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Abstract

Digital tomosynthesis (DT) is a notable modality in medical imaging because it shows the
spread of the target area with lower radiation dose relative to computed tomography. In
this section, we describe the technique in two parts: (1) image quality (contrast) and (2) DT
image reconstruction algorithms, including state-of-the-art total variation minimization
reconstruction algorithms with single-energy X-ray conventional polychromatic imaging
and novel dual-energy (DE) virtual monochromatic imaging. The novel DE virtual mono-
chromatic image-processing algorithm provides adequate overall performance (especially,
reduction of beam-hardening, reduction of noise). The DE virtual monochromatic image-
processing algorithm appears to be a promising new option for imaging in DT because it
provides three-dimensional visualizations of high-contrast images that are far superior to
those of images processed by using conventional single-energy polychromatic image-
processing algorithms.

Keywords: tomosynthesis, reconstruction, virtual monochromatic imaging,
polychromatic imaging, dual-energy imaging

1. Introduction

Approximately 30 years have passed since Dr. Hounsfield developed a practical computed

tomography (CT) system. The arrival of CT devices in the field of medical diagnosis has led to

a revolution equivalent to the discovery of X-rays by Dr. Roentgen. Since then, most

researchers who aim to improve medical diagnosis quality have worked toward the functional

improvement of CT instruments, thus leading to the development of fan-beam CT, helical scan

CT, multislice CT, and cone-beam CT instruments. These new instruments reduce the time

needed for image reconstruction and significantly improve image quality. Given the increasing

demand for better technology, there has been continued research and development of high-

performance CT instruments.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Interest in digital tomosynthesis (DT) and its clinical applications has been revived by recent

advances in digital X-ray detector technology. Conventional tomography technology provides

planar information about an object from its projection images. In tomography, an X-ray tube

and an X-ray film receptor lie on either side of the object. The relative motion of the tube and

film is predetermined on the basis of the location of the in-focus plane [1]. A single image plane

is generated by a scan, and multiple scans are required to provide a sufficient number of

planes to cover the selected structure in the object. DT acquires only one set of discrete X-ray

projections that can be used to reconstruct any plane of the object retrospectively [2]. The

technique has been investigated in angiography and in the imaging of the chest, hand joints,

lungs, teeth, and breasts [3–8]. Dobbins et al. [9] reviewed DTand showed that it outperformed

planar imaging to a statistically significant extent. Various types of DT reconstruction methods

have been explored.

Current DT mainly involves image acquisition/reconstruction using polychromatic imaging.

Material decomposition or virtual monochromatic image processing using dual energy (DE)

has been studied in CT, and many basic and clinically useful applications have been reported

[10–12]. Similar to CT, it can be expected that DTalso benefits from image quality improvements.

In this chapter, the fundamental image quality characteristics of various reconstruction algo-

rithms (including a state-of-the-art reconstruction algorithm) using polychromatic imaging and

virtual monochromatic DT imaging that were verified in phantom experiments are discussed.

2. DT reconstruction

Existing tomosynthesis algorithms can be divided into three categories: (1) backprojection

(BP), (2) filtered backprojection (FBP), and (3) iterative reconstruction (IR) algorithms.

2.1. BP

The BP algorithm is referred to as “shift-and-add” (SAA) [9], whereby projection images taken

at different angles are electronically shifted and added to generate an image plane focused at a

certain depth below the surface. The projection shift is adjusted such that the visibility of the

features in the selected plane is enhanced, whereas those in other planes are blurred. By using

a digital detector, the image planes at all depths can be retrospectively reconstructed from one

set of projections. The SAA algorithm is valid only if the motion of the X-ray focal spot is

parallel to the detector.

2.2. FBP

FBP algorithms are widely used in CT when many projections acquired at >360� are used

to reconstruct cross-sectional images. The number of projections typically ranges from a few

hundred to approximately 1000. The Fourier central slice theorem is fundamental to FBP

theory. In two-dimensional (2D) CT imaging, a projection of an object corresponds to sampling

that object along the direction perpendicular to the X-ray beam in the Fourier space [13]. For
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many projections, information about the object is well sampled, and the object can be restored

by combining the information from all projections.

In three-dimensional (3D) cone-beam imaging, information about the object in Fourier space is

related to the Radon transform of the object. The relationship between the Radon transform

and cone-beam projections has been well studied, and solutions to the cone-beam reconstruc-

tion have been provided [14, 15]. The Feldkamp algorithm generally provides a high degree of

precision for 3D reconstruction images when an exact type of algorithm is employed [16].

Therefore, this method has been adopted for the image reconstruction of 3D tomography and

multidetector cone-beam CT. A number of improved 3D reconstruction methods have been

derived from the Feldkamp algorithm.

We denoted the intensity of the incident X-rays as I0 ¼ δ; c; dð Þ and that of the X-rays that

passed through the structure at the location δ; c; dð Þ as I ¼ δ; c; dð Þ. The image data dF ¼ δ; c; dð Þ

were calculated as follows:

dF δ; c; dð Þ ¼ ln
I0 δ; c; dð Þ

I δ; c; dð Þ
(1)

The original projection data are used to generate an FBP image:

f FDK ¼

ðθ

�θ

R2

U2
~dF δ; c; dð ÞDδ (2)

U X;Y; δð Þ ¼ Rþ X cos δþ Y sin δ

c X;Y; δð Þ ¼ R
�X sin δþ Y cos δ

Rþ X cos δþ Y sin δ

d X;Y;Z; δð Þ ¼ Z
R

Rþ X cos δþ Ysinδ

~dF δ; c; dð Þ ¼
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ c2 þ d2
p dF δ; c; dð Þ

 !

∗gP γð Þ

where the projection angle δ, fan-angle γ, source trajectory R, acquisition angle θ, and gp γð Þ

represent a convolution with the Ramachandran–Lakshminarayanan filter. The Ramachandran–

Lakshminarayanan (ramp) filter is shown below:

gp γð Þ ¼
γ

sinα

� �2

(3)

2.3. IR

An IR algorithm performs the reconstruction in a recursive fashion [17, 18], unlike the one-step

operation in backprojection and FBP algorithms. During IR, a 3D object model is repeatedly
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updated until it converges to the solution that optimizes an objective function. The objective

function defines the criteria of the reconstruction solution.

Algebraic reconstruction methods assume that the image is an array of unknowns, and the

reconstruction problem can be established as a system of linear equations. The unknowns of

this system are approximated with respect to the ray sums iteratively [17, 18]. In each iteration,

current reconstruction is reprojected and updated according to how much it satisfies the

projection measurements.

Gx ¼ f (4)

In the DT reconstruction, x represents the pixel values for x∈ℜN, whereas f represents the

observed data for f ∈ℜM. The weighting value G∈ℜ
M�N was created by using a forward

projection, and the matrix G combines the submatrices of each projection. Gmn is defined as

the length of intersection of the mth ray with the nth cell. DT reconstruction starts with an initial

guess x0 and computes x1 by projecting x0 onto the first hyperplane in Eq. 4. The algebraic

reconstruction technique (ART) update procedure (or error correction) is shown below:

x
! kð Þ

¼ x
! k�1ð Þ

þ β
bi � a

!
ix
! k�1ð Þ

a
!

i

�

�

�

�

�

�

2
a
!

i (5)

where ai
!
¼ ai1; ai2;…; ainð Þ is the ith row of the projection matrix, and β is the relaxation param-

eter (1.0). a
!

i

�

�

�

�

�

�

2

is the normalization factor. The update is performed for each projection

measurement bi separately, that is, the kth iteration consists of a sweep through the m projec-

tion measurements. The algorithm iterates through the equations periodically; therefore,

i = (i-1) mod (m) + 1.

The ART algorithm updates the image vector per ray such that the update satisfies only a

single equation representing the corresponding ray integral. By contrast, the simultaneous IR

technique (SIRT) algorithm updates the image vector after all equations are considered. The

update procedure of SIRT is given in Eq. 6 according to [19].

x
! kð Þ

¼ x
! k�1ð Þ

þ β
1

Pm
i aij

X

m

i

aij
bi � a

!
ix
! k�1ð Þ

Pn
j¼1 aij

(6)

The simultaneous ART (SART) algorithm [20] is proposed as a combination of the ART and

SIRT algorithms. SART updates the superior implementation of ART and is based on a simul-

taneous update of the current reconstruction similar to SIRT. In the SART algorithm, the

update procedure is applied for all rays in a given scan direction (projection) instead of each

ray separately (similar to conventional ART) or instead of all rays simultaneously (similar to

SIRT). The SART update is expressed as follows:
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x
! kð Þ

¼ x
! k�1ð Þ

þ β
1

Σi∈Ωt
aij

X

i∈Ωt

aij
bi � a

!
ix
! k�1ð Þ

Pn
j¼1 aij

(7)

where Ωt is the set of indices of the rays sent from the tth projection direction.

The objective function in the maximum likelihood expectation–maximization (MLEM) algo-

rithm is the likelihood function, which is the probability of obtaining the measured projections

in a given object model. The solution of the MLEM algorithm is an object model that maxi-

mizes the probability of obtaining the measured projections.

The transition matrix α i; jð Þ represents the probability for an event generated in the area of the

source covered by pixel i to be detected. The count registered by the detector is represented by

the vector y(j) = [y(1), y(2), y(3),..., y(J)]:

x kþ1ð Þ ið Þ ¼ x kð Þ ið ÞC kð Þ ið Þ (8)

C kð Þ ið Þ ¼
1Pn

j¼1 α i; jð Þ

XJ

j¼1

y jð ÞPn
i¼1 α i; jð Þx kð Þ ið Þ

α i; jð Þ (9)

x kþ1ð Þ ið Þ ¼
1Pn

j¼1 α i; jð Þ
x kð Þ ið Þ

XJ

j¼1

y jð Þα i; jð ÞPn
i¼1 x

kð Þα i; jð Þ
(10)

i = 1, 2, …, n.

2.4. Total variation minimization reconstruction algorithm

An iterative algorithm using total variation (TV)-based compressive sensing was recently devel-

oped for volume image reconstruction from a tomographic scan [21]. The image TV has been

used as a penalty term in iterative image reconstruction algorithms [21]. The TV of an image is

defined as the sum of the first-order derivative magnitudes for all pixels in the image. TV

minimization is an image domain optimization method associated with compressed sensing

theory [21]. As TV-minimization IR for image reconstruction, the TV-minimization IR technique

is the SART [20] with algebraic IR for constraining the TV-minimization problem, which is called

SART-TV [21]. In TV-minimization IR, adding a penalty to the data–fidelity–objective function

tends to smooth out noise in the image while preserving edges within the image [21–25].

SART-TV minimizes the Rudin, Osher, and Fatemi (ROF) model [26], that is, SART-TV also

takes into account the image information when minimizing the TVof the image. If only the TV-

minimization step was performed in the rest of the algorithms, the result would be a flat

image; alternatively, the ROF model ensures that the image does not change considerably.

The SART-TV optimal parameters include the iteration number for TV minimization [100

(np)] and the length of each gradient-descent step [50 (q)]. These optimal parameters have been
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shown to be very relevant to image quality [21, 24]. In our study, we minimized the image

quality by using these optimal parameters for the SART-TV algorithms.

The SART-TV algorithm is expressed in the form of a pseudo code as follows:

β ¼ 1:0; np; 100 q; 50

x
!
¼ 0

repeat main loop

x0
!
¼x

!

(SART)

for i ¼ 1 : Nd, x
!
¼x

!
þβ

1
P

i∈Ωt
Aij

X

i∈Ωt

Aij
bi � A

!

i � x
!

Pn
j¼1 Aij

for i ¼ 1 : Ni, if xi < 0 then xi ¼ 0

(enforce positivity)

xres
!

¼ x
!

for i = 1:np do TV-minimization loop

Δx ¼ x
!
� x

!

0

�

�

�

�

�

�

d
!

x ¼ ∇
x
! x

!
�

�

�

�

�

�

TV

d̂x ¼ d
!

x
.

d
!

x
�

�

�

�

�

�

x
!
¼ x

!
� q∗Δx∗d̂x

end

return x
!

res

3. Phantom specification

For the evaluation of low-contrast resolution, a contrast-detail (CD) phantom was used with

epoxy slabs. The CD phantoms of different diameters (signal region, CaCO3) and thicknesses

were arranged within the epoxy slabs. For X-ray imaging, we placed polymethyl methacrylate

(PMMA) slabs (200 � 200 mm) with 50 mm thickness on the top of the CD phantom (Figure 1).
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4. Virtual monochromatic DT imaging using DE

4.1. Theory of material decomposition processing

Given that the photoelectric effect and Compton scattering of X-ray photons in the diagnostic

range (E < 140 keV) are the predominant mechanisms responsible for X-ray attenuation

(monochromatic X-ray), the mass attenuation coefficient of any material can be expressed with

sufficient accuracy as a linear combination of the photoelectric and Compton attenuation

coefficients. Consequently, the mass attenuation coefficient can also be expressed as a linear

combination of the attenuation coefficients of two basis materials [10]:

μ r;Eð Þ ¼
μ

r

� �

1

Eð Þ � r1 rð Þ þ
μ

r

� �

2

Eð Þ � r2 rð Þ (11)

where the basis materials exhibit different photoelectric and Compton characteristics, (μ/r)i(E)

and i = 1, 2 denote the mass attenuation coefficients of the two basis materials, and ri(r) and

i = 1, 2 denotes the local densities (g/cm3) of the two basis materials at location r.

In principle, DE can only accurately decompose a mixture into twomaterials. Therefore, for DE

measurement–based mixture decomposition into three constitutive materials, a third constitu-

ent must be provided to solve for three unknowns by using only two spectral measurements.

In one solution, the sum of the volumes of the three constituent materials is assumed to be

Figure 1. Illustration of the CD phantom used in this study.
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equivalent to the volume of the mixture (volume or mass conservation) [11]. In this work, we

used a simple projection space (prereconstruction) decomposition method to estimate the

material fractions ( fn) of the CaCO3 ( fcaco3, local density; 2.711 g/cm3), PMMA ( fPMMA, local

density; 1.17 g/cm3), and epoxy resin ( fepoxy, local density; 1.11 g/cm3) in the phantom.

Three basis materials can also be expressed as a linear combination of the attenuation coeffi-

cients:

μ r;Eð Þ ¼
μ

r

� �

1

Eð Þ � r1 rð Þ þ
μ

r

� �

2

Eð Þ � r2 rð Þ þ
μ

r

� �

3

Eð Þ � r3 rð Þ (12)

In DE acquisition, the detected image intensity can be expressed as follows:

IL ¼

ð

PL Eð Þ exp �
μ

r

� �

1

Eð Þ � L1 �
μ

r

� �

2

Eð Þ � L2 �
μ

r

� �

3

Eð Þ � L3

� �

dE (13)

IH ¼

ð

PH Eð Þ exp �
μ

r

� �

1

Eð Þ � L1 �
μ

r

� �

2

Eð Þ � L2 �
μ

r

� �

3

Eð Þ � L3

� �

dE (14)

L1
∗ L2

∗ L3 ¼ 1:0 (15)

L1 ¼

ð

r1 rð Þdl

L2 ¼

ð

r2 rð Þdl

L3 ¼

ð

r3 rð Þdl

where PL(E) represents the low-energy primary intensities, PH(E) represents the high-energy

primary intensities, IL represents the low-energy attenuated intensities, and IH denotes the

high-energy attenuated intensities. The equivalent densities (g/cm2; L1, L2, and L3) of the three

basis materials must be determined for each ray path. Eqs. (13, 14, 15) can be solved for the

equivalent area density, where L1, L2, and L3 are the unknown materials. Therefore, the basis

material decomposition can be accomplished by solving simultaneous equations to calculate

the values of L1, L2, and L3 from the measured projection pixel values [12]. By using the density

corresponding to the area with the three basis materials, the linear attenuation coefficient

μ(r, E) can be calculated for any photon.

We used the local and area densities for each material to calculate the theoretical linear attenu-

ation coefficient curves shown in Figure 2; these values were generated by inputting the chem-

ical compositions of the CaCO3, epoxy resin, and PMMA into the XCOMprogram developed by

Berger and Hubbell [27]. The curves show that the linear attenuation coefficient of CaCO3

decreases more rapidly than those of the foam epoxy and PMMA in the energy band <100 keV.

Finally, we used the projection space decomposition approach to generate material decomposi-

tion images for the CaCO3, epoxy resin image, and PMMA by using the following process.
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Eqs. (13) and (14) were used to calculate the values for IL_caco3, IL_PMMAr, IL_epoxy, IH_caco3,

IH_PMMA, and IH_epoxy as simulated attenuation intensities of these materials at the two energy

levels. These values were then used to construct a sensitivity matrix, and the material fractions

were obtained from the inverse of this matrix (Eq. 16):

f CaCO3

f PMMA

f epoxy

2

6

6

4

3

7

7

5

¼

IL_CaCO3 IL_PMMA IL_epoxy

IH_CaCO3 IH_PMMA IH_epoxy

1:0 1:0 1:0

2

6

6

4

3

7

7

5

�1 DTEL

DTEH

1:0

2

6

6

4

3

7

7

5

(16)

f CaCO3IL_CaCO3 þ f PMMAIL_PMMA þ f epoxyIL_epoxy ¼ DTEL

f CaCO3IH_CaCO3 þ f PMMAIH_PMMA þ f epoxyIH_epoxy ¼ DTEH

f CaCO3 þ f PMMA þ f epoxy ¼ 1:0

4.2. Virtual monochromatic image processing

After decomposition by matrix inversion, the “inv” function available in MATLAB was used

(Mathworks; Natick, MA, USA); this function constrains the possible fraction to [0,1] while

imposing a sum of one. Accordingly, the processing pipeline yields three material fraction

outputs corresponding to CaCO3, epoxy, and PMMA.

Virtual monochromatic processing is performed according to Eq. 15:

Figure 2. The linear attenuation coefficients of CaCO3, epoxy, and PMMA with respect to the photons.
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Mono_p_img ¼ f CaCO3
∗

μ

r

� �

CaCO3

Eð Þ þ f PMMA
∗

μ

r

� �

PMMA

Eð Þ þ f epoxy
∗

μ

r

� �

epoxy

Eð Þ (17)

where Mono_p_img is the virtual monochromatic projection image, and [μ/r]caco3(E), [μ/

r]PMMA(E), and [μ/r]epoxy(E) are the mass attenuation coefficients of each material. The gener-

ated virtual monochromatic X-ray projection image was reconstructed by using each algo-

rithm for energies of 60, 80, 100, 120, and 140 keV. The real projection data acquired on a DT

system were used for reconstruction. All image reconstruction calculations, including DE

material decomposition processing and reconstruction, as well as FBP, SART, SART-TV, virtual

monochromatic processing, and MLEM, were implemented in MATLAB.

5. DT system

5.1. DT overview

The DT system (SonialVision Safire II; Shimadzu Co., Kyoto, Japan) comprised an X-ray tube

[anode: tungsten with rhenium and molybdenum; real filter: inherent; aluminum (1.1 mm),

additional; aluminum (0.9 mm), and copper (0.1 mm)] with a 0.4 mm focal spot and 362.88 �

362.88 mm amorphous selenium digital flat-panel detector (detector element, 150 � 150 μm2).

The source-to-isocenter and isocenter-to-detector distances were 924 and 1100 mm, respec-

tively (antiscatter grid, focused type; grid ratio, 12:1).

5.2. DE-DT acquisition

Collimator motion was synchronized by measuring the misalignment of the low-voltage

(60 kV) and high-voltage (120 kV) images at a constant tube motion. A large energy gap

between low and high tube potential kVp imaging yields better material decomposition [28–33].

We selected the abovementioned kV values because this study aimed to improve contrast and

artifact reduction during DT acquisition while maintaining an imaging performance similar to

that of conventional DT.

Pulsed X-ray exposures and rapid switching between low and high tube potential kVp values

were used for DE-DT imaging. Linear system movement and a swing angle of 40� were used

when performing tomography, and 37 low- and high-voltage projection images were sampled

during a single tomographic pass. We used a low voltage, and each projection image was

acquired at 416 mA. A 9.4 ms exposure time was used for low-voltage (60 kV) X-rays at

416 mA, and a 2.5 ms exposure time was used for high-voltage (120 kV) X-rays. To generate

reconstructed tomograms of the desired height, we used a 768 � 7684 matrix with 32 bits

(single-precision floating number) per image (pixel size, 0.252 mm/pixel; reconstruction inter-

val, 1 mm).
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6. Optimization parameter

The experiments were performed according to the scheme shown in Figure 3. A range of

optional parameters have been identified for IR algorithms. Among these parameters, some

are important for determining algorithmic behavior. In this study, we compared the root-mean-

square error (RMSE) andmean structural similarity (MSSIM; reconstructed volume image from

the previous iterations between the current iteration) to optimize the iteration numbers (i).

The RMSE was defined in this study as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1 y

∧

k � yk

	 
2

n

v

u

u

t

(18)

where yk is the observed image [current reconstructed image (in-focus plane)], y
∧

k is the

referenced image [previous reconstructed image (in-focus plane)], and n is the number of

compounds in the analyzed set.

The MSSIM of local patterns of luminance- and contrast-normalized pixel intensity were

compared to determine the structural similarity (SSIM) index of contrast preservation. This

image quality metric is based on the assumed suitability of the human visual system for

extracting structure-based information [34].

Figure 3. For DT acquisition, the phantom was arranged parallel to the x–y detector plane.
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The SSIM index between pixel values x and y was calculated as follows:

SSIM x; yð Þ ¼ l x; yð Þ½ �α � c x; yð Þ½ �β � s x; yð Þ½ �γ (19)

where l is the luminance, c is the contrast, and s is the structure. Subsequently,

α ¼ β ¼ γ ¼ 1:0

The MSSIM was then used to evaluate the overall image quality:

MSSIM X;Yð Þ ¼
1

M

X

M

j¼1

SSIM xi; yj

	 


(20)

where X and Y are the reference [previous reconstructed image (in-focus plane)] and objective

[current reconstructed image (in-focus plane)] images, respectively; xi and yj are the image

contents at the jth pixel; and M is the number of pixels in the image.

Figure 4. The RMSE characteristics caused by the differences in the number of iterations of each IR algorithm. (60 and

120kVp; polychromatic, 60, 80, 100, 120, and 140 keV; virtual monochromatic).
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It was feasible to maintain a steady convergence of polychromatic IR images for inconsistency

after the fourth iteration and a convergence of monochromatic IR images for inconsistency

after the fifth iteration (Figures 4 and 5).

7. Evaluation

The contrast derived from the contrast-to-noise ratio (CNR) in the in-focus plane (15 mm φ;

CaCO3, 175 mg/ml, and 100 mg/ml) was also evaluated as a quantitative measure of the

reconstructed image quality. In DT, the CNR is frequently used to estimate low-contrast

detectability and was defined in this study as follows:

CNR ¼

μ
Feature

� μ
BG

σBG
(21)

where μ
Feature

is the mean object pixel value, μ
BG

is the mean background area pixel value, and

σBG is the standard deviation of the background pixel values. The latter parameter includes the

Figure 5. The MSSIM characteristics caused by differences in the number of iterations of each IR algorithm. (60 and

120kVp; polychromatic, 60, 80, 100, 120, and 140 keV; virtual monochromatic).
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photon statistics, the electronic noise from the results, and the structural noise that could

obscure the object. The sizes of all regions of interest (ROIs) used to measure the CNR were

adjusted to an internal signal (ROI diameter; eight pixels).

8. Results

Figure 6 shows each density projection image generated by the material decomposition pro-

cess. A novel DE virtual monochromatic image processing is performed from a density projec-

tion image, and Figures 7 and 8 show the image generated by each reconstruction algorithm.

Figure 6. DE material decomposition straight projection images. The DE material decomposition projections for CaCO3,

epoxy, and PMMA were window level = 0.59 and window width = 0.26, window level = 0.69 and window width = 0.33,

and window level = 0.21 and window width = 0.24, respectively.

Figure 7. Comparisons among the polychromatic (P) and virtual monochromatic (VM) images acquired by using the FBP

reconstruction algorithm (window level = 0.05, window width = 0.11).
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Figure 8. Comparisons among the polychromatic (P) and virtual monochromatic (VM) images with each IR algorithm (P

MLEM:Window level = 0.32, windowwidth = 0.17; VMMLEM:Window level = 0.25, windowwidth = 0.12; P&VM SART:

Window level = 0.22, window width = 0.37; P&VM SART-TV: Window level = 0.24, window width = 0.34).

Figure 9. Comparisons of the CNR of the in-focus plane images obtained by using each reconstruction algorithm with

polychromatic and virtual monochromatic image processing (CaCO3; 15 mm ϕ, 175 mg/ml).
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In the novel DE virtual monochromatic image processing performed according to Eq. 17, an

image with decreased noise can be obtained as the photon energy was increased. In the

conventional polychromatic image, noise is reduced in the high-voltage image. With regard

to the contrast extraction capability of high-density objects, the novel DE virtual monochro-

matic images showed high CNRs. In particular, the SART-TV algorithm provided high-

contrast extraction capability (Figure 9). Along with the decrease in the concentration of the

object, the contrast extraction ability was almost the same for both monochromatic and virtual

monochromatic imaging (Figure 10).

9. Conclusions

This chapter showed that the novel DE virtual monochromatic image-processing algorithm

yielded adequate overall performance. The novel DE virtual monochromatic images produced

by using this algorithm yielded good results independent of the type of contrast present in the

CD phantom. Furthermore, this processing algorithm successfully removed noise from the

images, particularly at high contrast with high-density objects.

In summary, this DE virtual monochromatic image-processing algorithm appears to be a prom-

ising new option for DT imaging, as evidenced by the 3D visualizations of high-contrast images

that were far superior to those of images processed by conventional single-energy polychromatic

image-processing algorithms. The flexibility in the choice of imaging parameters, which is based

Figure 10. Comparisons of the CNR of in-focus plane images obtained by using each reconstruction algorithm with

polychromatic and virtual monochromatic image processing (CaCO3; 15 mm ϕ, 100 mg/ml).
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on the desired final images and DT imaging conditions, of this novel DE virtual monochromatic

image-processing algorithm may be beneficial to users.
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