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Chapter

Inherited Bone Marrow Failure 
and Chromosome Instability 
Syndromes and their Cancer 
Predisposition
Zhan He Wu

Abstract

Inherited bone marrow failure syndromes (IBMFS) and chromosome instabil-
ity syndromes (CIS) are the most classic and representative genetic syndromes. 
They are classified as genetic rare diseases, typically with complex medical 
complications in the delay of mental and physical development. Commonly, 
these syndromes present with different degrees of dysmorphics; organs/systems 
dysfunction generally and these syndromes have higher risk of inherited solid 
cancer and leukemia predisposition due to the similar pathway of DNA defects. 
These syndromes are often hard to diagnose and they overlap with their pheno-
types clinically. Very importantly cancers from the germ line mutation of these 
syndromes require different treatment strategies with the sporadic malignancies. 
The significance of recognition of such diseases is not only beneficial to patients 
phenotypically affected but also to individuals phenotypically unaffected and 
members/relatives of the family. Remarkable advances have been made in the 
definition and classification of these genetic syndromes. Identification of the 
IBMFS and CIS has led to important advances in the understanding of the geno-
types, guiding the clinical practice of the phenotypes. Interestingly, such studies 
provided insights into the function of the various DNA repair pathways. Fanconi 
anemia studies are an example in IBMFS and CIS is named as the paradigm of the 
studies of cancer and aging.

Keywords: inherited bone marrow failure syndromes, chromosomal instability 
syndromes, genetic rare syndromes, cancer predisposition, cancer prone human 
syndromes

1. Introduction

Bone marrow failure is the term for the activity or function in the bone marrow 
production of blood cells from the hematopoietic cells. Studies demonstrated that 
there are more than 80 causative genes identified from bone marrow failure disor-
ders but still about 40% of the disease cause is unidentified. Bone marrow failure 
disorders are classified into idiopathic (acquired) and inherited-(IBMFS) due to the 
inherited conditions transmitted in autosomal recessive pattern [1, 2].
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There are more than 30 different types of disorders, classified into inherited 
bone marrow failure syndromes. The common types are Fanconi anemia, dyskera-
tosis congenita, Shwachman-Diamond syndrome, Diamond-Blackfan anemia, 
Congenital amegakaryocytic thrombocytopenia, Severe congenital neutropenia and 
thrombocytopenia absent radii [3, 4].

There is another group of syndromes named as chromosomal instability syn-
dromes (CIS), are also known as chromosomal breakage syndromes, typically 
transmitted in an autosomal recessive pattern of inheritance defined on the basis of 
cell culture in vitro. The affected individuals exhibit elevated rates of chromosomal 
breakage or instability, leading to chromosomal rearrangements. CIS often lead 
to an increased tendency to develop certain types of malignancies as well [5, 6]. 
Individuals with IBMFS and CIS are commonly in children and these disorders are 
often lethal.

Relatively high rates of some types of IBMFS and CIS can occur in certain 
ethnic groups. Diagnosis is usually complicated because the symptoms presented 
from individuals with IBMFS and CIS may be varied and are often very complex. 
So practically the differential diagnosis of these two groups of syndromes clini-
cally can be very difficult because they share some characteristics of overlapping 
phenotypes.

Studies on IBMFS and CIS for better therapies have achieved exciting suc-
cesses, not only beneficial to IBMFS and CIS studies self but also beneficial to other 
diseases. One of the IBMFS and CIS, Fanconi anemia, is the disease which achieved 
a success in stem cell transplantation used umbilical blood in 1988 [7]. This revolu-
tionary treatment has been using as an effective therapy for many different types of 
diseases, commonly in malignancies in clinical application since then. Studies found 
that the majority of IBMFS and CIS are associated with cancers from the germ line 
mutation and such studies have explored many mysteries in cancer research. For 
example, Fanconi anemia is found to associate with many different types of cancers 
from those mutated genes [8].

Recent advances in molecular-based studies on the identification of respon-
sible genes and defects in their pathways of IBMFS and CIS have provided more 
understanding in the pathophysiological mechanisms. Such advances also provided 
the link between IBMFS/CIS and some types of cancers in the genetic defective 
pathways. Results obtained from research showed that human cancer is caused of 
genetic and environmental factors and their interactions in general. Cancers fall 
into the genetic disease category due to two genetic factors: (1) acquired somatic 
mutations produced by genomic instability and (2) inherited gene mutations. The 
important difference between familial/inherited and sporadic cancer is due to the 
form of germ line mutation in a DNA caretaker gene facilitating the accumulation 
of oncogenic DNA changes, which can result in a high susceptibility to cancer. Both 
IBMFS and CIS have cancer predisposition commonly in AML and MDS, often 
diagnosed at a young age. These types of malignancies require different treatment 
strategies due to the underlying gene defects.

To increase the recognition of myeloid leukemia/MDS associated with inherited or 
germ line mutations, a major change has been made by adding the germ line mutation 
in the classification of myeloid neoplasms and acute leukemia in the new version of 
classification of tumors of the hematopoietic and lymphoid tissues published by the 
World Health organization (WHO) in 2016 including (1) myeloid neoplasms with 
germ line predisposition without a pre-existing disorder or organ dysfunction,  
(2) myeloid neoplasms with germ line predisposition and pre-existing platelet 
disorder and (3) myeloid neoplasms with germ line predisposition and other organ 
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dysfunction. Similarly, studies demonstrated that hereditary predisposition has a 
higher risk of development of acute lymphoblastic leukemia (ALL) as reported in 
TP53 [9].

Recently, studies on genetic disease by the modern technologies, particularly by 
the next generation sequencing dramatically increased the understanding of the 
etiology and classification of IBMFS. So more and more mutated genes have been 
identified and these studies demonstrated that genomic instability, defects in DNA 
repair and telomere biology are the genetic causes. Such discoveries have provided 
insights into several biological pathways, correlation between phenotype and 
genotype, and clinical therapeutically strategies.

In this chapter, the aim IS to review and discuss IBMFS and CIS, together with 
comparison of their phenotypes and genotypes. It is hoped that review will increase 
understanding in further translation of research to clinical practice, so as to raise 
awareness of these genetic-based diseases and the impact on patients’ lives as well as 
improvement of the therapies.

2. The common types of IBMFS

IBMFS are a heterogeneous group of complex genetic disorders characterized by 
bone marrow failure, commonly associated with one or more somatic abnormalities 
and increased cancer risks in childhood but also in adulthood.

The common and representative types of IBMFS are Fanconi anemia, 
Dyskeratosis congenita, Shwachman-Diamond syndrome, Diamond-Blackfan ane-
mia, Congenital Amegakaryocytic thrombocytopenia, Severe congenital neutrope-
nia and thrombocytopenia absent radii. The phenotype and genotype of IBMFS and 
their association are summarized in Table 1.

2.1 Fanconi anemia

Fanconi anemia (FA) is a hereditary disorder with defects in DNA repair and 
is usually inherited as an autosomal recessive trait but it can be X-linked (FA 

Syndromes Inheritance Somatic 

abnormalities

Bone 

marrow 

failure

Short 

telomeres

Cancer 

risk

Identified 

gene 

numbers

References

FA AR/XLR Yes Yes Yes Yes 22 [10, 78]

DC AD/AR/

XLR

Yes Yes Yes Yes 9 [26, 27]

SDS AR Yes Yes Yes Yes 1 [28, 29]

DBA AD Yes Yes Yes Yes 11 [31, 32]

SCN AD/AR Yes Yes ? Yes 5 [36, 38]

CAMT AR Yes Yes ? Yes 1 [39, 40]

TAR AR Yes Yes ? Yes 1 [41, 42]

FA, Fanconi anemia; DC, dyskeratosis congenita; SDS, Shwachman-Diamond syndrome; DBA, Diamond Blackfan 
anemia; CAMT, congenital amegakaryocytic thrombocytopenia; SCN, severecongenital neutropenia; AD, autosomal 
dominant; AR, autosomal recessive; XLR, X-linked recessive.

Table 1. 
Common types of inherited bone marrow failure syndromes.
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complementation group B). Cells from patients with FA are more sensitive to 
chemotherapy than those from patients without FA, which can cause severe conse-
quences from the normal dose of chemotherapies. So far, 22 genes responsible for FA 
have been identified [10]. In the general population, the complementation A occurs 
in about 60–70%, while complementation-C occurs in about 15% and the comple-
mentation-G occurs in about 10% of the total 22 FA responsible genes mutated with 
a vary of their subgroups in some geographical regions (Table 2 and Figure 1).

Patients with FA are characterized with congenital abnormalities but progressive 
bone marrow failure is the most common characteristic, so it is named as IBMFS. FA 
also increases susceptibility to malignancies and individuals with FA also can suffer 
one or more types of cancers.

FA also has with variable congenital malformations and a predisposition to develop 
hematological or solid tumors, commonly in MDS, AML, and solid tumors, commonly 
carcinoma of the oropharynx and skin. Studies found the association of FA with a 
pattern of recurrent chromosomal abnormalities including monosomy chromosome 
7, deletion of the long arm of chromosome 7, gain of the long arms of chromosome 
3 and 1 and the RUNX1 gene mutations in about 20% of the combined MDS cases. 
Chromosome abnormalities with 7 and 3 had a poor prognostic indication value [11].

Complementation groups Gene’s symbols Locations on chromosomes

FA-A FANCA 16q24.3

FA-B FANCB Xp22.31

FA-C FANCC 9p22.3

FA-D1 FANCD1 13q12.3

FA-D2 FANCD2 3p25.3

FA-E FANCE 6p21.3

FA-F FANCF 11p15

FA-G FANCG 9p13

FA-I FANCI 15q26.1

FA-J FANCJ 17q22

FA-L FANCL 2p16.1

FA-M FANCM 14q21.3

FA-N FANCN 16p12

FA-O FANCO 17q25.1

FA-P FANCP 16p13.3

FA-Q FANCQ 16p13.12

FA-R FANCR 15q15

FA-S FANCS 17q21

FA-T FANCT 1q32.1

FA-U FANCU 7q36

FA-V FANCV 1p36

FA-W FANCW 16q22.3

Data extracted from the Rockefeller University » Fanconi Anemia Mutation. Database at www.rockefeller.edu/
fanconi, Ref. [10].

Table 2. 
Fanconi anemia genes and locations on chromosomes.
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The FA pathways are defined from the encoded proteins work in concert in a 
distinct genomic maintenance. The FA pathways in normal cells are not consti-
tutionally active but they are turned on during the S phase of the cell cycle in the 
presence of DNA damage to coordinate distinct repair functions in nucleotide 
excision, translesion synthesis and homologous recombination to remove the cross 
links [12].

The 22 FA gene products make up the FA pathways in the maintenance of 
genomic stability and the FA pathways can be activated by DNA damage and 
replication. The number of FA proteins reflects the complicated nature of the FA 
pathways. Mutation in any of the 22 FA genes causes defects in the response to 
DNA damage and repair results in disease of FA by the loss of DNA interstrand 
cross-links repair [13]. The FA pathways are the key event with the complex 
pathological mechanisms in DNA repair and cancer suppression in both inherited 
and sporadic cancers.

The proteins involved in FA consist of several classes of enzymes and structural 
proteins, including ubiquitin ligase, monoubiquitinated proteins and helicase [14]. 
FA nuclear core protein complex consists of eight proteins, encoded by FANCA, 
FANCB, FANCC, FANCE, FANCF, FANCG, FANCL and FANCM, with ubiquitin 
ligase activity. This protein complex is required for the critical monoubiquitination 
of FANCD2 and FANCI in response to DNA damage during replication. The biologi-
cal functions of this protein complex are to maintain DNA stability and repair DNA 
damage protein-protein interactions are required for core complex protein stability 
form the stable core protein complex in function that is required for the modifica-
tion of FANCD2 and FANCI by monoubiquitination.

E3 ubiquitin-protein ligase FANCL belongs to the multi-subunit FA complex and 
is a ligase protein that mediates monoubiquitination of FANCD2, a key step in the 
repair of ICLs in the FA pathways [15]. FANCL is associated with hypersensitivity 
to DNA-damaging agents, chromosomal instability (increased chromosome break-
age) and defective DNA repair [16]. The monoubiquitination process of FANCD2 
and FANCI recruits DNA repair machinery in order to maintain genomic integrity 
during cellular proliferation within certain tissues. Mutation in any member 

Figure 1. 
22 FA-genes identified on chromosome locations constructed from the data extracted from the Rockefeller 
University Fanconi Anemia Mutation Database at: www.rockefeller.edu/fanconi. Ref. [10].
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of a core protein complex results in the loss of the monoubiquitination of the 
FANCI/FANCD2 complex step [17]. FANCD2 and FANCI proteins are substrates 
for ubiquitination with the two being similar in size and domain structure. This 
monoubiquitination is the crucial event of the FA pathways, and the monoubiq-
uitination isoform of FANCD2 associates with the repair protein BRCA1 in DNA 
damage-induced nuclear foci. This foci formation is induced by both cross-linking 
agents and DNA-damaging agents and this process is regulated by the nuclear core 
protein complex [18].

The genetic association between cancers with FA and without FA gene muta-
tion clinically has been intensively investigated and a close connection has been 
discovered between FA and tumorigenesis observed from both clinical and 
cellular phenotypes. Inherited homozygous (bi-allelic) mutations from germ line 
can cause FA phenotype and increase susceptibility to both hematologic and non-
hematologic malignancies [19]. The first case of FA was recognized as a cause of 
Juvenile leukemia in 1967 [20]. Cancers with FA gene mutations are difficult to be 
treated (except surgically) because cells from patients with FA are more sensitive 
to chemotherapy and radiation comparing with non-FA cancers [21]. The relative 
risk of non-hematologic malignancies in patients with FA is increased commonly 
for squamous cell carcinomas (700 times greater than in normal population) 
including the head and neck, vulva, esophagus, gastric osteogenic sarcoma, 
cervix and skin. Many other types of cancers including breast cancer, lung cancer, 
colon cancer and brain tumor were found from patients with FA as well, with 
the median onset age of cancers being 16 years old in FA patients compared with 
68 years in the non-FA population [22]. In addition, FA patients could develop 
different types of cancers.

The risk of developing to acute myeloid leukemia (AML) and myelodysplastic 
syndrome (MDS) has been reported to increase by 785-fold [23, 24]. It is estimated 
that acute myeloid leukemia from the germ line mutation associated cause is about 
10–15% and it could be higher. Inherited germ line mutations are present in an 
increasing proportion of children, predisposing them to leukemia. Several genetic 
syndromes have been found to associate with leukemia/cancers and the best 
examples are IBMFS and CIS. The risk of leukemia/cancers and the outcome of 
these syndromes particularly in these with substantial proportion of patients with 
therapy related leukemia/cancer harbor germ line mutations in DNA damage and 
response genes such as BRCA1/2 and TP53.

To deal with germ line mutated leukemia, not only requires an increase in 
awareness of germ line mutations but also taking family history from patients and 
offering genetic counseling for the relevant to malignant diagnosis, it also requires 
an understanding of the developments of the genetic landscapes because the 
treatment strategy for IBMFS and CIS associated malignancies is different from the 
malignancies in the sporadic manner. The differential diagnosis on malignancies 
such as MDS, acute leukemia and solid tumors is imperative.

Studies showed that there was no increase of cancer risk from FA carriers in 
overall but there was evidence that these carriers from FANCC type mutation 
increase breast cancer risk, so it was suggested that carries of relatives of FANCC 
should carefully follow the recommendations for breast cancer screening [25].

However, an early and accurate diagnosis for FA is often difficult because FA is 
a genetically and phenotypically heterogeneous disease lacking specific and typical 
clinical features. Diagnosis in more or less cases can be delayed until bone marrow 
failure or cancer/leukemia occurs. As a result, Delayed or misdiagnosis or even 
wrong treatment received for patients with FA are not uncommon events clinically 
in some regions or countries due to the lack of recognition of FA from the clinicians 
and the limitation in testing resource in laboratory.
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2.2 Dyskeratosis congenita

Dyskeratosis congenita (DC or DKC) is an inherited disease in autosomal 
dominant, autosomal recessive and X-linked patterns which is defined as one of the 
IBMFS characterized by the presence of bone marrow failure and the mucocutane-
ous triad of abnormal skin pigmentation, nail dystrophy, and mucosal leukoplakia 
[26]. Patients with DC increases the risk of MDS, AML and other types of cancers 
(carcinomas of the upper gastro-intestinal tract). Aplastic anemia, MDS and AML 
from patient with DC could be the early or first signs to be seen clinically. DC is 
the most typical representative type in IBMFS in telomere abnormality causing 
genomic instability due to the accelerated telomere shortening to result in cell loss 
or dysfunction and nine genes responsible for DC (DKC1, TERT, TERC, TINF2, 
RTEL1, NOP10, NHP2, WRAP53 and CTC1) the functioning and maintenance of 
telomeres have been identified so far [27].

2.3 Shwachman-Diamond syndrome

Shwachman-Diamond syndrome (SDS) is an autosomal recessive disorder 
characterized by early onset exocrine pancreatic insufficiency, bone marrow failure 
and other genetic abnormalities. About 20% of SDS patients will develop MDS 
and 25% of patients with SDS will develop leukemia [28]. Deletion 5q, monosomy/
deletion of chromosomal 7q and 20q are the most frequent abnormalities in patients 
with SDS presenting with MDS but such types of chromosomal abnormalities do 
not contribute to leukemia transformation. Molecular studies showed about 90% of 
SDS patients have SBDS gene mutation and its product has an important role in the 
maturation of the 60S ribosomal subunit [29].

2.4 Diamond-Blackfan anemia

Diamond-Blackfan anemia (DBA) is a rare, dominantly inherited syndrome 
characterized by bone marrow failure, birth defects, and a significant predisposi-
tion to cancer. The main clinical characteristics of DBA are the early infant anemia 
selectively in erythroid lineage (pure red cell aplasia) with some somatic abnor-
malities such as craniofacial thumb, cardiac and urogenital malformations [30] 
commonly develop to an increased predisposition to MDS, AML and other types of 
tumors has been reported [31]. DBA gene (RPS19) was identified in 1999 [32].

Subsequent studies found the heterozygous mutations in other encoding genes 
for ribosomal proteins of the small (RPS24, RPS17, RPS7, RPS10, RPS26) and large 
(RPL5, RPL11, RPL35) ribosomal subunits have also found to associated with DBA 
and RPS5 gene was found tend to have multiple physical abnormalities [33]. RPS19 
mutations causing DBA showed ethnic difference in phenotype expression [34]. 
Recent studies using aCGH identified deletion of RPL15 as a novel cause of DBA [35].

2.5 Severe congenital neutropenia

Severe congenital neutropenia (SCN) is an autosomal recessive disorder char-
acterized by early onset neutropenia and presented with recurrent life infections 
but early with physical abnormalities. SCN can develop to MDS and AML with the 
secondary mutations including the granulocyte colony stimulating factor receptor 
[36]. The neutrophil elastase gene (ELA2), defects in mitochondria gene (HAX1), 
deficiency in adenylate kinase 2 gene (AK2) and a other genes mutated (GFI1, 
WASP the transcriptional repressor and the cytoskeletal regulator, respectively) 
associated with apoptosis was found to responsible for SCN in at least 50% patients 
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[37, 38]. Such genetic defects in multiple pathways causing congenital neutropenia 
are in the controlling of granulocytic progenitor differentiation.

2.6 Congenital amegakaryocytic thrombocytopenia

Congenital amegakaryocytic thrombocytopenia (CAMT) is characterized as 
hemorrhages or bruises associated with thrombocytopenia in infancy but rarely 
presents with physical defects. MDS and AML but not solid tumors associated with 
CAMT have been reported [39]. Molecular studies demonstrated the gene mutated 
called MPL (encoding of the receptor for thrombopoietin) is responsible for CAMT 
and showed the correlation between genotype and phenotype [40].

2.7 Thrombocytopenia absent radii

Studies found that thrombocytopenia absent radii (TAR) can be either in auto-
somal recessive or de novo pattern, typically seen in infants presenting with throm-
bocytopenia (low platelet count) and allergy to cow milk, physical characteristic of 
bilateral absent radii and other types of birth defects [41]. Similarly, acute leukemia 
and solid tumors have been reported from patients with TAR [42].

The pathological mechanism of thrombocytopenia was studied and the serum 
level of thrombopoietin (the megakaryocyte growth factor) was increased, sug-
gesting the abnormal differentiation mechanism to megakaryocyte and platelet 
production [43].

The first molecular finding of interstitial microdeletion at chromosome 1q21.1 
containing 10 genes including the TAR responsible gene-RBM8A by using com-
parative genomic hybridization (CGH) microarray technique was in 2007 [44]. 
Recent finding proved that RBM8A encodes the conserved Y14 subunit of the 
exon-junction complex that is essential for RNA processing and expressed in all 
hematopoietic lineages suggesting the cause of TAR [45].

3. The common types of CIS

Studies demonstrated that many types of rare genetic diseases associate chromo-
some instability typically seen in chromosome instability syndromes with shared 
clinical features each other. CIS is characterized by an increased frequency of 
spontaneous or induced chromosomal breaks/aberrations and increased risk of 
cancer due to the defects of DNA repair as Taylor has defined and described about 
their clinical features on the most common types of CIS in 2001 [46]. The common 
cause of chromosomal instability syndromes is the defects of genomic maintenance 
and DNA repair and they are overlapping and share some clinical features.

The chromosomal instability refers to the predisposition of the chromosomes 
to undergo rearrangements at the chromosomal level. For example, FA increased 
spontaneous and inducible chromosome breaks, Ataxia telangiectasia increase 
chromosome breaks presence of clones with translocations between chromosome 
7,14 and X, BLOOM syndrome increased spontaneous and inducible SCE. They are 
all have increased spontaneous chromatid breaks of symmetrical quadriradials as 
their main cytogenetic features.

The common types of CIS are FA, Nijmegen breakage syndrome, Ataxia 
telangiectasia, Ataxia telangiectasia-like disorder and Bloom syndrome. The phe-
notype and genotype and their association with cancer are summarized in Table 3. 
Interestingly, FA fall into two classes of genetic syndromes: class one is IBMFS which 
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has been discussed in the pathogenetic mechanism in the IBMFS part and class two 
is named as CIS with overlaps in the phenotypes with IBMFS (Figure 2).

3.1. Fanconi anemia

FA proteins maintain the genomic stability and repair the DNA damaged by 
factors. But under the condition of FA proteins defects, the damaged DNAs fail to 
be repaired as normal, resulting in FA clinical phenotypes. Because Fanconi anemia 
(FA) Cells from FA patients exhibit a hypersensitivity to DNA interstrand cross-
linking agents a specific method named “Gold standard” and called “chromosomal 
fragility testing” using clastogenic agents, mitomycin C (MMC) and diepoxybu-
tane (DEB) was found by Cervenka et al. in 1981 [47] and Auerbach in 1993 [48], 
respectively The principle of this method is to challenge the hyposensitive FA cells 
in the cell culture (most commonly T-lymphocytes from peripheral blood) exposed 
to DEB and MMC and then to analyze the chromosomal aberration, breaks, rear-
rangements and radials exchanges. A total 50 cells in metaphase are scored and 
analyzed for chromosomal breakages compared to controls in the same conditions 
including age and sex. It is positive if the total chromosome breakage is greater 

Syndromes Phenotypes Locations on 

chromosomes

Mutant 

genes

Protein 

functions

Cancer 

risk

References

Fanconi 

anemia

Congenital 

abnormalities, 

bone marrow 

failure

Various FANC-A, 

B, C, D1, 

D2, E, F, 

G, I, J, L, 

M, N, O, 

P, Q, R, 

S, T, U, V 

and W

Various Yes [10, 79]

Nijmegen 

Breakage 

syndrome

Microcephaly 

and mental 

retardation, 

immune-

deficiency, 

radiation 

sensitivity

8q21.3 Nbs1 BRCT-

containing 

protein

Yes [52, 79]

Bloom’s 

syndrome

Immuno-

deficiency, 

premature 

aging

15q26.1 NLM DNA helicase Yes [57, 78]

Ataxia 

telangiectasia

Neuro-

degeneration, 

immune-

deficiency, 

premature 

aging, 

radiation 

sensitivity

11q23 ATM Protein 

kinase

Yes [67, 73]

Ataxia 

telangiectasia-

like disorder

Cerebellar 

degeneration, 

radiation 

sensitivity

11q21 Mre11 Exonuclease/

endonuclease

Proposed 

but no 

report 

seen

[74, 77]

Table 3. 
Common types of chromosome instability syndromes.
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than 10-fold comparing to control. A typical chromosome breakage of peripheral 
lymphocytes induced by MMC from patient with FA is shown in Figure 3.

In the last two decades, the method of chromosome fragility testing has been 
the most widely used as the first line laboratory screen for patients with congenital 
malformations even without anemia with the features of simple, reliable, reproduc-
ible and sensitive comparing with other testing methods in FA diagnosis although it 
is laborious and requires specialized personnel.

Chromosome fragility test method can differentiate between FA and non-FA 
cell usually but there are some limitations of this method: (1) it cannot detect the 
carriers, (2) it is often inconclusive in somatic mosaic cases of FA and (3) false 
positive results from this test can be seen under the condition that tested individual 
referred for excluding of FA is under treatment with radiotherapy or chemotherapy 

Figure 2. 
Major types of CIS and IBMFS. FA overlaps with these two syndromes. Refs. [78, 79].

Figure 3. 
Chromosomal/chromatid breaks as indicated by arrows induced by MMC from patient with FA.
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in certain period of time. In the earlier times, the spontaneous chromosomal break-
age as a marker for FA diagnostic testing was used but it was found the testing result 
was inconsistent. Spontaneous chromosomal breakage usually indicates a poor 
prognosis.

The next generation sequencing method for FA testing is to confirm the results 
found by the chromosomal fragility testing and to identify the specific gene muta-
tions of FA as the severity of the disease and the risk of developing aplastic anemia 
or malignancies related to the complementation groups. Mutation analysis is to 
identify the specific gene mutations from the proband after confirmation by the 
primary complementation group result and molecular techniques.

The conventional Sanger sequencing technology-based mutation sequencing 
is complicated and time consuming, costly and may not detect all types of disease 
causing aberrations such as deep intronic mutations, large deletions and amplifica-
tions due to the presence of so many mutated genes involved in FA requiring many 
steps including DNA amplification, sequencing and detection of large deletions. 
Such testing usually needs to be done in laboratories with specific expertise.

Targeted mutation analysis is used as the clues to detect the common mutations 
detection. These clues include Ashkenazi Jewish FANCC IVS4 + 4 A>T or FANCD1/
BRCA2 6174delT; non-Ashkenazi Jewish Moroccan FANCA 2172-2173insG or 
FANCA 4275delT; Tunisian FANCA 890-893del; Indian FANCA 2574C>G (S858R); 
Israeli Arabs FANCA del ex 6-31, FANCA IVS 42-2A>C, and FANCG IVS4 + 3A>G; 
Japanese FANCC IVS4 + 4 A>T; Afrikaner FANCA del ex 12-31 and FANCA del 
ex 11-17; Brazil FANCA 3788-3790del; Spanish Gypsy FANCA 295C>T; and Sub-
Saharan African Black FANCG 637-643delTAACCGCC [49].

The majority of patients with FA worldwide are the complementation A with 
several hundred mutations. Deletion/duplication analysis is also used to detect 
deletions of one or more exons or of an entire gene of any suspected case of FA. So 
the target sequence analysis is to be used for all the known genes associated with FA 
which usually is complicated by the number of genes to be analyzed, the large num-
ber of possible mutations in each gene, the presence of large insertions or deletions 
in some genes, and the large size of many of the FA-related genes. If the comple-
mentation group has been established the responsible mutation can be determined 
by sequencing the corresponding gene.

The next generation sequencing (NGS) technology offers exciting promise, 
an effective and faster molecular diagnostics approach for FA gene studies which 
is able to perform the mutation analysis for FA genes without the requirement of 
complementation group testing step which the living cells are required. Ameziane 
et al. applied the next generation sequencing approach to identify BRCA2, 
FANCD2, FANCI and FANCL mutations in novel unclassified FA patients [50]. 
Practical experience proved that NGS is an effective molecular diagnostic approach 
for IBMFS and CIS, reducing the turnaround tine and the cost gas been becoming 
lower gradually, and is now a standard tool in the clinical application. Recently, 
Aslan D group has used the NGS technique and studied a FA case with subtle signs 
and a negative chromosomal breakage test [51].

In the clinical practice, an early and accurate diagnosis of FA before the stage of 
bone marrow failure, cancer/leukemia is crucial for the adequate treatment such as 
stem cell transplantation, the prevention of serious medical complications and also 
for the properly management in the other caring areas including pediatric, hematol-
ogy, immunology, endocrinology, reproductive/IVF, obstetrics and surgery and also 
an early diagnosis of FA will permits the exclusion of other diseases and precludes 
inappropriate management of hematologic diseases such as aplastic anemia, myelo-
dysplastic syndrome and acute myeloid leukemia.
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3.2 Nijmegen syndrome

Nijmegen syndrome (NS) is named from the Dutch city Nijmegen where the 
condition was first described. It is also named Berlin breakage syndrome, Ataxia 
Telangiectasia variant 1. NS is an autosomal recessive inherited disease with a com-
plex health problematic conditions typically characterized (NS) by short stature, 
microcephaly, distinctive facial feature, recurrent respiratory tract infections, men-
tal development delay from infancy to childhood, dysfunctional immune deficiency 
in T cells and low level of immunoglobulin G and A and increased susceptibility to 
infections. Individuals with NS increased risk of cancer development (>50 times), 
commonly in Hodgkin lymphoma, brain tumor, rhabdomyosarcoma about 40% 
of the affected individuals and usual before age 15. Studies showed heterozygous 
mutation increase cancer occurrence as well [52].

It is estimated that the prevalence of Nijmegen syndrome is in approximately 
100,000 newborns although the exact data is still unknown [53]. Most individuals 
with NS have West Slavic origins and the largest number of them live in Poland. In 
the clinical presentation and laboratory diagnostic testing, Nijmegen syndrome and 
Fanconi anemia show biological overlap. A positive result of chromosomal breakage 
induced with clastogens such as MMC and DEB can be seen both in Fanconi anemia 
and Nijmegen syndrome. Translocations or inversions between chromosomes 7 and 
14 can be seen its feature in Nijmegen syndrome [54].

The genetic cause of NS is due to the mutation of NBN gene mutation with 
homozygous c.657_661del5 on chromosome 8q21.3, resulting in nibrin protein dys-
function which is involved in several critical cellular functions, including the repair 
of damaged DNA to maintain the stability of the genomic function when breaks 
of DNA strands happen in the stage where the genetic material in chromosomes 
exchanges for cell division. As a result, affected individuals are sensitive to radiation 
and other agent exposures [55, 56]. The molecular tests to confirm the diagnosis of 
a suspected proband are the analysis of exon 6 to determine if the c.657_661 del5 
allele and the analysis of entire NBN gene by the sequencing method.

3.3 Bloom syndrome

Bloom syndrome (BSyn) is also named as Bloom-Torre-Machacek syndrome and 
Bloom-Torre-Machacek syndrome. BSyn is an autosomal recessive pattern charac-
terized with short stature, learning disability, a skin rash, sensitive to sun exposure, 
serious medical complications such as mild immune-deficiency, chronic obstructive 
pulmonary disease, varying degree of infertility in both male and female, increased 
risk of diabetes. Increased risk of cancers to 5–8-folds in earlier life, commonly 
seen myelodysplasia, leukemia, lymphoma, adenocarcinoma and other types of 
cancers in epithelial tissues are the characteristics of BSyn as well [57]. Cytogenetics 
findings are the aberrant chromosomal rearrangements including quadriradial, 
chromatid gaps and breaks, increased frequency of SCE from the cultured lympho-
cytes [58].

Molecular studies demonstrated that mutation of BLM gene which is a 4528-
bp cDNA sequence defines BLM containing a long open reading frame encoding 
a 1417-amino acid protein with 22 exons and is located on chromosome 15q26.1 
resulted in RecQ helicase dysfunction in BLM protein is the cause of this disease. 
The BLM protein helps to maintain genome stability and integrity as the care-
takers of the genome and also prevents the excess sister chromatid exchanges 
[59–62]. As a result, SCE is increased to 10-folds under the condition BLM gene 
mutated. In addition, chromosomal breakage is increased in individuals with 
Bloom syndrome [63–66].



13

Inherited Bone Marrow Failure and Chromosome Instability Syndromes and their Cancer…
DOI: http://dx.doi.org/10.5772/intechopen.81546

3.4 Ataxia telangiectasia

Ataxia telangiectasia (AT) is an autosomal recessive inherited disorder first 
described in 1926 by two French physicians, Syllaba and Henner [67]. AT is also 
known as Boder-Sedgwick syndrome or Louis–Bar syndrome and its characteristics 
including a progressive loss of muscular coordination (ataxia), small cerebellum 
observed by MRI, increased alpha-fetal protein level and dilated blood vessels in 
the skin (telangiectasia) caused by a defect in ATM gene. AT affected 1 in 40,000 
to 100,000 people worldwide [68] and also affects the nervous, immune and other 
body systems [69]. The ATM gene provides instructions for making the phosphati-
dylinositol 3-kinase protein to help control cell division in the normal development 
and DNA repair [70–72]. Studies demonstrated that increased cancer risk including 
T-cell leukemia, B-cell type of lymphoma usually, other types of cancers such as 
ovarian, breast, gastric cancers, melanoma and sarcoma have been reported [73].

Molecular studies revealed the mutations in the ATM gene with several allelic 
variants located on chromosome 11q23 are responsible for Ataxia-telangiectasia due 
to the defects in providing instructions for making the specific protein to help in 
controlling of cell division, DNA repair and in the normal biological development 
and function of the body particularly in nervous and immune systems.

3.5 Ataxia telangiectasia-like disorder

Ataxia telangiectasia-like disorder (ATLD) is a rare autosomal recessive disorder 
characterized by progressive cerebellar degeneration that shares many clinical 
presentations with Ataxia telangiectasia but without immune deficiency and 
telangiectasia, no cancer case report found. It was first designed in 1999 [74] and 
molecular studies showed that ATLD is caused by inactivating mutations of genes in 
either homozygous or compound heterozygous [75]. ATLD is usually diagnosed at 
young at the age starting to walk lacking of coordination and imbalance [76].

Studies showed that there are two mutated genes responsible for ATLD either 
in homozygous or compound heterozygous. The first is MER11A gene on chromo-
some 11q21 (ATLD-1) more than 10 different types of variants and the other one is 
PCNA gene on chromosome 20p12 [77]. Cells from patients demonstrated increased 
susceptibility to radiation due to the defect of DNA repair pathway. The ATM 
and MER11A genes are located on the long arm of chromosome 11closely and the 
biological function of MERA11 protein is linked to Nbs1 in DNA repair.

4. Conclusions

In the past decades, the diagnosis of IBMFS and CIS were limited by the few 
numbers of cases reported, uneven clinical features and the tests from the labora-
tory in the slow technologies available at that time.

Thanks to the Human Genome Project, researchers have begun to understand 
the blueprint of the human genome by learning more about the structures and 
functions of human genes and proteins. With the application of new technologies 
for the studies, the concept and practice of genetic disease have been profoundly 
changing. The next generation sequencing technology has also been remarkably 
successful in the identification of causes of genetic diseases using whole-genome, 
whole-exome, and transcriptome sequencing.

The studies on IBMFS and CIS have been offering a lot of opportunities by 
increasing our understanding of the correlations between phenotype and genotype 
and such studies have been enlightening the other areas particularly in personalized 
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medicine. Such advances resulted in an unprecedented boom in medical research 
and an abundance of discoveries linking genetic variants to an assortment of 
diseases including various cancers. They also have been impacting the genetic field, 
integrating genomic medicine to primary healthcare practice, bridging the gap 
between the basic research and clinical application and revealing the pathological 
basis of genetic diseases which allows the development of accurate and specific tests 
for disease diagnosis and the eventual translation of research knowledge to clinical 
therapies.

There are a lot of challenges facing in such a field. Even up to now not all 
subtypes of IBMFs and CIS are well documented for the clinical and laboratory 
diagnostic criteria and guidelines due to the disease heterogeneous complexity of 
the disease, particularly in the developing counties. The clinical manifestations of 
such patients are highly variable so delay, misdiagnosis and mistreatment were not 
uncommon under the condition in which such syndromes were treated, that is, with 
the normal dosage for radiation/chemotherapy. Clinicians working in the field of 
IBMFS and CIS require a broad clinical knowledge on genetics, hematological and 
oncological aspects and the ability to refer such patients for testing as well as an 
experienced laboratory able to perform the particular testing and to translate the 
laboratory findings correctly into clinical practice. These are the prerequisites for 
diagnosis of the IBMFS and CIS as well. So cooperation of Multi-displines including 
genetics, hematology, endocrinendonology, immunology, microbiology, oncology 
and surgical in the clinic is required for a team in the diagnosis and treatment and 
also is required from cellular, protein and molecular levels in the laboratory testing, 
generally performed in a qualified and experienced laboratory. Diagnosis and dif-
ferential diagnosis on IBMFS and CIS can be difficult sometimes due to the nature 
of disease and the lack of the specific techniques. Inherited cancer can be the early 
presentation of the disease as a reason.

Diagnosis on patients with IBMFS and CIS also is challenging, particularly in 
its early phase. Mismanagement from the misdiagnosis of IBMFS and CIS was not 
uncommon in some regions and countries because IBMFS and CIS is a genetically 
and phenotypically heterogeneous disease and also because IBMFS and CIS share 
many clinical features with several group diseases/syndromes. In research, the pre-
cise biological activities and the roles of the FA proteins remain still undetermined 
because most FA proteins in the core complex have no enzymatic motif which is an 
obstacle to understanding their molecular functions.

However, from a diagnostic perspective, we are still expecting the development 
of the ideal technologies for genetic disease testing with the features of specificity, 
sensitivity, accuracy, reliability, high throughput capacity, reproducibility, low cost 
and ease of operation because about 45% of patients with IBMFS and CIS need to 
be identified genetically. Furthermore, despite our vastly improved knowledge of 
human genetic variations, studying associations between genetic disease genotype 
and phenotype still remains a major challenge and there are many of mysteries 
unknown in the functional genetics causing diseases.
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