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Abstract

In this chapter, we have proposed a Luenberger observer linear systems diagnostic tech-
nique using the bond graph. Indeed, an observer can reconstruct or estimate the current
state of a real system using the available measurements, without prior knowledge of the
initial conditions. In addition, it allows to estimate the nonmeasurable states of a system.
The design of the observer is carried out using graphical methods from the structural
properties of the model bond graph becomes simple and practical to build. We presented
the bond graph approach for the construction of a full-order observer and proposed a new
BG-based observer diagnostic method. Subsequently, we presented the uncertain param-
eter systems modeled by the bond graph approach, and we also proposed a new method
for diagnosing systems with uncertain parameters by Luenberger observer. In the last part
of this chapter, we developed and proposed an observer bench diagnosis technique (BG-
DOS/BG-GOS) to detect and locate defects.

Keywords: robust diagnosis, bond graph, Luenberger observer, DC motor, generation of
robust residues

1. Introduction

Nowadays, the engineering sciences rely heavily on the estimation of the state of the systems.

Indeed, the complete knowledge of the state of a system is often necessary for the elaboration

of a control law or the setting up of a strategy of monitoring or diagnosis. In practice, the state

of a system is not always available and the input and output signals are the only quantities

accessible by measurement. The most widespread solution to this problem consists in coupling

to the system another auxiliary system, called estimator or observer of state. The observer

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



provides an estimate of the state of the system based on its model and measurements of its

inputs and outputs. The observer conventionally used, within the framework of linear sys-

tems, is said to have proportional gain or Luenberger. In recent years, observer diagnosis is

used to estimate shareholder defects and sensor defects [1].

In this chapter, we show how the leap graph model can be used for modeling, simulation and

residual determination by Luenberger observers for diagnosis system.

2. Observer diagnosis

2.1. Observational diagnosis using the analytical model

The principle of diagnosis consists in estimating, by appropriate techniques, all the compo-

nents of the state vector or, more generally, the output of the process, using the error of

estimation as a residue [2].

This operation is carried out by means of a proportional observer. The functional diagram of

such a method is given in Figure 1.

The residue equations are defined as follows:

State estimation residue:

rx ¼ ~X ¼ x� x̂ (1)

Exit estimate residue:

ry ¼ ~Y ¼ y� ŷ ¼ C x� x̂ð Þ (2)

2.1.1. Residual in the case of normal operation

We consider a linear system whose equations of states are defined as follows:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ

y tð Þ ¼ Cx tð Þ

�

(3)

Figure 1. Observational diagnosis.
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The proportional state observer is defined by equations:

_̂x tð Þ ¼ Ax̂ tð Þ þ Bu tð Þ þ K y� ŷð Þ

ŷ tð Þ ¼ Cx̂ tð Þ

(

(4)

The state estimation or state reconstruction residual is by definition:

rx ¼ ~X ¼ x� x̂ (5)

For a proportional observer, the evolution of the residue r(t) is:

_rx ¼ A� KCð Þrx (6)

The Laplace transform of Eq. (6) is written:

rx pð Þ ¼ pI � Aþ KCð Þ�1r0 (7)

The output reconstruction residue is defined by:

ry ¼ ~Y ¼ y� ŷ ¼ C x� x̂ð Þ ¼ C~X ¼ Crx (8)

Hence using the previous result, Eq. (8) is written:

ry pð Þ ¼ C pI � Aþ KCð Þ�1r0 (9)

2.1.2. Residual with a sensor failure

We consider again the same linear system in which the measurements made are subjected to a

defect which we denote by fc(t) of unknown amplitude and appearing at an unknown time

(Figure 2):

Figure 2. Proportional observer with sensor fault.
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The equations of states become:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ

y tð Þ ¼ Cx tð Þ þ Ff c tð Þ

�

(10)

In order to diagnose the state of operation of the system, the states reconstruct or must be

sensitive to this bias and must highlight this sensor defect, isolate it and possibly quantify it.

The residue r(t) is:

_rx tð Þ ¼ A� KCð Þrx tð Þ þ Ff c tð Þ (11)

The equation is written using the Laplace transformation:

rx pð Þ ¼ pI � Aþ KCð Þ�1 r0 þ Ff c pð Þ
� �

(12)

To see the error of reconstruction of output according to the biases of the sensors, we do not

take into account the initial conditions of or:

rx pð Þ ¼ I � C pI � Aþ KCð Þ�1KÞ
h i

Ff c pð Þ (13)

2.1.3. Residual with an actuator failure

In the case where the control applied to the system is misinterpreted by the actuator, the latter

introduces a fault which we denote by fa(t) (Figure 3).

The equation describing the faulty system is:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ þDf a tð Þ

y tð Þ ¼ Cx tð Þ þ Ff c tð Þ

�

(14)

For zero initial conditions, the expression of the state reconstruction residue is of the form:

rx pð Þ ¼ I � C pI � Aþ KCð Þ�1KÞ
h i

Ff c pð Þ þ C pI � Aþ KCð Þ�1Df a pð Þ (15)

Figure 3. Proportional observer with actuator fault.
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The output reconstruction residue is defined by equation:

rx pð Þ ¼ C pI � Aþ KCð Þ�1Df a pð Þ (16)

2.1.4. Residual with sensor and actuator failures

In this case, we have the addition of two defects at the system level:

• Fault at sensor fc(t);

• Fault at actuator fa(t).

The equations of the system are then written as follows:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ þDf a tð Þ

y tð Þ ¼ Cx tð Þ þ Ff c tð Þ

�

(17)

Applying the principle of superposition, since the system is linear, we can determine the

output reconstruction residue which is the sum of the residuals caused by the sensor alone

and the actuator alone. The expression of this residue is as follows:

rx pð Þ ¼ I � C pI � Aþ KCð Þ�1KÞ
h i

Ff c pð Þ þ C pI � Aþ KCð Þ�1Df a pð Þ (18)

This residue is sensitive to sensor and actuator defects.

2.2. Observational diagnosis using the bond graph model

2.2.1. Construction of a Luenberger observer based on model bond graph

To construct the observers, one must check the observability of the system. From a Bond Graph

perspective, proposed by [3], a system modeled by leap graph is structurally observable, if the

following two conditions are met:

• First condition: There is at least one causal path linking a sensor to each dynamic element I

or C in the integral causality when the hop graph is the preferred integral causal model.

• Second condition: All elements I or C admitting a derivative causality when we put the leap

graph model in derivative causality, and dualize the sensors.

Figure 4 presents, respectively, the proportional observer using the bond graph for elements I

and C [4].

2.2.2. Proportional observer diagnosis using the bond graph model

The observer provides an estimate of the state of the system based on its model and measure-

ments of its inputs and outputs. The observer conventionally used in linear systems is said to

have Proportional (P) or Luenberger gain [5].

Consider a continuous system described by the equation of state using the hop graph

represented in Figure 5:
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Figure 5. Schema of the continuous system described by bond graph.

Figure 4. Construction of a proportional observer case of: (a) element I and (b) element C.

Figure 6. Structure of a Luenberger observer using graph graph.
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The state observer of proportional type is represented by Figure 6. The equation of state is of

the following form:

_̂x tð Þ ¼
_̂pI

_̂qc

0

@

1

A ¼ A
pL

qC

 !

þ Bu tð Þ þ K y tð Þ � ŷ tð Þð Þ

ŷ ¼ C
p̂L

q̂C

 !

8

>

>

>

>

>

<

>

>

>

>

>

:

2.2.3. Generation of residues

The generation of residues from a proportional observer using the bond graph model is

summarized by the following steps:

Verify that the bond graph model of the system is structurally observable, if so, then continue

the next steps;

Construction of the observer using the graph;

The symbolic expression of residue is deduced from equation:

Figure 7. (a): Direct current motor, (b): Bond model of the DC motor.
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r ¼ y� ŷ
:

(19)

After calculation, the residue is in the form:

r : Φ ̇R, I, C, TF, GY
� �

(20)

2.3. Determination of the gain of the Luenberger observer

2.3.1. Determination of the gain of the Luenberger observer by the analytical method

To guarantee the asymptotic convergence toward zero of the estimation error, choose the gain

K to stabilize the matrix (A-KC).

The gain K can be determined by two methods:

• Placement of the poles: This method makes it possible to have a stable observer and

allows playing on the criterion of rapidity of the convergence of the observer by choosing

eigenvalues greater or less in absolute values.

• LYAPUNOV criterion: This method guarantees the stability of the observer but gives no

idea about the speed of convergence of the observer since it does not allow to choose the

eigenvalues.

2.3.2. Determination of the gain of the Luenberger observer by the bond graph method

First, we will compute the coefficients of the characteristic polynomial of the linear system:

pA ¼ pn þ a1 � p
n�1

þ :……þ an�1 � pþ an (21)

The calculation of the gain of the observer by leap graph is based on the Rahmani theorem, [6].

Theorem: The value of each coefficient (ai) of the characteristic polynomial PA isequal to the

total gain of families of causation cycles of order i of the model graph graph:

The gain of each affected family of causality cycles must be multiplied by (�1) d if the family is

constituted by disjoint causality cycles.

2.4. Example

Consider the electrical system of a DC motor and its model bond graph given in Figure 7. On

this system, we will detect and locate faults at the flow sensors (speed sensor Df1 and current

sensor Df2).

2.4.1. State equation

The equation of state of the DC motor is as follows:
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(22)

With R: armature resistance, L: armature inductance, m: torque coefficient, J: moment of

inertia, b: coefficient of friction.

R = 1 Ω; L = 5 mH; b = 10�4 Nm/rd. S�1; J = 10�3 Kg.m2, m = 0.2 Nm/A.
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2.4.2. Determination of the gain of an observer Luenberger by the analytical method

It is desired that the poles have the following values s1 = �160 and s1 = �75, then the

characteristic polynomial:

Let us calculate the polynomials characteristic of the observer P1(A-K1C1) and P2(A-K2C2)

• For the characteristic polynomial P1(A-K1C1)

C1 ¼
1

L
0

� �

¼ 200 0½ �

K1 ¼
k11

k12

2

4

3

5

! A� K1C1 ¼
�200� 200k11 �200

40� 200k12 �0:1

2

4

3

5

8

>

>

>

>

>

<

>

>

>

>

>

:

det sI � A� K1C1ð Þð Þ ¼

sþ 200þ 200k11 200

�40þ 200k12 sþ 0:1

2

4

3

5 ¼ s2 þ 200:1þ k11ð Þsþ 8020þ 40000k22

!

200k21 þ 200:1 ¼ 235

40000k22 þ 8020 ¼ 12000

8

<

:

!
k11 ¼ 0:1745

k12 ¼ �0:099

8

<

:
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• For the characteristic polynomial P2(A-K2C2)

C2 ¼ 0
1

J

� �

¼ 0 1000½ �

K1 ¼
k21

k22

" #

8

>

>

>

>

<

>

>

>

>

:

! det sI � A� K2C2ð Þð Þ ¼
sþ 200 200þ 1000k21

�40 sþ 0:1þ 1000k22

" #

!
k21 ¼ �0:0750

k22 ¼ 0:0349

(

2.4.3. Determination the gain of a Luenberger observer by bond graph model

Using the theorem of Rahmani [6]:

• The coefficient a1 is equal to the total gain of families of first order causality cycles in the

jump graph model of Figure 8.

• The coefficient a2 is equal to the total gain of second-order families of the causation cycles

in the jump graph model of Figure 8.

To calculate the gains k11 and k12, it is necessary to use Table 1 that indicates the causality

cycles in the observer’s bond graph model.

• For the BGO1 model

The coefficient a1 is equal to the sum of the gains of the first order:

a1 = G1 + G2 + G3

200 k11 ¼ a1 � R=Lð Þ þ b=Jð Þ ¼ 235� 200þ 0:1ð Þ

So k11 = 0.1745.

To calculate k12, it is necessary to determine the coefficient of a2 (a2 equal to the sum of the gains

of the second order):

• For the BGO2 model

The coefficient a1 is equal to the sum of the gains of the first order:

a1 = G1 + G2 + G4

1000 k22 ¼ a1 � R=Lð Þ þ b=Jð Þ ¼ 235� 200þ 0:1ð Þ

So k22 = 0.0349

Figure 8. Schema of the LFT principle.
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First order of the causation cycle Gain

G1 = (�1)(�R/Ls)

G2 = (�1) (�b/Js)

G3 = (k11) (1/Ls)

Second order of causality cycle Gain

G4 = (m2/JLs2)

G5 = (Rb/JLs2)

G6 = (bk11/JLs
2)

G7 = (Rk12/JLs
2)

Table 1. Causation cycles in the bond graph model of observers BGO1 and BGO2.
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To calculate k21, it is necessary to determine the coefficient of a2 (a2 equal to the sum of the gains

of the second order):

a2 ¼ G5 þ G6 þ G8 þ G10 ¼ m2=JL
� �

þ Rb=JLð Þ þ mk21=JLð Þ þ Rk22=JLð Þ

So k21 ¼ JL a2 � m2=JL
� �

þ Rb=JLð Þ þ k22 R=JLð Þ
� �� �

=m ¼ �0:0750

Table 2 represents the total earnings of i-order causal cycle families in the first and second

observer graph (BGO1 and BGO2).

3. Robust diagnosis using bond graph model

3.1. Introduction

The diagnosis of industrial systems with uncertain parameters has been studied by several

researchers in recent years. Indeed, the method most used is the method of the form linear

fractional transformations (LFT), this method offers several advantages such as the flexibility

of the diagnosis point of view that allows to model all the uncertainties. But unfortunately, the

transition to the LFT form is not always possible (e.g., the nonlinear state models) because the

separation of the nominal part from its uncertain part is very difficult (even impossible). Djeziri

[7] opted for bond graph modeling using the LFT form method, using a single leap graph

model in LFT form generates residuals and adaptive thresholds of normal operation with

perfect separation.

3.2. Building a bond graph

Two methods are proposed by Dauphin-Tanguy [8] and Sié Kam [9] to construct parametric

uncertainties by BG. The first is to represent uncertainty on a leap graph element as another

element of the same type, causally related to the nominal element or the rest of the model.

These uncertainties are kept in derived causality when the model is in integral preferential

causality so as not to modify the order of the model. The second method is linear fractional

transformation (LFT) introduced on mathematical models by Redheffer [10].

3.3. Representation LFT

Linear fractional transformations (LFTs) are widely used in the modeling of uncertain systems.

The universality of LFT is due to the fact that any rational expression can be written in this

Causal of order i Family of cycles

Total gain in BGO1 Total gain in BGO2

1 200.1 + 200 k11 200.1 + 1000 k22

2 8020 + 20 k11 + 4000 k12 8020 + 40,000 k21 + 200,000 k22

Table 2. Total gains of families of causal cycles in the bond graph model of observers BGO1 and BGO2.
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form according to Alazard [11]. This form of representation is widely used for the synthesis of

the control laws of uncertain systems using the principle of μ-analysis. It consists of separating

the nominal part of a model from its uncertain part as illustrated in Figure 8.

The nominal values are grouped in an augmented matrix denoted M, supposed to be proper, and

the uncertainties whatever their type (structured and unstructured parametric uncertainties,

modeling uncertainties, measurement noises, etc.) are combined in a matrix Δ of structure diago-

nal. In the linear case, this standard form leads to a state representation of the form (Figure 8):

_x ¼ A � xþ B1 � wþ B2 � u

z ¼ C1 � xþD11 � wþD12 � u

y ¼ C2 � xþD21 � wþD22 � u

(23)

• x ∈ Rn: the state vector of the system;

• u ∈ Rm: the vector combining the control inputs of the system;

• y ∈ Rp: the vector grouping the measured outputs of the system;

• w ∈ Rl and z ∈ Rl: group respectively the inputs and the auxiliary outputs;

• n, m, l and p are positive integers.

The matrices (A, B1, B2, C1, C2, D11, D12, D21, D22) are matrices of suitable dimensions.

3.4. Formatting assumptions LFT

Forming LFT requires that the model be clean and observable [12]. The bond graphmethodology

allows by causal manipulations to check these properties directly on the bond graph model.

Property 1: A leap graph is unique if and only if it contains no derivative causal dynamic

component when it is a preferential integral causality, and reciprocally.

Property 2: A leap graph is structurally observable if and only if the following conditions are met:

• On the bond graph model in integral causality, there exists a causal path between all

dynamic elements I and C in integral causality and a detector De or Df;

• All dynamic elements I and C admit causality derived on the leap graph model in

preferential derived causality. If dynamic elements I or C remain in integral causality, the

dualization of detectors De and Df must make it possible to put them into derivative

causality.

3.5. Modeling of BG elements by LFT

The modeling of linear systems with uncertain parameters has been developed in Djeziri’s

thesis [13], the modeling of uncertain graph leap elements (R, I, C, TF and GY) has been

determined. We will therefore limit ourselves in this section to show the two methods of

modeling uncertain BG elements, as well as the advantages of BG-LFT for robust diagnosis.
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3.5.1. BG element with a multiplicative uncertainty

The introduction of a multiplicative uncertainty on, for example, the element R in causality

resistance gives Eq. (25):

eR ¼ Rn � 1þ aRð Þ � f R ¼ Rn � f R þ aR � Rn � f R ¼ en þ aR � en ¼ en þ einc (24)

• Rn: The nominal value of the R element;

• aR: The multiplicative uncertainty on the parameter;

• eR and fR: represent the force and the flux in the element R, respectively;

• en and einc: represent respectively the effort provided by the nominal parameter and the

effort introduced by the multiplicative uncertainty.

The bond graph model equivalent to the mathematical model of Eq. (24) is given in Figure 9.

3.5.2. Construction of a BG-LFT model

The complete BG-LFT model is represented by the diagram in Figure 10.

Figure 10. Representation in form BG-LFT.

Figure 9. (a): Model BG-LFT of an element R causality resistance with multiplicative uncertainty, (b): Model BG-LFT of an

element R with conductance causation with multiplicative uncertainty.
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3.5.3. Rugged diagnosis by ARRs

The generation of robust analytical redundancy relationships (ARRs) from a clean, observable

and overdetermined leap graph is summarized by the following steps:

Step 1: Checking the state of the coupling on the model graph deterministic preferential

derived causality; if the system is overdetermined, then proceed with the following steps;

Step 2: The leap graph template is set to LFT;

Step 3: The symbolic expression of the RRA is deduced from the equations at the junctions.

This first form will be expressed by:

For junction 0 :

X

bi � f inc þ
X

Sf þ
X

wi

̇

¼ 0 (25)

For junction 1 :

X

bi � einc þ
X

Seþ
X

wi

̇

¼ 0 (26)

With _
P

Sf the sum of the flux sources linked to the junction 0, the _
P

Se sum of the force

sources linked to the junction 1, b = � 1 according to whether the half-arrow enters or leaves

the junction, ein and fin are the unknown variables .

Is the _
P

wisum of the modulated inputs corresponding to the uncertainties on the elements

related to the junction.

Step 4: Unknown variables are eliminated by traversing causal paths between detectors or

sources and unknown variables;

Step 5: After removing the unknown variables, the uncertain RRAs are in the form:

RRA : Φ
_

X

Se,
X

Sf, De, Df ,
X

wi, Rn, In, Cn, TFn, GYn

	 


(27)

TFn and GYn are, respectively, the nominal values of the modules of the elements TF and GY,

also Rn, Cn and In are the nominal values of the elements R, C and I.

3.5.4. Robust diagnosis by Luenberger observer using bond graph

The model BG-LFT of the system with the observer of Luenberger is represented by the

diagram in Figure 11.

3.5.5. Location of defects per observer bench

A single residue allows the detection of a fault. However, the location of a defect requires a set

of structured residues. These residues must be designed to be sensitive to certain defects and

insensitive to others. The use of observer banks constructed from only part of the inputs and/or

outputs of the system makes it possible to respond to this problem. The symptoms generated

are compared with fault signatures.
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There are two observer banks:

• The Dedicated Observer Scheme (DOS): the ith observer is controlled by the ith output

(input) and all inputs (outputs). The other outputs (inputs) are considered unknown.

• The Generalized Observer Scheme (GOS) structure: the ith observer is controlled by all

outputs (inputs) except the ith and all inputs (outputs).

For a given observer bank, the signature of the various defects is defined in the signature table.

The rows and columns of this table correspond, respectively, to defects and symptoms. The

cells in the table are filled with binary values. A zero (0) means that the symptom is not

sensitive to the defect. One (1) means that the symptom is sensitive to this defect.

Figures 12 and 13, respectively, present the principle of detection and localization of faults by

observers (DOS) and (GOS).

Tables 3 and 4 illustrate the signatures of the various defects as a function of the residuals.

3.6. Example

Consider the same example (DC motor) given in Figure 7.

Figure 11. Representation in BG-LFT form of the system with observer from Luenberger.
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Figure 12. Sensor faults with DOS structure.

Figure 13. Sensor faults with GOS structure.

Fs1 Fs2 .... Fsn

r1 1 0 0 0

r2 0 1 0 0

… 0 0 1 0

rn 0 0 0 1

Table 3. Signature of sensor faults with DOS structure.

Fs1 Fs2 .... Fsn

r1 0 1 1 1

r2 1 0 1 1

… 1 1 0 1

rn 1 1 1 0

Table 4. Signature of sensor faults with GOS structure.
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3.6.1. Proportional observer diagnosis using the bond graph model

The application of leap graph for the diagnosis of industrial systems is mainly justified by the

fact that the model can be fine-tuned by adding or removing jump graph elements (graphi-

cally) according to simplifying assumptions. It is therefore also desirable that for the state

estimation, the observer design is carried out using graphic methods and taking advantage of

the properties.

3.6.2. Requirements

For observer construction, we need to check the following conditions:

The first condition is satisfied: When the bond graph model of the DC motor is put into a

preferred integral causality, it is clear that there exists a causal path linking the sensors Df1 and

Df2 to each dynamic element I in the integral causality (Figure 14(a)). The second condition

is satisfied: when we put the jump engine model of the DC motor in derived causality, all

the elements I admit a derivative causality, and the sensors Df1 and Df2 are dualized

(Figure 14(b)).

3.6.3. Calculation of residues

Figure 15 represents a construction of the proportional observer of the system using the bond

graph approach.

We simulated the system with the 20sim software. Figure 16 shows the evolution of the real

and estimated state variables.

From model BG of Figure 15, the residues r1(t) and r2(t) can be deduced.

Residue r1: f 2 � f 2̂ ¼ Df 2 � f 2̂ ¼ 0.

Figure 14. (a): Bond model of the DC motor in integral causality, (b): bond model of the DC motor in derived causality.
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Therefore,

r1 tð Þ m2Rbþm2RK11 þmK12

� �

þ
dr1 tð Þ

dt
m2RJ þm2Lbþm2LK11

� �

þ
d2r1 tð Þ

dt
m2LJ

� �

þr2 tð Þ m2RK21 þmK22

� �

þ
dr2 tð Þ

dt
m2LK21

� �

¼ 0

(28)

Residue r2: f 6 � f 6̂ ¼ Df 1 � f 6̂ ¼ 0

We proceed in the same way, we end:

r2 tð Þ m2Rbþm2bK22 þmK21

� �

þ
dr2 tð Þ

dt
m2RJ þm2Lbþm2JK21

� �

þ
d2r2 tð Þ

dt
m2LJ

� �

r1 tð Þ m2bK12 þmK11

� �

þ
dr2 tð Þ

dt
m2JK12

� �

¼ 0

(29)

Figure 17 shows the convergence of residuals toward zero.

3.6.4. Génération des résidus avec défauts capteurs

The sensors Df1 and Df2 are affected by defects (FC1 and FC2), then:

Residue r1: Df 1 þ FC1
� �

� f 6̂ ¼ 0

Figure 15. Proportional observer using bond graph of DC motor monitor.
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Figure 16. Output variables, (a): output variables y1 and ŷ1, (b): output variables y2 and ŷ2.

Figure 17. (a): Residue r1(t), (b): Residue r2(t) in the case of normal operation.

Figure 18. (a): Residue r1(t)with defects of the sensors Df1 and Df2, (b): Residue r2(t)with defects of the sensors Df1 and Df2.
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r1 tð Þ m2Rbþm2RK11 þmK12

� �

þ
dr1 tð Þ

dt
m2RJ þm2Lbþm2LK11

� �

þ
d2r1 tð Þ

dt
m2LJ
� �

þ r2 tð Þ m2RK21 þmK22

� �

þ
dr2 tð Þ

dt
m2LK21

� �

¼ FC1 tð Þ bm2
� �

þ
dFC1 tð Þ

dt
Lm2
� �

� FC2 tð Þ mð Þ

(30)

Residue r2: Df 2 þ FS2
� �

� f 2̂ ¼ 0

r2 tð Þ m2Rbþm2bK22 þmK21

� �

þ
dr2 tð Þ

dt
m2RJ þm2Lbþm2JK21

� �

þ
d2r2 tð Þ

dt
m2LJ
� �

þ r1 tð Þ m2bK12 þmK11

� �

þ
dr2 tð Þ

dt
m2JK12

� �

¼

FC2 tð Þ bm2
� �

þ
dFC2 tð Þ

dt
Jm2
� �

� FC1 tð Þ mð Þ

(31)

Eqs. (30) and (31) show that residues r1(t) and r2(t) are sensitive to sensor defects. Figure 18

confirms the sensitivity of the residuals to the defects of the sensors Df1 and Df2.

3.6.5. Robust diagnosis by observer from Luenberger

Figure 19 shows the Luenberger observer of the DC motor using the BG-LFT model.

From the BG-LFT model (Figure 19), residues R1(t) and R2(t) can be deduced.

Residue R1: f 2 � f 2̂ ¼ 0

"

r1 tð Þ m2Rbþm2RK11 þmK12

� �

þ
dr1 tð Þ

dt
m2RJ þm2Lbþm2LK11

� �

þ
d2r1 tð Þ

dt
m2LJ
� �

þ r2 tð Þ m2RK21 þmK22

� �

þ
dr2 tð Þ

dt
m2LK21

� �

�

� wJ tð Þ m2Rn

� �

þ
dwJ tð Þ

dt
m2Ln
� �

þ wL tð Þ mð Þ

� �

¼ 0

(32)

Eq. (32) is composed of two parts: the first part corresponds to the evolution of the normal

residue (r1n) and the second part represents the evolution related to the uncertainty of the

parameters (d1).

R1 ¼ r1n þ d1

r1n ¼ ½r1 tð Þ m2Rbþm2RK11 þmK12

� �

þ
dr1 tð Þ

dt
m2RJ þm2Lbþm2LK11

� �

þ
d2r1 tð Þ

dt
m2LJ
� �

þ r2 tð Þ m2RK21 þmK22

� �

þ
dr2 tð Þ

dt
m2LK21

� �

�

d1j j ¼ wJ tð Þ m2Rn

� �

þ
dwJ tð Þ

dt
m2Ln
� �

þ wL tð Þ mð Þ

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Residue R2: f 6 � f 6̂ ¼ 0
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Figure 19. Luenberger observer of the DC motor using the BG-LFT model.

Figure 20. (a): Residue r1(t) and r2(t) for the DOS structure, (b): residue r1(t) and r2(t) for the DOS structure.
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½r2 tð Þ m2Rbþm2bK22 þmK21

� �

þ
dr2 tð Þ

dt
m2RJ þm2Lbþm2JK21

� �

þ
d2r2 tð Þ

dt
m2LJ
� �

þ r1 tð Þ m2bK12 þmK11

� �

þ
dr2 tð Þ

dt
m2JK12

� �

�

�½wL tð Þ m2bn
� �

þ
dwL tð Þ

dt
m2Jn
� �

þ wj tð Þm ¼ 0

(33)

Eq. (33) is composed of two parts: the first part corresponds to the evolution of the normal

residue (r2n) and the second part represents the evolution related to the uncertainty of the

parameters (d2).

R2 ¼ r2n þ d2

r2n ¼ r2 tð Þ m2Rbþm2bK22 þmK21

� �

þ
dr2 tð Þ

dt
m2RJ þm2Lbþm2JK21

� �

þ
d2r2 tð Þ

dt
m2LJ
� �

þ r1 tð Þ m2bK12 þmK11

� �

þ
dr2 tð Þ

dt
m2JK12

� �

�

d2j j ¼ wL tð Þ m2bn
� �

þ
dwL tð Þ

dt
m2Jn
� �

þ wj tð Þm

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

3.6.6. Detection and localization of sensor faults

Figure 20 shows the evolution of residues based on the BG model using the BG-DOS and BG-

GOS structures, the residue r1(t) is sensitive to the defects occurring on the Df1 sensor while the

residue r2(t) is sensitive to faults on the Df2 sensor.

Table 5(a) and (b) represents the binary signatures of the defects for the deduced DOS and

GOS structures to perfectly isolate the defects.

4. Conclusion

In this chapter, we proposed a technique for the diagnosis of linear systems by Luenberger

observer using the leap graph. We presented the leap graph approach for constructing a full-

order observer and proposed a new BG-based observer method. Subsequently, we presented

the systems with uncertain parameters modeled by the leap graph approach and we also

proposed a new method of diagnosis of systems with uncertain parameters by Luenberger

observer.

Structure DOS Structure GOS

Df1 Df2 Df1 Df2

r1 1 0 r1 1 0

r2 0 1 r2 0 1

Table 5. Signatures of faults. (a) Structure DOS and (b) structure GOS.

Robust Diagnosis by Observer Using the Bond Graph Approach
http://dx.doi.org/10.5772/intechopen.79046

257



In the last part of this chapter, we developed and proposed an observer-based diagnostic

technique (BG-DOS / BG-GOS) to detect and locate faults.

Author details

Abderrahmène Sallami

Address all correspondence to: abderrahmenesallami@gmail.com

Department of Electrical Engineering, Laboratory ACS, Tunisia

References

[1] Khedher A, Othman KB, Benrejeb M, Maquin D. Adaptive observer for fault estimation in

nonlinear systems described by a Takagi-Sugeno model. In: 18th Mediterrranean Confer-

ence on Control and Automation, Marrakech, Morocco; 2010. pp. 23-25

[2] Maquin D, Ragot J. Diagnostic Des Systèmes Linéaires. Hermes ed. Paris, France: Hermes;

2000

[3] Sueur C, Dauphin-Tanguy G. Structural Controllability and Observability of linear Sys-

tems Represented by Bond Graphs. Journal of the Franklin Institute. 1989;326:869-883

[4] Pichardo-Almarza C, Rahmani A, Dauphin-Tanguy G, Delgado M. Observateur Proportio-

nnel-Intégral pour des Systèmes Linéaires Modélisés par Bond Graphs. In: Actes des

Journées Doctorales d’Automatique; 2003

[5] Luenberger DG. An introduction to observers. IEEE Transactions on Automatic Control.

1971;16:596-602

[6] Rahmani A, Sueur C, Dauphin-Tanguy G. Pole assignment for systems modelled by bond

graph. Journal of the Franklin Institute. 1994;331(3):299-312

[7] Djeziri MA, Ould Bouamama B, Merzouki R. Modelling and robust FDI of steam genera-

tor using uncertain bond graph model. Journal of Process Control. 2009;19:149-162

[8] Dauphin-Tanguy G, Sié Kam C. How to Model Parameter Uncertainies in a Bond Graph

Framework. Erlangen, Germany: ESS’99; 1999. pp. 121-125

[9] Sié Kam C, Dauphin-Tanguy G. Bond graph models of structured parameter uncer-

tainties. Journal of the Franklin Institute. 2005;342:379-399

[10] Redheffer R. On a certain linear fractional transformation. Journal of Mathematics and

Physics Banner. 1960;39:269-286. l'aide d'éléments caractérisés». 8ème colloque Electronique

dePuissance du Futur EPF 2000, Lille; 2000

Electric Machines for Smart Grids Applications - Design, Simulation and Control258



[11] AlazardD, Cumer C, Apkarian P, GauvritM, Fereres G. Robustesse et CommandeOptimale.
Cépadues ed. 1999. ISBN: 2.85428.516.6

[12] Sié Kam C. Les bond graphs pour la modélisation des systèmes linéaires incertains [Thèse
de doctorat]. USTLille1-ECLille; Décembre 2001. N�d’ordre 3065, 2001

[13] Djeziri MA. Diagnostic des systèmes incertains par l’approche bond graph [thèse de
doctorat]. École Centrale de Lille; 2007

Robust Diagnosis by Observer Using the Bond Graph Approach
http://dx.doi.org/10.5772/intechopen.79046

259




