \mathrm{O}_{9} .2 \mathrm{H}_{2} \mathrm{O}$ structure, probably leading to a mixture of amorphous oxidesin X-ray diffraction $\mathrm{BaO}+3 / 2 \mathrm{P}_{2} \mathrm{O}_{5}+1 / 2 \mathrm{Cs}_{2} \mathrm{O}$. The product resulting from calcinations of $\mathrm{BaCsP}_{3} \mathrm{O}_{9} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ between 300 and $560^{\circ} \mathrm{C}$ is the long chain polyphosphate $\mathrm{BaCs}_{4}\left(\mathrm{PO}_{3}\right)_{6}$.

Author details

Soufiane Zerraf ${ }^{1 *}$, Mustafa Belhabra ${ }^{1}$, Aziz Kheireddine ${ }^{1}$, Malika Tridane ${ }^{1,2}$,
Hicham Moutaabbid 3, Mohammed Moutaabbid ${ }^{1}$ and Said Belaaouad ${ }^{1}$
*Address all correspondence to: soufiane.zerraf@gmail.com
1 Laboratory of Physical Chemistry of Materials, Ben M'sik Faculty of Sciences, Casablanca,
Morocco
2 Regional Center for Education and Training Occupations Casablanca Anfa,
Bd Bir Anzarane Casablanca, Morocco
3 Institute of Mineralogy, Physics of Materials, and Cosmochemistry (IMPMC) Sorbonne
Universities - UPMC University Paris, Cedex, France

References

[1] Kheireddine A, Tridane M, Belaaouad S. Powder Diffraction. 2012;27:32-35. DOI: 10.13171/ mjc.2.4.2013.22.05.12
[2] Masse R, Averbuch-Pouchot MT. Materials Research Bulletin. 1977;12:13-16. DOI: 10.1016/ 0025-5408(77)90083-6
[3] Simonot-Grange MH. Journal of Solid State Chemistry. 1983;46:76-86. DOI: 10.1016/0022-4596(83)90128-7
[4] Durif A. Crystal Chemistry of Condensed Phosphates. New York: Plenum Press; 1995. ISBN 978-1-4757-9894-4
[5] Sheldrick GM. Acta Crystallographica. 2008;64:112-122. DOI: 10.1107/S0108767307043930
[6] Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H. Journal of Applied Crystallography. 2009;42:339-341. DOI: 10.1107/S0021889808042726
[7] Tarte P, Rulmont A, Sbai K, Simonot-Grange MH. Spectrochimica Acta. 1987;43A:337-345. DOI: 10.1016/0584-8539(87)80114-9
[8] Zerraf S, Belhabra M, Kheireddine A, Lamsatfi R, Tridane M, Moutaabbid H, Baptisteb B, Moutaabbid M, Belaaouad S. Phosphorus Sulfur Silicon and the Related Elements. 2017; 192:1286-1293. DOI: 10.1080/10426507.2017.1333507
[9] Tace EM, Charaf A, Fahim I, Moutaabbid M, Kheïreddine A, Ouaalla F-E, et al. Phosphorus, Sulfur and Silicon and the Related Elements. 2011;186:1501-1514. DOI: 10.1080/ 10426507.2010.520173
[10] Dewar MJS, Thiel W. Journal of the American Chemical Society. 1977;99:4899-4902. DOI: 10.1021/ja 00457a004
[11] Sbai K, Abouimrane A, Lahmidi A, El Kababi K, Hliwa M, Vilminot S. Annales de Chimie Science des Materiaux. 1999;25(supp. 1):139-143
[12] Abouimrane A. Thèse de Doctorat. Casablanca, Maroc; 2000
[13] Abouimrane A, Sbai K, El Kababi K, Lahmidi A, Atibi A, Vilminot S. Phosphorus, Sulfur and Silicon and the Related Elements. 2001;179:69-83
[14] Sbai K, Abouimrane A, El Kababi K, Vilminot S. Journal of Thermal Analysis and Calorimetry. 2002;68:109-122. DOI: 10.1023/A:10149288
[15] Sbai K, Atibi A, Charaf A, Radid M, Jouini A. Annales de Chimie Science des Materiaux. 2001;26:45-61
[16] Belaaouad S, Sbai KJ. Journal of Physics and Chemistry of Solids. 2003;64:981-991. DOI: 10.1016/S0022-3697(02)00461-4
[17] Averbuch-Pouchot MT, Durif A. Acta Crystallographica. 1986;C42:928-930. DOI: 10.1107/ S0108270186093976
[18] Belhabra M, Kheireddine A, Moutaabbid H, Baptiste B, Lamsatfi R, Fahim I, et al. Research Journal of Recent Sciences. 2015;6(Issue 12):7832-7836. ISSN: 0976-3031

