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Chapter

A Scalable, FPGA-Based
Implementation of the Unscented
Kalman Filter
Jeremy Soh and Xiaofeng Wu

Abstract

Autonomous aerospace systems may well soon become ubiquitous pending an
increase in autonomous capability. Greater autonomous capability means there is a
need for high-performance state estimation. However, the desire to reduce costs
through simplified development processes and compact form factors can limit
performance. A hardware-based approach, such as using a field-programmable gate
array (FPGA), is common when high performance is required, but hardware
approaches tend to have a more complicated development process when compared
to traditional software approaches; greater development complexity, in turn, results
in higher costs. Leveraging the advantages of both hardware-based and software-
based approaches, a hardware/software (HW/SW) codesign of the unscented
Kalman filter (UKF), based on an FPGA, is presented. The UKF is split into an
application-specific part, implemented in software to simplify the development
process, and a non-application-specific part, implemented in hardware as a
parameterisable ‘black box’ module (i.e. IP core) to increase performance. Simula-
tion results demonstrating a possible nanosatellite application of the design are
presented; implementation (synthesis, timing, power) details are also presented.

Keywords: field-programmable gate array (FPGA), unscented Kalman filter
(UKF), codesign, system on a chip (SoC), nonlinear state estimation

1. Introduction

Small (micro-, nano-, pico-) satellites and (micro-) unmanned aerial systems
(UASs) are emerging technologies that have the potential to be of great academic
and commercial use but only if a balance can be found between two diametrically
opposed forces that act on their design: the desire, and need, for high performance
and the desire to reduce costs. High performance, especially in state estimation, is
necessary for these technologies to be advantageous over traditional aerospace
systems in relevant applications.

The desire to reduce the costs of these technologies has led to their
miniaturisation and heavy use of commercial off-the-shelf (COTS) components so
that some level of economy of scale may be achieved. Though both component and
development costs can be reduced in this way, this approach, in turn, leads to a
reduction in the resources available (e.g. electrical power, computing power and
physical space) aboard those systems, impacting performance.
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Specialised hardware, e.g. application-specific integrated circuit (ASIC)- or field-
programmable gate array (FPGA)-based systems, can achieve high performance,
even for severely resource-constrained systems, but tends to increase the develop-
ment complexity of these systems; in this way, using specialised hardware may
reduce component costs and meet performance and miniaturisation requirements,
while development costs are typically increased. This issue is illustrated in Figure 1,
which depicts the balance between development complexity and performance for
different embedded systems; greater complexity during the development process
means that a greater investment in resources, personnel and time becomes necessary,
which leads to higher development costs.

Software approaches, e.g. microprocessor-based systems, generally have lower
performance than specialised hardware but have much simpler, and thus cheaper,
development processes. It is, however, possible to draw upon aspects of both hard-
ware and software approaches and combine them into a hardware/software codesign.
This codesign could deliver the high performance of specialised hardware but, by
using software techniques, e.g. modularity or abstraction, could also alleviate some of
the high development costs associated with such hardware. If this codesign approach
is applied to a prolific state estimation algorithm, then the performance and
miniaturisation requirements could be met, while keeping development costs low.

In this chapter, a library containing a scalable, hardware/software (HW/SW)
codesign of the unscented Kalman filter (UKF), based on an FPGA, is presented. The
codesign is implemented as a fully parameterisable, self-contained ‘black box’ (which
is often referred to as an IP core), which aims to minimise the necessary input from
system designers when applying the codesign to a new application, such that overall
development complexity is reduced.

This chapter is a distillation of work first presented in [1]. The rest of this
chapter is organised as follows: Section 2 provides background on relevant concepts,
Section 3 outlines the proposed design, Section 4 describes the simulation model to
verify the design and simulation results, Section 5 presents implementation results
and Section 6 concludes the chapter.

2. Background

2.1 Hardware/software codesign

Hardware/software codesign is a design practice that is often used with system-
on-a-chip (SoC) architectures. The term system on a chip comes from the field of
very large-scale integration (VLSI) where individual hardware units or ‘black

Figure 1.
The performance versus development complexity trade-off for different types of embedded systems.
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boxes’ (IP cores) that perform some dedicated function are arranged and connected
together on a single ASIC chip. Typical SoCs may include a microcontroller or
microprocessor core, DSPs, memories such as RAMs or ROMs, peripherals such as
timers/counters, communication interfaces such as USB/UART, analog interfaces
such as ADCs/DACs or other analog, digital, mixed-signal or RF hardware. Previ-
ously, each of these components may have had its own ASIC and was connected
together on a PCB, but, in accordance with Moore’s law, resource densities of silicon
chips have massively increased over time, so now these components are able to be
integrated together on a single chip; an example SoC can be seen in Figure 2a.

(a) Example of a typical system on a chip.
(b) An example of a target architecture for early hardware/software codesign

implementations.
SoC designs for FPGAs have become more popular recently as the increase in

resource densities allowed more complex logic to be implemented. The push
towards SoCs on FPGAs is driven by the desire for greater autonomy in a variety of
systems; the most obvious example is field robotics, but autonomous systems such
as ‘smart’ rooms and satellites also have a need for a small form factor and high-
performance computing solutions that the FPGA is well placed to deliver.

As VLSI technology matured, designers began to see that the increase in develop-
ment complexity for hardware or ASIC designs was impacting their ability to bring
products to market quickly. The associated increase in the complexity of micropro-
cessors led many designers to realise that these microprocessor units could be
included into system designs and some of the functionality shifted to software to
reduce their time to market. Microprocessors can be considered a SoC on their own,
but they can also be included in much larger SoC designs, and this is where the idea of
hardware/software codesign first began; reviews of the field by [2–4] give a compre-
hensive history of hardware/software codesign. A basic example of an architecture
where hardware/software codesign may be appropriate is shown in Figure 2b.

2.2 Unscented Kalman filter

The extended Kalman filter (EKF) is, and has been, the most widespread
method for nonlinear state estimation [5]. It has also become the de facto standard

Figure 2.
Examples of system-on-a-chip architectures.
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by which other methods are compared when analysing their performance. Various
surveys of the field have noted that the EKF is ‘unquestionably dominant’ [6], ‘the
workhorse’ of state estimation [7, 8] and the ‘most common’ nonlinear filter [9].
Despite some shortcomings, the relative ease of implementation and still-
remarkable accuracy have propelled the EKF’s popularity.

However, more recently the unscented Kalman filter (UKF) [10] has been
shown to perform much better than the EKF when the system models are ‘highly’
nonlinear [6–9, 11]. While the EKF attempts to deal with non-linearities in the
system model by using the Jacobian to linearise the system model, the UKF instead
models the current state as a probability distribution with some mean and covari-
ance. Following this, a deterministic sampling technique known as the unscented
transform (UT) is applied. A set of points, called ‘sigma’ points, are drawn from the
probability distribution, and each of them propagated through the nonlinear system
models. The new mean and covariance of the transformed sigma points are then
recovered to inform the new state estimate. The crucial aspect of the UT is that the
sigma points are drawn deterministically, unlike random sampling methods like
Monte Carlo algorithms, drastically reducing the number of points necessary to
recover the ‘transformed’ mean and covariance.

Consider the general nonlinear system described for discrete time, k:

xk ¼ f xk�1;uk�1;wk�1ð Þ (1)

zk ¼ h xk;vkð Þ (2)

where f and h are the system’s process and observation models, respectively; x
and z are the state and observation vectors, respectively; u is the control input and
w and v are, respectively, the process/control and measurement/observation noise,
which are assumed to be zero-mean Gaussian white noise terms with covariances Q
and R. The formalisation of the UKF for this system is as follows. Define an
augmented state vector, xa, with length M that concatenates the process/control
noise and measurement noise terms with the state variables as

xa
k ¼

xk

wk

vk

2

6

4

3

7

5
(3)

The augmented state vector has an associated augmented state covariance, Pa
k,

which combines the (regular) state covariance, Pk, with the noise covariances Q k

and Rk. The augmented state vector and covariance are initialised with

x̂a
0 ¼ E xa

0

� �

¼
x̂0

0

0

2

6

6

4

3

7

7

5

Pa
0 ¼ E xa

0 � x̂a
0

� �

xa
0 � x̂a

0

� �T
h i

¼
P0 0 0

0 Q 0 0

0 0 R0

2

6

6

4

3

7

7

5

(4)

where x̂0 is the expected value of the initial (regular) state. There exist various
other sigma point selection strategies, and, in order to minimise computational
effort, a selection strategy involving a minimal set of samples is highly desired. The
spherical simplex set of points [10, 12] can be shown to offer similar performance to
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the original UKF with the smallest number of sigma points required (Mþ 2). The
sigma point weights, and a coefficient matrix is generated by choosing 0≤W0≤1
and then calculating W1:

W1 ¼ W i ¼
1�W0ð Þ
Mþ 1ð Þ i ¼ 1,…,Mþ 1 (5)

The choice ofW0 determines the spread of sigma points about themean. Choosing
W0 ≈ 1 reduces the spread, implying a greater confidence in the previous estimate,
while the opposite is true when choosingW0 ≈ 0. The vector sequence is initialised as

σ
1
0 ¼ 0½ �, σ

1
1 ¼ � 1

ffiffiffiffiffiffiffiffiffiffi

2W1

p
� �

, σ
1
2 ¼

1
ffiffiffiffiffiffiffiffiffiffi

2W1

p
� �

(6)

Then, the vector sequence is expanded for j ¼ 2,…,M via

σ
j
i ¼

σ
j�1
0

0

" #

i ¼ 0

σ
j�1
i

� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j jþ 1ð ÞW1

p

2

6

4

3

7

5
i ¼ 1,…, j

0j�1

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j jþ 1ð ÞW1

p

2

6

4

3

7

5
i ¼ jþ 1

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(7)

The actual sigma points are drawn, via a column-wise accumulation, from

χ i,k ¼ x̂a
k þ

ffiffiffiffiffi

Pa
k

q

σ

	 


i
(8)

where i refers to the ith column of the matrix product and
ffiffiffiffiffi

Pa
k

p

refers to the
matrix ‘square root’. The matrix square root of a target matrix A is a matrix B that
satisfies A ¼ BB; it is often calculated via the Cholesky decomposition [13].

The predict step begins with the sigma points being propagated through the
system model:

χ xi,k∣k�1 ¼ f χ xi,k�1∣k�1;uk�1∣k�1; χ
w
i,k�1∣k�1

	 


(9)

The state and covariance are then predicted as

x̂�
k ¼ ∑

N�1

i¼0
W

mð Þ
i χ xi,k∣k�1 (10)

P�
k ¼ ∑

N�1

i¼0
W

cð Þ
i χ xi,k∣k�1 � x̂�

k

h i

χ xi,k∣k�1 � x̂�
k

h iT
(11)

For the update step, the sigma points that were updated in the predict step are
propagated through the observation model:

Zi;k∣k�1 ¼ h χ xi,k∣k�1; χ
v
i,k�1∣k�1

	 


(12)
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The mean and covariance of the observation-transformed sigma points are cal-
culated:

ẑk∣k�1 ¼ ∑
N�1

i¼0
W

mð Þ
i Zi;k∣k�1 (13)

Sk∣k�1 ¼ ∑
N�1

i¼0
W

cð Þ
i χ i,k∣k�1 � ẑk∣k�1

� �

Zi;k∣k�1 � ẑk∣k�1

� �T
(14)

followed by the cross-covariance

Pxz,k∣k�1 ¼ ∑
N�1

i¼0
W

cð Þ
i χ xi,k∣k�1 � x̂�

k∣k�1

h i

Zi;k∣k�1 � ẑk∣k�1

� �T
(15)

and the Kalman gain

K ¼ Pxz,k∣k�1S
�1
k∣k�1 (16)

Finally, the current system state is estimated by

x̂k ¼ x̂�
k∣k�1 þK ~zk � ẑk∣k�1

� �

(17)

where ~z is the current set of observations and the current covariance is updated
with

Pk ¼ P�
k∣k�1 �KSk∣k�1K

T (18)

¼ P�
k∣k�1 � Pxz,k∣k�1K

T (19)

where the expression for the Kalman gain, Eq. (16), is substituted.

3. Hardware/software codesign of the unscented Kalman filter

The first exercise in the hardware/software codesign is to divide the UKF algo-
rithm into two parts. For maximum performance, it is desirable for as much of the
algorithm as possible to be implemented in hardware. However, to maintain porta-
bility, any part of the algorithm that is application-specific would be better
implemented in software. This is so that the application-specific parts can make use
of the faster and simpler development processes that using software entails.
Reviewing the UKF algorithm, only the two system models, the predict and
update models, are application-specific.

Apart from the two system models, the rest of the UKF can be viewed as,
essentially, a series of matrix manipulations. The only changes to the rest of the
UKF when either of the system models changes are the size of the vectors and
matrices used in the UKF calculations. The sizes of these vectors and matrices are
fixed for a particular formulation of the UKF, and so they can be treated as param-
eters that are set at synthesis. Fixing the parameters at synthesis means that only the
bare minimum of hardware resources is needed, but the hardware can still be easily
used for different applications with different vector/matrix sizes; rather than need-
ing to redesign any functionality, the hardware can simply be synthesised with
different parameters. Thus, the rest of the UKF can be designed and then used as a
parameterisable, modular ‘black box’ (IP core), and implementing it for any given
application only requires the appropriate selection of parameters.
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When it comes to designing hardware, there are three main considerations: the
performance of the hardware (which may include data throughput, maximum clock
frequency, etc.), the logic area (on-chip resources) used and the power consump-
tion of the hardware. During development these considerations are usually at odds
with each other—specifically performance is usually opposed by logic area and
power consumption. In order to increase the performance of the design, additional
resources often have to be used which, in turn, may increase the power consump-
tion; these increases in resource/power cost may make the implementation infeasi-
ble for a given application. Due to these considerations, it is beneficial to give
system designers the ability to scale resource use to the requirements of their
particular application.

The actual physical implementation of the hardware/software UKF on an FPGA
can be seen in Figure 3. The hardware part is implemented as a stand-alone IP core,
and the software part is implemented on a general-purpose microprocessor. The
processor acts as the main controller which, in addition to implementing the system
model software, controls the hardware IP core. The precise method of controlling
the IP core is dependent on the design variation and is elaborated on in the follow-
ing sections.

The processor communicates with the IP core over some communication
interface. Any intra-chip communication method would be sufficient and would
be driven mostly by the requirements of the application; viable interfaces
include point-to-point, bus or NoC interfaces. The IP core contains memory
buffers at the interface in order to receive data from the processor as well as to
temporarily store data that needs to be read by the processor. The communica-
tion interface is the same between all three variants, but the specifics of the
memory buffers are not.

Here, the communication interface between the two parts is an AXI4 bus. All
variants are implemented using single-precision arithmetic (IEEE-754); this gives a
decent balance of dynamic range and resource usage which should be sufficient for
the majority of applications. All hardware in the codesign is developed using the
Verilog HDL, and all software in the codesign is developed using C. Although C is
used here, in general, any type of software may be used as long as it contains the
ability to interact with the communication interface connecting the hardware and
software parts.

3.1 Overall design

The codesign utilises the main benefit of hardware implementations: wide
parallelism. An increase in performance is gained by encapsulating certain parts of
the major datapaths into a sub-module called a processing element (PE) and then
using multiple instances of these PEs in parallel, allowing multiple elements of an
algorithm to be calculated at once. The increase in resources used is not only for
the extra processing elements but also in the additional overhead needed to deal
with the parallel memory structure that is also necessary to feed to the parallel

Figure 3.
The hardware/software partition on the FPGA.
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processing elements. The number of PEs used in the design is parameterisable,
allowing for some trade-offs by the system designer between resources used and
performance.

The codesign logically separates the UKF algorithm into three parts, while on the
hardware side, the IP core consists of the UKF hardware and a memory buffer
which is attached to a communication (AXI4) bus; the top-level block diagram of
the codesign can be seen in Figure 4. The memory buffer has a memory map that
ensures that data are coherent between the processor and the IP core and also
incorporate a control register which allows the IP core to be controlled. The control
register allows the processor to reset or enable the IP core as a whole as well as start
one of the core’s functional steps via a state machine; the control register also
records the current state of the IP core. Data required by the IP core (e.g.
transformed sigma points) must be placed in the memory buffer at the appropriate
address by the processor before signalling the IP core to begin its calculations. The
control register may be polled by the processor to control the IP core; alternatively,
the core may also be configured with an optional interrupt line that may be attached
to the processor’s interrupt controller or external interrupt lines.

3.2 Sigma point generation

The sig_gen step uses the current augmented state vector and covariance to
calculate the new sigma points via (Eq. (8)). To calculate the new set of sigma
points, first the matrix ‘square root’ of the current augmented covariance must be
calculated which is implemented by the trisolve module. The ‘square root’ of the
augmented covariance is then multiplied by the sigma coefficients weighting matrix
and the current augmented state vector added column-wise; this is implemented by
the matrix multiply-add module described in Section 3.2.2. After the sigma points
are calculated, they are written to the memory buffer; a control bit is set to signify
completion to the processor; and if the interrupt line is included, an interrupt
generated. A block diagram of this step can be seen in Figure 5 showing the data
flow between modules.

Figure 4.
Top-level block diagram.

Figure 5.
Block diagram of the sig_gen step.
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The memory prefetch and memory serialiser modules add a small amount of
overhead to the sig_gen step but are necessary due to the matrix multiply-add
featuring a parallelised datapath but the memory buffer requiring serial access.

3.2.1 Triangular linear equation solver

In addition to the matrix ‘square root’, the Cholesky decomposition is also used
in the Kalman gain calculation which involves a matrix inversion (see Eq. (16)).
Directly computing a matrix inversion is extremely computationally demanding; so
rather than directly inverting the matrix, an algorithm called the matrix ‘right
divide’ is used here. For positive definite matrices, this algorithm involves using the
Cholesky decomposition to decompose the target matrix into a triangular form
followed by forward elimination and then back substitution to solve the system; this
sequence may be treated as solving a series of triangular linear equations meaning
the same hardware can be reused for each operation [14]. The Cholesky decompo-
sition of a target matrix A, which is positive definite, is given by

A ¼ L1L
T
1 (20)

where L1 is lower triangular. Reducing the calculation to a series of triangular
linear equations involves using an alternative version:

A ¼ L2DLT
2 (21)

where L2 is lower triangular and its diagonal terms are unit elements, D is
diagonal and the two versions are related by

L1 ¼ L2

ffiffiffiffi

D
p

(22)

The recombination process is necessary because of the subsequent matrix
multiply-add between the augmented covariance square root and the sigma
weighting coefficient matrix (see Eq. (8)). The element-wise calculation for L2 and
D is given by

Fij ¼ Aij � ∑
j�1

k¼1

LikFjk

 !

for i>j (23)

Dj ¼ Ajj � ∑
j�1

k¼1

F2
jk

Dk
(24)

where Fij ¼ LijDj and Fjk ¼ LjkDk are substituted to simplify the calculation

further. Figure 6 depicts the full trisolve datapath, including the division and
the recombination process to recover L1. The input b is either Aij in the
Cholesky decomposition or an element from the divisor matrix in the matrix
‘right divide’.

The fused multiply-add module and feedback FIFO have been encapsulated
to form an elementary block of hardware called a processing element (PE)
which can be instantiated multiple times in parallel. The PE output to a demul-
tiplexer, which ensures values, is passed to the subsequent calculations in the
correct order. The latter calculations, after the demultiplexer, are not
parallelised because these calculations require much fewer operations, and so
parallelisation is not necessary.

9

A Scalable, FPGA-Based Implementation of the Unscented Kalman Filter
DOI: http://dx.doi.org/10.5772/intechopen.80681



3.2.2 Matrix multiply-add

The matrix multiply-add datapath is a standard ‘naive’ element-wise multiplica-
tion and accumulation. However, the hardware to calculate one element is enclosed
as one processing element, and additional PEs are added to handle calculations in
parallel; the matrix multiply-add datapath can be seen in Figure 7. Each PE is
responsible for calculating at least one row of the result matrix. The elements of the
matrix to be added can simply be injected into the accumulation directly, instead of
performing an additional matrix addition after a matrix multiplication.

3.3 Predict step

The predict step uses the transformed sigma points to calculate the a priori state
estimate; the architecture for the predict step can be seen in Figure 8 showing how
data flows between each module.

Figure 6.
Triangular linear equation solver.

Figure 7.
Matrix multiply-add operation.

Figure 8.
Block diagram of the predict step.
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The processor may initiate a predict step once it has placed valid transformed
sigma points into the memory buffer. The prefetch module fetches the transformed
sigma points from the memory buffer and places them into a parallel memory
structure. The mean of the transformed sigma points is calculated which is also the a
priori state estimate (10). The transformed sigma points and the mean are then used
to calculate the ‘sigma point residuals’ via a subtract operation. From the ‘sigma
point residuals’, the covariance of the set of transformed sigma points is calculated
which is also the a priori covariance (11). Calculation of the mean and covariance is
implemented by the calculate mean/covariance module described in Section 3.3.1;
this section also describes the details of the ‘sigma point residuals’. Once the calcu-
lations are complete, the IP core writes the a priori state and covariance to the
memory buffer so that both the processor and IP core have the current state
estimate. Once the predict step is completed, a control bit is set to notify the
processor, and, if included, an interrupt generated.

3.3.1 Calculation of mean/covariance

Calculating the mean and covariance of the transformed sigma points is both
very similar, meaning both can be calculated by the same datapath. Consider the
calculation for the mean of the predict step transformed sigma points:

x̂�
k ¼ ∑

N

i¼1
W iχ

x
i (25)

This is a simple column-wise multiply-accumulation. Consider the calculation of
the covariance:

P�
k ¼ ∑

N

i¼1
W i χ

x
i � x̂�� �

χ xi � x̂�� �T
(26)

The subtraction looks like it will cause inefficiencies in the datapath, similar to
the division operation in the original Cholesky decomposition. However, let
~χ i ¼ χ xi � x̂� be the ith column of ~χ , and then the covariance calculation reduces to

P�
k ¼ ∑

N

i¼1
W i~χ i~χ

T
i (27)

This ‘sigma point residual’ matrix ~χ is of size Mstate �N where Mstate is the
number of state variables and N ¼ Mþ 2 is the number of sigma points. The
element-wise calculation is then

P�
ij ¼ ∑

N

k¼1

W1~χik~χjk (28)

This expression involves two multiplications followed by an accumulation; if
these ‘sigma point residuals’ are calculated first with a subtract operation, then
both the mean and covariance calculations simply involve a series of multiplications
and accumulation. Similar to the matrix multiply-add operation, the basic calcula-
tions are encapsulated into one processing element, and then additional PEs are
added to the datapath in order to calculate additional rows in parallel; the datapath
can be seen in Figure 9.

The input to the datapath is either the transformed sigma points to calculate the
mean or the residuals to calculate the covariance. The FIFO is used to skip the first
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multiplication when calculating the mean; the multiplexer selects which value is
calculated.

3.4 Update step

The update step corrects the a priori state estimate with a set of observations to
generate the new state estimate. Many of the calculations in the update step are
very similar to the predict step; the architecture for the update step can be seen in
Figure 10 showing the data flow between modules.

As with the predict step, the processor must first place the valid
transformed sigma points into the memory buffer before signalling the IP core
to begin. First, the prefetch module converts the transformed sigma points into
a parallel memory structure. The mean and ‘sigma point residuals’ are calcu-
lated and then used to calculate the observation covariance. The update ‘sigma
point residuals’ are also combined with the predict ‘sigma point residuals’,
which were calculated during the predict step, to calculate the cross-covariance
between the two system models. The observation residual, ~z � ẑ (17), is calcu-
lated with the current set of observations in the memory buffer. The observa-
tion and cross-covariance are used to calculate the Kalman gain before the
matrix multiply-add modules use the Kalman gain and the a priori state esti-
mate and covariance to calculate the new state estimate and covariance. The
new estimates overwrite the a priori estimates in the internal memory and are
also written into the memory buffer such that both the core and the processor
have the most recent estimate. The core notifies the processor upon completion,
setting a control bit and/or generating an interrupt.

Figure 9.
Calculate mean/covariance operation. W refers the sigma point weights W0,W1.

Figure 10.
Block diagram of the update step.
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4. Testing and validation of the hardware/software codesign

To validate the implementation of the hardware/software UKF and demon-
strate its effectiveness, an example application is presented. This demonstration
emulates the attitude determination subsystem of a single, uncontrolled
nanosatellite. It is envisioned that a system designer looking to use the HW/SW
UKF in a new application simply formulates the UKF appropriately for that
application, i.e. formulates the system models (1), (2) and sets the algorithm
parameters. Then, once the UKF algorithm has been defined, the HW/SW
codesign detailed in Section 3 can then be used to actually implement the UKF
and accelerate its performance. The example application attempts to employ
this process.

The UKF was implemented using a number of methods for validation and
comparison purposes. Once formulated, the UKF was first implemented in
MATLAB (SW) to validate the design of the UKF algorithm. Next, the UKF was
implemented again using the HW/SW codesign on an FPGA development board
in order to validate the codesign. Finally, the UKF was implemented a third
time in C (SW), but on the same FPGA development board, to provide a
performance benchmark the HW/SW codesign could be compared to.

The FPGA development board used was the Zedboard, featuring a Xilinx
Zynq-7000 series XC7Z020, seen in Figure 11. The relevant features of the
board are:

• Dual ARM Cortex-A9 processor system (PS) @ 667 MHz

• The equivalent of an Artix-7 device in programmable logic (PL)

• AXI4 PS-PL interface

The HW/SW codesign was implemented for the 1 PE and 2 PE cases. The
hardware part of the codesign, the IP core, was developed in Verilog and
synthesised and implemented using Vivado 2014.1; basic arithmetic was
implemented using floating point IP cores from Xilinx’s IP catalogue. All designs
used a single-precision (IEEE 754–2008) number representation. The target
synthesisable frequency for the IP core was 100 MHz, and the 2 PE case instantiated
two processing elements for the whole design (i.e. each individual module had two
processing elements). The software part of the codesign was implemented in C as
bare-metal application on the processor system. The general-purpose AXI4

Figure 11.
Zedboard development board used for two of the UKF implementations.
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interface between the PS and the PL was used by the two parts to communicate
with each other (@ 100 MHz as well). The C (SW) implementation of the UKF
was a bare-metal application that used the GNU Scientific Library (GSL) for
its vector and matrix manipulations. All software was compiled using the -O2
optimisation flag.

To test the different UKF implementations, a simulator was constructed in
MATLAB to model the nanosatellite’s motion; the details are given in Section
4.5. Simulated sensor measurements were generated from the nanosatellites’
motion and passed to each of the three UKF implementations, which act as the
attitude determination subsystem. For the MATLAB implementation, the simu-
lated measurements could be passed directly. For the HW/SW codesign and the
C (SW) implementations, the simulated measurements were first exported to a
C header which was included during compilation.

4.1 System model

The nanosatellite is modelled as a 1 U CubeSat. The attitude of the nanosatellite

is represented by the unit quaternion q ¼ q; q0
� �T

where q ¼ q1; q2; q3
� �T

and which

satisfies q21 þ q22 þ q23 þ q20 ¼ 1.
The kinematic equations for the satellite in terms of quaternions are given by

_q ¼ 1

2
q0I3�3 þ q�� �

ω (29)

_q0 ¼ � 1

2
qTω (30)

where ω is the angular rate and q� is the skew-symmetric matrix of q given by

q� ¼
0 �q3 q2
q3 0 �q1
�q2 q1 0

2

6

4

3

7

5
(31)

4.2 Sensor model

We consider a basic sensor set common on nanosatellites—a three-axis MEMS
IMU including an accelerometer, gyroscope and magnetometer. We use the stan-
dard gyroscopic model for the gyroscope:

zg ¼ ωT þ βþ ηg (32)

_β ¼ ηd (33)

where ωT is the true angular velocity, β is the gyroscopic bias, _β is the gyroscopic
bias drift and ηg, ηd are noise terms that are assumed to be zero-mean Gaussians.

Similarly, we model the accelerometer and magnetometer as

za ¼ aT þ ηa (34)

zm ¼ mT þ ηm (35)

where aT is the true local acceleration vector, mT is the true local magnetic
vector and ηa, ηm are, again, zero-mean Gaussian measurement noise terms.
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4.3 Predict model

We use a dead-reckoning model and the gyroscopic data to predict the motion of
the nanosatellite. However, it is necessary to account for the gyroscopic bias drift,
so we estimate the current gyroscopic bias as well. Let the state vector be

x ¼ q; q0; β
� �T

(36)

The predict model, f, is then

f χ xk�1∣k�1; χ
w
k�1∣k�1

	 


¼ χ xk�1∣k�1 þ f
0
χ xk�1∣k�1; χ

w
k�1∣k�1

	 


� dt (37)

f 0 χ xk�1∣k�1; χ
w
k�1∣k�1

	 


¼

1

2
q0I3�3 þ q�� �

zg

� 1

2
qTzg

03�1

2

6

6

6

6

4

3

7

7

7

7

5

þwk (38)

where dt is the time step between samples,wk ¼ ηq;
_β

h iT
is the process noise and

ηq is assumed to be a zero-mean Gaussian.

4.4 Update model

The accelerometer and magnetometer data are used to correct for the gyroscopic
bias, so the observation model, h, is

h χ xk�1∣k�1; χ
v
k�1∣k�1

	 


¼
Aq qð Þgba

Aq qð Þbm

� �

þ vk (39)

where ba and bm are the respective body frame vectors, g is the magnitude of the

gravity vector (assumed 8:94 m:s�2 at an altitude of 300 km), vk ¼ ηa; ηm½ � is the
measurement noise and Aq qð Þ is the rotation matrix between the body frame and
the local frame given by

Aq qð Þ ¼
q20 þ q21 � q22 � q23 2 q1q2 � q0q3

� �

2 q0q2 þ q1q3
� �

2 q1q2 þ q0q3
� �

q20 � q21 þ q22 � q23 2 q2q3 � q0q1
� �

2 q1q3 � q0q2
� �

2 q0q1 þ q2q3
� �

q20 � q21 � q22 þ q23

2

6

4

3

7

5
(40)

4.5 Simulation model

Collecting all the relevant terms, the initial augmented state vector is given by

xa
0 ¼ q; q0; β;04�1;03�1;03�1;03�1

� �T
, (41)

and the initial augmented covariance is a diagonal matrix with diagonal terms:

diag Pa
0

� �

¼ 16�1; ηq;
_β; ηa; ηm

h i

(42)

The state vector length is 7, the number of observation variables is 6 and the
augmented state vector length is 20. The quaternion noise term was modelled with

covariance ηq ¼ 10�6. The simulated sensor set was homogeneous, so the modelled
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errors are the same for each nanosatellite. The gyroscopic bias drift was modelled

with covariance ηd ¼ 10�2°=s2. The measurement noise terms were modelled with

covariances: ηg ¼ 10�1°=s, ηa ¼ 10�2g, ηm ¼ 10�2 gauss. The satellite was modelled as

undergoing slow tumbling. The motion was modelled using the Euler angles in a
local ground frame, which is relevant in most remote sensing applications; here, we
use roll-pitch-yaw to refer to rotations about the x-y-z axis, respectively.

To generate the sensor measurements, the simulated motions were converted
into the body frame via rotation matrix with 1–2-3 referring to roll-pitch-yaw,
respectively:

Aeuler ¼
c1c2 c1s2s3 � s1c3 s1s3 þ c1s2c3

s1c2 s1s2s3 þ c1c3 s1s2s3 � c1s3

�s2 c2s3 c2c3

2

6

4

3

7

5
(43)

It is assumed that the magnetometer is aligned with the x-axis (bm ¼ 1;0;0½ �)
and the accelerometer is aligned with the z-axis (ba ¼ 0;0; 1½ �). Next, using the
sensor models described earlier, noise terms were added to the sensor ‘truth’ data
which was then sampled at 1 Hz to simulate measurements from an actual set of
sensors.

4.6 Results

The UKF was simulated in MATLAB environment as well as on the Zedboard
development board. For the Zedboard implementations, the simulated sensor data
set was loaded into the onboard memory (RAM) and the UKF simulated as if it were
receiving data from the actual sensors. The data set used in all three
implementations was the same. State estimates from the UKF were stored on the
Zedboard for the duration of the simulation and then read back into MATLAB
afterwards for analysis.

All three implementations produced (within working precision) the simulation
results in Figure 12a and b; these figures show the absolute attitude error (i.e.
the difference between the UKF estimated attitude and the simulated ‘truth’) of
the nanosatellite. In Figure 12a, the top graph shows the first tenth of a second
of the simulation, highlighting early convergence of the filter to the truth from an

Figure 12.
Absolute attitude error.
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initial noisy estimate. The bottom figure shows the first second of the simulation,

highlighting the ability of the filter to maintain its accuracy ( < 0:1° error) after
convergence. Figure 12b shows that the UKF is able to correct for the inaccura-
cies arising from the gyroscopic bias and bias drift over the full duration of the
simulation.

(a) At the very beginning of the simulation.
(b) For the full simulation.
These results demonstrate that there are no implementation issues when taking

the UKF to a HW/SW codesign; the codesign, and IP core, is able to completely
replicate software-based implementations of the UKF. The overall latency of the C
(SW) implementation and the HW/SW codesign (serial and parallel) for the single
nanosatellite case were measured using the ARMv7 Performance Monitoring Unit
(PMU) and can be seen in Table 1. This overall latency is the time taken to
complete one full iteration of the UKF (all steps). The 1 PE case offers a modest
1:8� increase in performance over the C (SW) implementation and can be run at ≈2
kHz which is more than adequate for the sampling frequency assumed by the
simulation. The 2 PE case offers a slightly better 2:4� speed-up over the C (SW)
implementation. Note that the processor system operates at a clock frequency more
than six times the frequency used by the IP core (667 vs. 100 MHz), yet the IP core
is still able to outperform the C (SW) implementation.

5. Implementation analysis of the hardware/software codesign

Synthesis and implementation runs were targeted at the Zynq-7000 XC7Z045 at
a target frequency of 100 MHz. Though the implementations of the example appli-
cations presented in Section 4 was for the Zynq-7000 XC7Z020, the codesign does
not fit on this device for larger numbers of processing elements. In order to still
compare implementation details, this larger device in the Zynq-7000 family is used
instead. All the devices in the Zynq-7000 family feature the same processing sys-
tem; the only difference for larger devices is the amount of programmable logic
available.

Resource utilisation of the device by the IP core is reported by Vivado post-
implementation. The power analysis is done via the Xilinx Power Estimator (XPE)
post-implementation; all power estimates exclude the device static power dissipa-
tion and the processing system power draw.

The execution time (latency) for the hardware part is measured via behavioural
simulation in Vivado Simulator, assuming a clock frequency of 100 MHz; this
assumption was validated post-implementation for all designs. Though behavioural
simulations are usually used for only functional verification, Vivado Simulator pro-
vides cycle-accurate execution times as long as timing assumptions made in the
simulation are verified post-implementation. The entire IP core utilises synchro-
nous logic and is on a single clock domain which makes confirming the proper
distribution of the assumed clock signals, in this case 100 MHz, relatively straight-
forward.

The execution time (latency) of the software part is measured via the ARMv7
Performance Monitoring Unit (PMU), which counts processor clock cycles between

SW 1 PE 2 PE

Total 660 363 272

Table 1.
Overall latency for the single nanosatellite. All values in μs.
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two epochs; because the number of processor clock cycles to perform a given task
can vary, each measurement was conducted at least 10 times, and the average
latency measured is reported here.

5.1 Synthesis results

Synthesis results for a selection of different numbers of processing elements can
be seen in Table 2. These results do not include the processor but do include the
logic necessary for the AXI4 interface ports. The initial numbers of PEs were chosen
to be multiples of the number of augmented state variables so that the major
datapaths remained data efficient. Recall, for example, the matrix multiply-add
datapath (Section 3.2.2); each PE calculates an entire row in the result matrix. If the
number of PEs is not a multiple of the size of the matrix, then the last iteration of
the calculations will not have enough data to fill all the PEs making the datapath
slightly inefficient.

For low numbers of processing elements, the codesign utilises a relatively small
percentage of the available resources. The XC7Z045 is a mid-range device in the
Zynq-7000 series which means even the 10 PE case still only uses a quarter of the
available LUTs. The codesign does not require a proportionally large amount of any
one resource; in fact, the design uses a disproportionately smaller amount of FFs
than other resources. This will allow easier integration into a full SoC, particularly if
partially reconfigurable regions are used. Requiring too much of any one resource
type can lead to placement and routing issues since resource on-chip locations are
fixed by the manufacturer. This also implies that additional register stages could be
added to major datapaths, which would increase the overall latency but could allow
an increase in clock frequency as well. If the increase in clock frequency was greater
than the increase in latency, the overall performance of the design would benefit.

5.2 Power consumption

A power consumption breakdown for the hardware IP core (i.e. excluding the
processor) can be seen in Table 3. The power consumption for low numbers of PEs
is reasonably low, due to the area efficiency design goals and the heavy utilisation of
the FPGA clock that enable resources to disable modules that are not currently in
use. For reference, the device static power consumption (@ 25°C) is ≈245 mW, and
the rough power consumption of the processing system is ≈1:5 W. A conservative
estimate of the electrical power available to a CubeSat is in the order of 1–2 W per
unit [15]; larger 2–3 U or more CubeSats have a greater surface area to cover in solar
panels. The 1 PE case could be incorporated into a 1 U or larger CubeSat with
relative ease, but even for just the 2 PE case, a 2 U CubeSat or larger may be
necessary.

Resource 1 PE 2 PE 5 PE 10 PE

FF 7668 (2) 14,286 (3) 27,311 (6) 48,714 (11)

LUT 5764 (3) 15,158 (7) 29,500 (13) 53,427 (24)

BRAM 16.5 (3) 36.5 (7) 62 (11) 109.5 (20)

DSP48 35 (4) 62 (7) 104 (12) 182 (20)

Table 2.
Resource utilisation (% total) on the XC7Z045.
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5.3 Timing analysis

A breakdown of the execution time (latency) of different modules can be seen in
Table 4. The design spends a large amount of the time propagating the sigma points
through the two system models. The majority of the time spent by the design is
actually in these system models, making the software part the main bottleneck.
Looking at the sigma point propagation process a little closer, however, the latency
of reading the sigma points from the memory buffer and of writing the transformed
points back to the memory buffer was 116 μs. The actual calculation of the system
models took a mere 21 μs. So, the bottleneck is actually the speed of the AXI4 port in
transferring data between the processor and the memory buffer. Using a higher-
performance communication, bus or other techniques such as direct memory access
(DMA) ports may alleviate this issue, but intra-chip communication methods are
beyond the scope of this chapter.

For the hardware part, the majority of time is spent in the sig_gen step. The two
modules in the sig_gen step, the triangular linear equation solver and the matrix
multiply-add, are both large matrix operations which scale with the number of
augmented state variables. Operations in the predict and update steps tend to scale
with the number of state or observation variables, respectively, which are always
necessarily smaller than the number of augmented state variables. It should be
noted that the hardware part appears to suffer from diminishing returns with
regard to decreasing the latency as the number of processing elements increases.

6. Conclusion

In this chapter, a scalable FPGA-based implementation of the unscented Kalman
filter was presented. The proposed design balances development effort/complexity

Resource 1 PE 2 PE 5 PE 10 PE

Clocks 38 74 136 234

Signals 24 83 144 261

Logic 23 76 126 219

BRAM 51 82 112 209

DSP 4 6 21 52

Total 140 336 549 975

Table 3.
Power consumption of the codesign. All values in mW.

SW 1 PE 2 PE 5 PE 10 PE

Sig. gen. — — 92 61 51

System model 52 137 137 137 137

Predict 522 170 13 8.5 6.5

Update 87 56 30 21 17

Total 660 363 272 228 212

Table 4.
Latency of each stage for the codesign. System models encompass propagation through both the predict and the
update models on the processor. All values in μs.
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with performance, combining the advantages of both the traditional software
approach and hardware approaches to create a design that system designers can
easily use in a potentially wide variety of applications. Simulation and physical
implementation results of the codesign were presented. The demonstration appli-
cation simulated the attitude determination system of an uncontrolled nanosatellite,
and the physical implementation was performed on the Xilinx XC7Z045.
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