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Chapter
Derivation of the BG Model

Takaaki Uda, Masumi Serizawa and Shiho Miyahara

Abstract

The BG model (a model for predicting 3D beach changes based on the Bagnold’s
concept) was introduced, and the fundamental aspects of the model were
explained. The BG model is based on the concepts such as (1) the contour line
becomes orthogonal to the wave direction at any point at the final stage, (2)
similarly, the local beach slope coincides with the equilibrium slope at any point,
and (3) a restoring force is generated in response to the deviation from the statically
stable condition, and sand transport occurs owing to this restoring force. The same
concept has been employed in the contour-line-change model and N-line model. In
these studies, the movement of certain contour lines was traced, but in the BG
model, 3D beach changes were directly calculated.

Keywords: BG model, derivation, physical meaning

1. Introduction

The BG model is based on the concepts such as (1) the contour line is orthogonal
to the wave direction at any point at the final stage, (2) similarly, the local beach
slope coincides with the equilibrium slope at any point, and (3) a restoring force is
generated in response to the deviation from the statically stable condition, and sand
transport occurs owing to this restoring force. The same concept has been employed
not only in the contour-line-change model [1] but also in the N-line model [2-7]. In
these studies, the movement of certain contour lines was traced, but in the BG
model, the depth change on the 2D horizontal grids was directly calculated. Falqués
etal. [8, 9] developed a medium- to long-term model for beach morphodynamics
named Q2D-morfo. In their model, similar expressions regarding crossshore and
longshore sand transport equations as the BG model were employed. In particular,
they used the beach slope measured on a real coast as the equilibrium slope, similar
to the BG model, and the prediction of beach changes bounded by two groynes was
carried out, but the prediction period was as short as 35 days [8]. van den Berg et al.
[10] predicted the development of a sand wave associated with large-scale beach
nourishment due to shoreline instability under the oblique wave incidence at a
large angle using the model proposed by Falqués et al. [8]. Larson et al. [11]
proposed the crossshore sand transport equation in the swash zone using the
concept of the equilibrium slope and predicted the foreshore evolution. Similarly,
Larson and Wamsley [12] proposed crossshore and longshore sand transport
formulae in the swash zone, and they used the similar equations as the BG model.
Their equations were also employed in the 3D beach change model in the swash
zone by Nam et al. [13].
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2. Derivation of the BG model

In the derivation of the sand transport equation of the BG model, we referred
Bagnold [14] and the previous studies after Bagnold (Inman and Bagnold [15],
Bowen [16], Bailard and Inman [17], and Bailard [18]). Bagnold [14] derived the
sand transport equation for a unidirectional steady flow with an explicit expression
of the seabed slope by applying the energetics approach. Inman and Bagnold [15]
assumed that sand transport in a wave field is the sum of the components caused by
shoreward flow during the motion of incoming waves and those caused by seaward
flow during the motion of outgoing waves and defined the slope satisfying zero net
onshore or offshore sediment transport as the equilibrium slope. Their equilibrium
slope is the slope when upslope effect due to the asymmetry in action of incoming
and outgoing waves and downslope effect due to the gravity balance each other.

Regarding the sand transport equation under waves, Bowen [16], Bailard and
Inman [17], and Bailard [18] formulated the instantaneous sand transport flux on
the basis of the sand transport equation for a unidirectional steady flow by Bagnold
[14], assuming that the wave dissipation rate is proportional to the third power of
the instantaneous velocity. Then, the net sand transport formula was derived by
integrating the instantaneous sand transport flux over one wave period. Further-
more, they derived the equilibrium slope equation using the wave velocity param-
eters. Out of these studies, the sand transport flux formula by Bailard and Inman
[17] considers both bed load and suspended load, and this formula has been exten-
sively used in the models for predicting beach changes. Kabiling and Sato [19]
calculated the wave and nearshore current field using the Boussinesq equation and
predicted 3D beach changes using the Bailard formula. Long and Kirby [20] also
carried out the numerical simulation of beach changes using the Bailard formula
and Boussinesq equation. However, the application of their model to the long-term
prediction of the topographic changes in an extensive calculation domain is limited
because the recurrent calculations in solving the time-dependent equation of the
wave field are time consuming. On a real coast, a longitudinal profile maintains its
stable form as a whole, as a result of the wave action for a long period of time, apart
from the short-period seasonal variation of the beach, suggesting the existence of an
equilibrium slope on a real coast. In contrast, in their studies, the beach slope does
not necessarily agree with the equilibrium slope after long-term prediction, even
though an equilibrium slope exists, and it is difficult to explain the phenomena
really observed on a coast.

In this study, we return to the starting point of Bagnold’s basic study, and simple
sand transport equations are derived. Then, a model for predicting 3D beach
changes by applying the concept of the equilibrium slope introduced by Inman and
Bagnold [15] and the energetics approach of Bagnold [14] is developed [21].

Figure 1 shows the definitions of the variables. Consider Cartesian coordinates
(x, y) and the seabed elevation Z (x, y, t) with reference to the still water level as a
variable to be solved, where ¢ is the time. Assume that waves are obliquely incident
on a coast with a slope of tan . #n and s are the local coordinates taken along the
directions normal (shoreward) and parallel to the contour lines, respectively. The 7-

axis makes an angle of 6, measured counterclockwise from the x-axis, ¢, is the unit
vector normal to the contour lines (shoreward), e, is the unit vector parallel to the

contour lines, ¢, is the unit vector in the wave direction, and 6, is the wave
direction measured counterclockwise from the x-axis. « is the angle between the
wave direction and the direction normal to the contour lines. These unit vectors are
expressed as
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direction

Figure 1.
Setup of the coordinate system and definition of variables.

¢, = (cos@,, sinb,) (1)
e; = (—siné,, cosé,) (2)
¢w = (cosf,, sinb,) (3)

The components of the sand transport vector ¢ are expressed as Eq. (4), the
direction and magnitude of which give the direction of sand transport and a volu-
metric expression for the sand transport rate per unit width normal to the direction
of sand transport and per unit time, respectively. In addition, 4 can be expressed as
the vector sum of the crossshore and longshore components in each direction of #
and s as in Eq. (5), and by taking the inner products of ¢, and ¢ and of ¢; and 7', the

crossshore and longshore components of sand transport, g, and ¢, are given by
Egs. (6) and (7), respectively.

7= (4.9, )
q=q.en+9,¢ (5)
4, =en q (6)
g, =éq 7)

When the gradient vector of Z is defined as Eq. (8), VZ becomes a vector, the
direction and the absolute value of which are along 7-axis and tan f, respectively,
with the component form of the expression in Eq. (9) in (x, y) coordinates. Fur-
thermore, Egs. (10)—(15) are satisfied.

VZ = tanf e, (8)

VZ = (tanp cos6,, tanfsinb,) = (dZ/dx,dZ/dy) 9)
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‘v% ] - \/ (0Z/0x)> + (9Z/dy)> = tanp (10)
tanf e,= (—0Z/dy,dZ/ox) (11)
0, = tan! (%/%) (12)
dy | 0x
a=260,—20, (13)

cosa = e, - e,
- (e;: : v%)/‘v%) (14)
— (o8 0(3Z/3x) + sin0,(0Z/dy)]/ tan B
sina=e,- e
= (ej’,, -tan f e_;)/tanﬂ (15)
— [ c080,(aZ/dy) + sin 0, (3Z/0x)]/ tan

The fluid motion due to waves near the sea bottom becomes oscillatory, and a sand
particle moves back and forth in the crossshore direction. Sand transport in a wave
field is assumed to be the sum of the components caused by shoreward flow during
the motion of incoming waves and those caused by seaward flow during the motion of
outgoing waves, as suggested in [15], and the sand transport equation for a unidirec-
tional steady flow introduced by Bagnold [14] can be applied to each component.

Assuming that tan f is infinitesimal, the flow makes a sand particle move in
the direction of the flow, and gravity causes downslope action; the sand transport
flux of a unidirectional flow is expressed by Eq. (16) as a linear approximation in
terms of tan  [15-18].

q_; = ag 62 —a1 V_Z> (&lo>0, 011>O) (16)

Here, the subscript « denotes the unidirectional flow, g, = (qux’ quy> is the sand

transport vector, the direction and magnitude of which give the direction of sand
transport and a volumetric expression for the sand transport rate per unit width

normal to the direction of sand transport and per unit time, respectively, e, is the

unit vector in the direction of the flow, VZ = tanf ¢, = (0Z/dx,0Z/dy) is the
gradient vector of Z, and tan f is the seabed slope. The sign of the coefficients a,
and a, is always positive. The first and second terms in Eq. (16) represent the action
produced by the flow and the downslope action due to gravity, respectively. In the
equation in [17] based on the bedload equation of Bagnold [14], the coefficients aq
and a, are described in terms of the angle of the internal friction of sand and the
flow velocity. On the other hand, the sand transport equations in [16, 18] based on
the suspended load equation of Bagnold [14] can be expressed in the same form as
Eq. (16), although the coefficients a and a, are described in terms of the falling
velocity of a sand particle and the flow velocity. Thus, Eq. (16) is satisfied for not
only the bedload but also suspended load, that is, total load.

The net sand transport flux due to waves, i = (qx, qy> , is the sum of the com-

ponents due to incoming and outgoing waves, as shown in Eq. (17), when the time-
averaged sand transport rate in a period involving the action of incoming and
outgoing waves is expressed by Egs. (18) and (19).
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4d=q"+q (17)
g =ale, —ai VZ (a}>0,a}>0) (18)
q =age, —a; VZ (ag>0,a;>0) (19)

Here, the subscripts + and — denote the values corresponding to incoming and

outgoing waves, respectively, and ¢ and e_; are the unit vectors in the directions of
the shoreward and seaward flows of waves, respectively. Modifying Eq. (17) under
the assumption that the directions of waves propagating shoreward and seaward are
opposite, as given by Eq. (20), defining the slope satisfying zero net onshore or
offshore sediment transport when waves are incident from the direction normal to
the slope as the equilibrium slope, tan g. (Eq. (21)), and defining the coefficient A
by Eq. (22), the sand transport flux is given by Eq. (23).

—

e:’u =—e (20)

_ (a§ —agy
tanf, = (017Ir n “1) (21)
A= (af +a7) (22)
qg=A [tanﬂc €w — V?} (23)

—

Here, ¢,, = e, is the unit vector in the wave direction 6,, (Eq. (3)). Bowen [16],
Bailard and Inman [17], and Bailard [18], based on the Bagnold’s concept, formu-
lated the equilibrium slope of Eq. (21) using the oscillatory flow velocity due to
waves, the angle of the internal friction of sand, and the falling velocity of a sand
particle. Hardisty [22, 23] also formulated the equilibrium slope using the wave
parameters on the basis of the same concept. Furthermore, Dean [24, 25] formu-
lated the equilibrium profile in terms of energy dissipation rate due to wave break-
ing, and Larson et al. [26] gave a theoretical formulation of the equilibrium profile,
the derivative of which is equal to the equilibrium slope, with the combination of
wave parameters.

In this study, we used the seabed slope measured on real coasts as the equilib-
rium slope instead of using the formulated results of the equilibrium slope. The
measured slope is assumed to be given a priori because the real seabed topography
includes every effect of past events, and it has a stable form, except for seasonal
short-period variations, in the long term.

Applying the energetics approach [14] and assuming that the coefficient A in
Eq. (23) is proportional to the wave energy dissipation rate @, the total longshore
sand transport rate is obtained by integrating Eq. (23) over the depth. This has the
same form as the CERC-type formula given by Komar and Inman [27], and the
coefficient A is determined as Eq. (24) from the equivalence of both results as
mentioned later. Finally, the fundamental equation of sand transport flux due to
waves is given by Eq. (26).

K1®
A=C 24
0 tan . (24)

1

(ps —p)g(1—p)

Co = (25)
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Ko

t - _VZ 26
0 tanﬂc anﬂc € ( )

q=C

Here, Kj is the coefficient of longshore sand transport, @ is the wave energy
dissipation rate per unit time and unit seabed area, Cy is the coefficient through
which the sand transport rate expressed in terms of the immersed weight is related
to the volumetric sand transport rate, ps and p are the sand and water densities,
respectively, g is the acceleration of gravity, and p is the porosity of the sediment.

3. Physical meaning of the sand transport equation of the BG model

3.1 Statically stable condition

When we set q_) —0 in Eq. (26), Eq. (27) is derived as a statically stable
condition.

VZ = tan P w (27)

This equation demonstrates that the directions of the vectors on both sides of

Eq. (27) and their absolute values are equivalent. When tan $ and e, are set to the
seabed slope and the unit vector normal to the contour lines (shoreward), respec-

tively, the relation VZ = tan p e, holds. Thus, Eq. (27) is equivalent to the fol-
lowing relationships being satisfied.

€, = €y, tan = tanf, (28)

Finally, the conditions required for the formation of a statically stable beach are
(1) the contour line is orthogonal to the wave direction at any point and (2) the local
beach slope coincides with the equilibrium slope at any point. This concept was also
employed in the model for predicting a statically stable beach [28]. According to
Eq. (26), a restoring force is generated in response to the deviation from the
statically stable condition, and sand transport occurs owing to this restoring force.

3.2 Topographic changes
Topographic changes can be determined from the mass conservation equation.

oz . o 7
_:_v.q:_&_& (29)
ot ox oy

When the sand transport fluxes in Eq. (26) are expressed by the components in
(x, y) coordinates and are substituted into Eq. (29), the following two-dimensional
diffusion equation is obtained, assuming that the coefficient A, equilibrium slope,
and wave direction are constant:

“Z_A
ot

0Z 7z 0Z
242z 0
(5 5%) B0
The left term and the terms in the parenthesis on the right represent the rate of
topographic changes and the spatial curvature of the topography, respectively. In

other words, beach changes cause the smoothing of an uneven topography, and in a
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closed system of sand transport, a statically stable beach is obtained such that the
direction of the contours at any point becomes orthogonal to the wave direction,
and the local slope is equivalent to the equilibrium slope. These characteristics are
the same as those of the contour-line change model [1].

3.3 Dynamically stable beach

In addition to the formation of a statically stable beach, a stable beach can also be
dynamically stable, which occurs when the divergence of the sand transport flux in
Eq. (30) becomes 0. The dynamically stable beach topography satisfies the Laplace
equation, and the relationship between the dynamically stable topography and the
sand transport flux has an analogy with the two-dimensional potential flow in fluid
dynamics [29].

3.4 Crossshore sand transport

Using Egs. (6) and (26), the crossshore component of sand transport ¢, is
obtained as

—

. K&
g, =¢nq =Co—

tan fj.

(tanfB.cosa — tanf) (31)

Here, 7 is the coordinate in the crossshore direction and e, is the unit vector in
the cross-shore direction, as defined by Eq. (1). a is the angle between the wave
direction and the direction normal to the contour lines, as in Eq. (13). When waves
are incident from the direction normal to the shoreline, Eq. (31) becomes

K@
tan 3.

Eq. (32) has the characteristics that crossshore sand transport diminishes when
waves are incident from the direction normal to the shoreline, and the local slope is
equal to the equilibrium slope (tan = tanf,). Shoreward transport is generated
when the local slope is smaller than the equilibrium slope and vice versa (Figure 2).
This represents the balance between the upslope flow asymmetry and the down-
slope component of gravity [15-18].

Figure 2(a) shows the stabilization mechanism of a beach profile based on sand
movement during one wave period, a sand particle moves from point 1 to point 2
during incoming waves and from point 2 to point 3 during outgoing waves, and it
returns to the same position after one wave period. The net movement of the sand
particle is zero, resulting in the formation of a stable beach profile. The seabed slope
tan f under this condition is equivalent to the equilibrium slope tan f.. Figure 2(b)
shows the movement of a sand particle in the case that the local slope is larger than
the equilibrium slope tan f.. Because of the increase in the effect of gravity, the sand
particle moves seaward as from point 1 to point 2 and then to point 3, resulting in
net seaward sand transport and the beach attains a stable slope. To the contrary,
when the local slope is gentler than the equilibrium slope, the sand particle is
transported landward because of the decrease in the effect of gravity, as schemati-
cally shown in Figure 2(c). In Figure 2, an extremely simple condition that a sand
particle sets on the slope is assumed as an imaginary case to enhance the under-
standing of the physical meaning of sand movement. In fact, a sand body to be
transported due to waves was conceptually regarded as “a sand particle,” instead of
the method of tracking one sand particle.

4, = Co (tanf. — tanp) (32)
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(b) steep slope

(c) gentle slope
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Figure 2.

Stabilization mechanism of the beach profile based on the sand movement during the one wave period.
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Figure 3.

Equilibrium between the gravity effect and the wave action.
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Figure 3 shows a summary of the movement of a sand particle. Crossshore sand
transport is zero when the local seabed slope is equivalent to the equilibrium slope,
similar to the stabilization mechanism of the longitudinal profile described by
Serizawa et al. [1]. Offshore (shoreward) sand transport occurs when the local slope
is larger (smaller) than the equilibrium slope.

When waves are obliquely incident to the shoreline, the equilibrium slope tan g’
can be obtained as Eq. (33) after setting q,, = 0 in Eq. (31). Here, the breaker angle
ap, is substituted into a as an approximation.

tan . = tanﬁ|q _o = tanf cosa=tan . cosay (33)

Although tan g is smaller than tan . by a factor of cos ay,, the approximation of
cos ap~1 holds, because a;, normally takes a value within 20°, and tan . can be
regarded as tan /..

3.5 Longshore sand transport

Using Egs. (7) and (26), the longshore component of sand transport g can be
expressed as

q, = e - 4 = CoK Psina (34)

Here, s and ¢, are the coordinate and the unit vector in the longshore direction, as
defined in Eq. (2), respectively. This equation shows that the longshore sand trans-
port g, becomes 0 when the wave direction coincides with the direction normal to

(a) incident waves _
orthogonal to a contour line

waves

sand grain

sta-!:e. shoreline

(contour line)

(b) obliquely incident waves
waves
longshore sand
transport

1(O——>02

(c) stable contour line
stable

waves

initial accretion
erosion

Figure 4.
Formation of stable contour lines.
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the contour lines. Under other conditions, longshore sand transport is induced, as
schematically shown in Figure 4.

When the total sand transport Q; is calculated by integrating Eq. (34) in the
crossshore direction, it coincides with the CERC-type formula [1], as in Eq. (35),
under the assumptions that the integral of @ in the crossshore direction is equal to
the energy flux per unit length of the coastline at the breaking point and that « is
approximately given by the breaker angle ay,.

Q, = [qdn = CoK1 [ @Psinadn
= CoK;(EC,), cos a sinay, (35)
(azab, J ®dn = (EC,), cosay, )

Here, (EC,)}, and a;, are the wave energy flux at the breaking point and the
breaker angle, respectively. This CERC-type formula [30] has been employed in the
one-line model in practical engineering [31, 32]. Thus, the integral of the longshore
component of sand transport in the BG model in the crossshore direction is equiv-
alent to the total longshore sand transport, so both bedload and suspended sediment
transport are automatically included in the total sand transport. The fundamental
equations of the BG model are compatible with the CERC total sand transport

formula, which has often been employed in the prediction of beach changes in the
practical applications.
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