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Abstract

Functional nanoferrite thin films are used in various fields of our life. There are many dif-
ferent methods used to fabricate thin films including sputter deposition, flash laser evapo-
ration pulsed laser deposition (PLD), chemical vapor deposition (PVD) and spin-coating 
process. In each of these methods, it produces an amorphous phase of the deposited film. 
To produce a crystalline film, an additional high-temperature processing is required. The 
high-temperature process can lead to considerable constraints in combining the desir-
able characteristics of a crystalline nanoferrite thin film with those of thermally unstable 
substrates and other device components. High-temperature thin-film processing is also 
a considerable cost to manufacturing. This chapter will report a simple procedure of the 
sol-gel precursor method for fabrication of NiZn nanoferrite (Ni0.3Zn0.7Fe

2
O

4
) thin films 

and spin-coating method in coating a chemical solution. This method generally provides 
for both low-temperature deposition and crystallization of NiZn nanoferrite thin films.

Keywords: NiZn ferrite thin films, spin coating, structural, magnetic, optical properties

1. Introduction of NiZn ferrite thin films

NiZn nanocrystalline ferrite thin films have a spinel crystal structure which have been a sub-

ject of extensive attempt because of their potential applications in high-density magneto-optic 
recording devices, magnetic refrigeration and microwave materials due to its high electri-
cal resistivity, low magnetic coercivity and low eddy current losses. NiZn nanoferrite thin 
films are structure sensitive, and it is not easy to produce a stoichiometric and point-defect-
free NiZn ferrite, for high-resistivity applications. In NiZn ferrite thin-film fabrication, the 
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accurate composition control and the uniformity throughout the film deposition are impor-
tant. It is well known that properties of ferrite materials strongly depend on the preparation 
conditions. This issue is important in NiZn ferrite thin films because the effect of temperatures 
will lead to the change in the chemical composition of the ferrite films. These also will result in 
non-uniformity of film composition and the magnetic hysteresis parameter of ferrites. High-
temperature synthesis of NiZn thin-film ferrite results in the evaporation of some constituents 
that lead to the nonstoichiometry, and zinc volatilization at higher temperature can result in 
the formation of Fe2+ ions that lead to increase the electron hopping and reducing the electrical 
resistivity [1]. Therefore, a low-temperature synthesis is required for the synthesis of NiZn 
ferrite film. Properties of ferrite film depend on the preparation route, due to its strong influ-
ence on type of the film (polycrystalline and epitaxial), particle size, chemical homogeneity, 
microstructure and cationic distribution between tetrahedral and octahedral sublattice sites 
[2, 3]. Synthesis of ferrite thin film is of great interest among researchers in this field of study. 
Widely used techniques are utilized to produce desirable final product of nickel zinc ferrite. 
These techniques can be classified into two major techniques which are the conventional tech-
nique and the nonconventional technique. The starting materials are conventionally oxides 
or precursors of oxide of the cations. This process involves the interdiffusion of the various 
metal ions of preselected compositions to form a mixed crystal. The nonconventional powder 
processing in a liquid medium may produce intermediate, finely divided mixed hydroxides 
or mixed organic salts to assist the subsequent diffusion process [4]. Most of ferrite films have 
been prepared using sputtering and pulsed laser deposition. Somehow, sol-gel method is a 
kind of potential film preparation process, which possesses advantages of chemical homoge-
neity, easy component adjustment, low calcination temperature and low cost. Spin coating 
gives an advantage to liquid film that leads to uniformity in thickness during spin-off [5]. 
Once uniform, it tends to remain provided the viscosity is not shear-dependent and does 
not vary over the substrate. Other than that, sol-gel and hydrothermal routes of ferrite syn-
thesis have shown increasing importance. Recent years are marked by growing interest in 
sol-gel processed films in new areas, particularly in microelectronics. This is mainly due to 
intensively developing applications of silicate or siloxane sol-gel films in the VLSI multilevel 
interconnection process, the preparation of ferroelectric films for nonvolatile memory [6].

2. Literature review on synthesis techniques of NiZn ferrite thin 

films

Spin coating is widely used in modern optical and microelectronic industries [7]. The under-
standing of its underlying physics remains limited, a fact attributed to the lack of experimental 
data for the evolution of various parameters during the process [8, 9], leading to the need for 
new evolution tools. A relative study of nickel zinc ferrite by sol-gel route and conventional 
solid-state reaction was carried out [10]. It was claimed that the homogeneity and high purity 
in the sol-gel samples and small grains confirmed the finer particles. Ni0.36Zn0.64Fe2O4

 (NZF) 
thick films have been synthesized using sol-gel dip-coating method [11]. Combination with 
dispersion of ceramic NZF particles in starting sols has been proved to be useful for producing 
thick nickel zinc ferrite films. The best NZF powders are formed from dispersing at 300°C by 
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hydrothermal grow. Nickel zinc ferrite thin films are successfully prepared using spin-deposited  
citrate-precursor route [12]. The formation of crystalline film at low temperature even though 
films were found to be X-ray amorphous revealed the formation of uniform grains in nano-

meter size range. Besides that, NiZn ferrite film was successfully fabricated by using photo-

sensitive sol-gel method. The photosensitive gel film can be the photoresist of itself during the 
preparation process. The fine pattern of Ni0.5Zn0.5Fe

2
O

4
 film is obtained through UV radiation, 

rising and heat treatment [13]. The great potential of combining the microwave technique with 
nonaqueous sol-gel chemistry was successful [14]. Many transition metal ferrite nanoparticles 
with high crystallinity are uniformly morphological besides homogenous metal ferrite thin 
films on flat and curved substrates. The thickness of film can easily be adjusted in the range 
of 20–80 nm using precursor concentration. Other synthesis techniques of nickel zinc ferrite 
thin films are chemical vapor deposition, spray pyrolysis, sputtering, pulsed laser deposition 
and spin spray. Of these methods the earliest used was vapor deposition of metals followed 
by oxidation [15]. The films were porous and polycrystalline and approximately 1000 Å thick. 
Many common ferrites produced by this method were single-phase spinel in crystal structure. 
Spray pyrolysis is complicated and expensive and required special equipment and sometimes 
high processing temperature above 500°C. By using spray pyrolysis technique [3, 16], very 
homogenous ferrite thin films were obtained with good reproducibility. Nevertheless, for spi-
nel ferrite thin-film growth, this method is used rarely. Also only a few works can be found 
on NiZn ferrites, obtained by spray pyrolysis where a focus on the investigation of micro-

structural, optical and magnetic properties was held [17]. Apart from that, the effect of oxygen 
plasma treatment on magnetic and NiZn ferrite films using the spin-spray plating method has 
been employed [18]. The oxygen plasma treatment increased the number of nucleation sites of 
ferrite and enhanced adhesion of the films to the substrates. It has been reported that spinel Zn 
ferrite can be synthesized without substrate heating by pulsed laser deposition [19]. However, 
this technique needs post-deposition and requires sputtered film at a high temperature to 
grow the spinel ferrite structure. The results were optimized and obtained 4000 Å NiZn ferrite 
films with low in-plane coercivity of H

c
 = 15.2 Oe and relatively high saturation magnetization 

Ms = 318 emu/cm3. Some other research works was working on preparing NiZn ferrite films 
by magnetron sputtering method. Most of the sputtered ferrite films must be deposited at a 
high substrate temperature and need high heat treatment to obtain ordered spinel structure. 
Sputtering method is prepared at room temperature without any post-annealing treatment 
[20]. By controlling the relative oxygen flow, grain size in a range 10–20 nm was developed. 
It revealed a maximum saturation magnetization of about 151 emu/cm3. The static magnetic 
measurement results are affected by the crystallinity, grain dimension and cation distribution.

3. Brief overview of preparation methods

3.1. Preparation of NiZn ferrite thin films

NiZn ferrite thin film is prepared by a sol-gel process and spin-coating technique. The start-
ing materials nickel nitrate hexahydrate (Ni(NO3)2

·6H
2
O) (Sigma Aldrich, 99.999%), iron 

nitrate nonahydrate (Fe(NO3)3·9H
2
O) (Alfa Aesar, 99.999%) and zinc nitrate hexahydrate 
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(Zn(NO3)2
·6H

2
O) (Alfa Aesar, 99.999%) with high purity were used as a precursor for the 

starting sol preparation. The materials are in metal nitrate hydrates which are soluble in alco-

hol solvents. Acetone and deionized water were used as a medium for sol-gel reaction. Acetic 
acid (C

6
H

8
O7H2

O) (Alfa Aesar, 99.99%) acts as the chelating agent. The precursors were dis-

solved in deionized water and stirred for 15 min with a molar ratio of Ni:Zn:Fe = 1:1:2 using 
hot plate. The former salt solution was dissolved into acetic acid solution with a molar ratio of 
1:1 and stirred for 3 h at 80°C. A sol-gel formed was left 24 h for age.

3.2. Thin film deposition and spin-coating technique

The thin film was deposited on indium tin oxide (ITO) glass. ITO has higher melting point 
around 1926°C. There is no phase change of substrate during deposition of the film. The 
typical properties of ITO glass substrate are listed in Table 1. The film deposition consists 
of substrate wash and spin coating. The steps are to wash the substrates firstly with distilled 
water in ultrasonic bath for 15 min. The substrate was then washed in ultrasonic bath using 
acetone liquid for 15 min. Coating was carried out in a clean room by using a spin coater. The 
setting parameters were listed in Table 2. The aged sol of 1.0 ml (Section 3.1) was dropped on 
ITO glass substrate and spin coated for 25 s at 3500 rpm (revolutions per min). The deposition 
was repeated several times to obtain the required thickness (300 nm). The film thickness can 
be controlled by the number of coating. The film with desired thickness can be obtained by 
repeating the deposition cycle. Then drying films were performed in a room temperature for 
a few minutes and annealed in air at temperature 400, 500, 600 and 700°C, respectively, with 
an increment of 100°C for 1 h. Annealing process was performed in a box furnace with rate 
of 5°C/min.

3.3. Ni
0.3

Zn
0.7

Fe
2
O

4
 thin-film characterizations

The X-ray diffraction (XRD) pattern of Ni0.3Zn0.7Fe
2
O

4
 thin films was obtained by using a 

Philips X’pert diffractometer model 7602 EA Almelo operating at 40 kV/30 mA in the 2θ 

range (20–80°) with CuKα radiation, λ = 1.5418 Å. The microstructural properties were 

Glass substrate ITO coating glass

Size of substrate 25 × 12 × 1.1 mm

Gel drop 1 ml

Wash ultrasonic bath 15 min

Spin rotations per min (rpm) 3500

Duration of cycle 25 s

Number of cycle 5

Annealing temperature 400–700°C

Cooling rate after annealing 5°C/min

Table 1. Experimental parameters of Ni0.3Zn0.7Fe
2
O

4
 thin-film sol-gel spin-coating deposition process.
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observed using a FEI Nova NanoSEM 230 field emission scanning electron microscope. 
The distributions of grain sizes were obtained by taking more than 200 different grain 
images for the sample using J-image software. Hysteresis parameters of the loop of the 
Ni0.3Zn0.7Fe

2
O

4
 thin films were measured by using vibrating sample magnetometer (VSM) 

model 7404 Lake Shore. UV-Vis SHIMADZU model UV-3600 spectrophotometer has been 
used to analyse the optical transmission of the NiZn ferrite thin film in the wavelength 
range 200–800 nm.

4. Research findings

4.1. Structural analysis

Figure 1 shows the XRD pattern of spin coating and air-annealed ferrite thin films on the 
ITO glass substrate. The XRD patterns show single-cubic spinel-phase structures of (220), 
(311), (400), (511) and (440) in Ni0.3Zn0.7Fe

2
O

4
 ferrite thin films according to JCPDS reference 

code 74-2081 and 82-1049, respectively. Plane (311) is most intense in each annealing tem-

perature, whereas others are at relatively low intensity [22]. These plane formed nickel zinc 
ferrite phases. The small peak intensities in XRD pattern revealed the existence of fine grain 
nanocrystalline with the most part as amorphous. The height of the highest XRD intensity is 
more intense at high temperature and improves the crystallinity of the films. As the anneal-
ing temperature increases, the grain size also increases, as indicated in the narrowing of the 
XRD spectrum lines. Increasing annealing temperature will enhance the crystallinity besides 
releasing the internal strains within the samples which results in better optical and magnetic 
properties. The intensity of the (311) peak increases as a function of the substrate tempera-

ture showing an improvement of the film crystallinity. Moreover the peak intensity increases, 
while its full width at half maximum (FWHM) decreases. Further increasing of substrate 
temperature leads to a slight decrease of the peak intensity for films prepared at 700°C. It 
indicates a saturation of film crystallinity. The crystallite sizes of all ferrite thin films are found 
to be between 16 and 18 nm. The average crystallite size, D (Table 4), was determined using 
the Scherrer’s formula [23] as given by Eq. (1):

  D =   
0.9λ

 ______ β cos θ    (1)

Speed rate (rpm) 3500 rpm (constant speed)

Spin time (s) 25 s

Volume of solution 1.0 ml

Acceleration and deceleration 140 rpm/s

Temperature Room temperature

Reproduced with permission from [21].

Table 2. Spin-coating setting parameters.
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where D is the crystallite size, β is full width at half maximum of the diffraction peak, λ is the 
wavelength of 1.54 Å, and θ is scanning angle.

The lattice constants of these films were calculated using indexing method [24] given by 
Eq. (2):

    
λ
 ___ 

4  a   2    =   
 sin   2  θ

 _____ 
d
   =   

 sin   2  θ
 ________ 

 ( h   2  +  k   2  +  l   2 )     (2)

where d is interplanar spacing, λ is X-ray wavelength, and θ is reflection angle. The λ/4a2 is a 
constant and d = h2 + k2 + l2, which is determined by sin2θ value.

These lattice constants are tabulated in Table 3. The lattice parameters of all the ferrite films 
do not match precisely with the standard JCPDS bulk values which could be attributed to the 
strains present on the surface of the films during the synthesis [25, 26]. Annealing tempera-

ture has a pronounced effect on grain size. The lattice parameter calculated for nickel ferrite 
thin film is 8.338 Å [27]. This is in accordance with the variation in lattice parameter with Zn 
content reported for the bulk ferrites.

4.2. Microstructure analysis

The FESEM images revealed that the Ni0.3Zn0.7Fe
2
O

4
 films have dense and homogenous grains 

with an average grain size. Film annealed at 400°C was homogenous with dense microstruc-

ture, and they have high adhesion to the substrate. Film annealed at 500°C shows a well-
developed grain. The grains slowly appeared with increasing annealed temperature. This is 
because the grain tends to combine with closer grain to form larger grain size. The structure 
formed in the thin films is a normal characteristic of film derived from sol-gel. The average 
grain sizes of the Ni0.3Zn0.7Fe

2
O

4
 nanoferrite thin films are 18.61 nm (400°C), 26.25 nm (500°C), 

Figure 1. XRD pattern of air-annealed Ni0.3Zn0.7Fe
2
O

4
 ferrite thin films. Reproduced with permission from [21].
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28.12 nm (600°C) and 41.32 nm (700°C). The grains of the films are spherical and uniform, and 
cohesion of grains is due to the magnetic attraction. The average grain size of the films is pre-

sented in Figure 2. The histogram of grain size distribution shifted to the larger grain size as the 
annealing temperature increased. However, based on the coercivity, H

c
 results (Section 4.3),  

the transition from 600 to 700°C of annealing temperature exhibits a fall of the H
c
 value.

Figure 3 illustrates the cross section of the samples annealed at 400, 500, 600 and 700°C, 
respectively. The deposited films were uniform with two cycles of number deposition cycle. 
It was found that the thin films have thickness in the range of 145.7–285.6 nm which was 
confirmed by cross-sectional FESEM images. The grain size over 26 nm was further increased 
with a higher annealing temperature. Accordingly, the number of grain sizes beyond the 
single domain to multidomain critical size also increased. Therefore, the number of domain 
wall increased as the movement of domain wall contribution to make ease of magnetization 
increased [28].

Figure 4 presented the thickness of the Ni0.7Zn0.3Fe
2
O ferrite thin films and shows its relation-

ship with the grain size. Annealing is a process related to secondary grain growth in the film. 
Thompson discussed the secondary grain growth mechanism and came to the conclusion that 
the secondary grain growth is driven by the reduction of the total grain boundary energy. 
Since the grain boundary energy is film-thickness-dependent, the secondary grain growth 
rate increases when the film thickness is reduced [29].

4.3. Magnetic properties

The plots of magnetization, M, against magnetic field strength, H (M−H hysteresis loop), for 
Ni0.3Zn0.7Fe

2
O

4
 films annealed at 400, 500, 600 and 700°C were shown in Figure 5. The hys-

teresis shape is narrow and has linear loops which have a low saturation magnetization, Ms. 
The saturation magnetization, Ms, and coercivity, H

c
, values have been directly extracted from 

these curves and have been listed for various annealing temperatures in Table 4. The Ms and 
H

c
 could be attributed to the varied grain size and crystallinity. The lower value of saturation 

Annealing temperature (°C) 400 500 600 700

Rel. intensity counts (%) 100 100 100 100

Position (2θ) 35.3661 35.3717 35.3991 35.3247

FWHM (2θ) 0.5215 0.5371 0.5116 0.4723

d-spacing (nm) 2.53595 2.53557 2.53207 2.53993

Crystallite size (nm) 16.71 16.22 17.03 18.45

Lattice strain (%) 0.71 0.73 0.70 0.65

Space group F d 3 m F d 3 m F d 3 m F d 3 m

Lattice parameter a = b = c (Å) 8.4030 8.4030 8.4030 8.4030

Volume/Å3 593.34 593.34 593.34 593.34

Table 3. Structural parameters of Ni0.3Zn0.7Fe
2
O

4
 thin films from XRD spectra.
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magnetization, Ms, Ni0.3Zn0.7Fe2O4
 films (Figure 6(a)) could be caused by several reasons. A large 

grain boundary volume presented in thin films would result in the increase of the Ms [30]. 
Other reasons for the increase Ms are due to complex spinel structure; it was difficult to gain 

Figure 2. FESEM images of the Ni0.3Zn0.7Fe2O nanoferrite films annealed at (a) 400, (b) 500, (c) 600 and (d) 700°C. Reproduced 
with permission from [21].
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Figure 3. Cross-sectional of Ni0.3Zn0.7Fe2O nanoferrite films annealed at different temperatures.

Figure 4. The average grain size and film thickness as a function of annealed temperatures. Reproduced with permission 
from [21].
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Figure 5. (a) Hysteresis loop of Ni0.7Zn0.3Fe
2
O ferrite thin films and (b) first quadrant of the magnetic hysteresis loops of 

the samples. Magnetization at any given field increased with heat treatment temperature. Reproduced with permission 
from [21].

Temperature (°C) M
s
 (±0.01 emu/g) H

c
 (±0.001 Oe) D (±0.1 nm) d

xrd
 (±0.01 nm)

400 1.287 16.184 18.6 16.71

500 2.395 16.536 26.3 16.22

600 2.653 12.288 28.1 17.03

700 3.421 8.297 42.32 18.45

Reproduced with permission from [21].

Table 4. Saturation magnetization, Ms, coercivity, H
c
, grain size, D, and calculated crystallite size from XRD dxrd of 

Ni0.3Zn0.7Fe
2
O

4
 nanoferrite thin films.
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Ni0.3Zn0.7Fe
2
O nanoferrite films with perfect crystallization. The metal cations can occupy either 

A sites (tetrahedral) or B sites (octahedral), which will result in a partially disordered cation 
distribution in the crystal lattice [31]. The saturation magnetization (Ms) increases with the grain 
size, and the observations on larger decrease are interpreted mostly by oxygen absorption, char-

acteristic to the preparation technique. The coercivity, H
c
, was decreased as the annealing tem-

perature and average grain size increased (Figure 6(b)). The maximum value of H
c
 was 16.54 Oe 

for the grain size 26.25 nm. The H
c
 observed were closed to the reported value of H

c
 which is 

Figure 6. Comparison of the variation in (a) Ms and (b) H
c
 as a function of annealed temperatures of the Ni0.3Zn0.7Fe

2
O 

nanoferrite thin films. Reproduced with permission from [21].
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within the range of 20–210 Oe [20]. The decreases of H
c
 were contributed from the transition 

of the single domain to the multidomain [32]. The coercivity (H
c
) has a maximum grain size of 

about 26 nm and a steep decrease at larger grain sizes (41.3 nm). The smaller grain sizes and 
the decrease of H

c
 are due to the randomizing effects of thermal energy. Thermal energy has an 

important role in magnetic instability of single-domain magnetic particles. Due to the smaller 
grain sizes, the thermal agitation becomes small and will not be able to cause fluctuations in the 
magnetic spin orientations of the nanoparticles where they freeze in random orientations. The 
latter is probably due to the decreased anisotropy constant, which leads to a sharp decrease in 
coercivity according to the random anisotropy model. The relation between the decrease H

c
 and 

Figure 7. (a) Absorbance spectra of thin film at various annealed temperatures and (b) transmittance spectra of NiZn 
ferrite thin films.
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increase grain size shows the linear inverse proportionality between coercivity, H
c
, and grain 

size, D, by H
c
 α 1/D [22, 33].

4.4. Optical properties

Figure 7 demonstrates the curves of absorbance and transmittance, respectively. The absorp-

tion spectrum exhibits that NiZn ferrite thin films have low absorbance in visible region and 
it is close to infrared region (Figure 7(a)). However, absorbance in UV region is high. This 
result of the optical behaviour is analogous to those claimed by [34] or cobalt ferrite thin film 
using microwave-assisted nonaqueous sol-gel process. Optical transmittance is plotted in a 
wavelength range of 200–800 nm as shown in Figure 7(b). The films are highly transparent in 
the visible range below 90%. The average transmittance is calculated and tabulated in Table 5. 
The optical transmittance spectra of annealed thin films show a good transmission in the vis-

ible region and a sharp fall in the UV region which corresponds to the band gap. The decrease 
of the transmittance is due to the interaction of the incident long-wavelength radiation with 
the free electron in the films [35].

Figure 8(a) and (b) demonstrates the optical band-gap energy direct and indirect of the films 
annealed at various temperatures. The band-gap energy (E

g
) of the thin films was calculated from 

UV–Vis absorbance spectra. Direct and indirect band-gap energies can be obtained from the 
dependencies (αhv)2 on hv, where α is the absorption coefficient, whereas hv is the photon energy 
in eV [36]. A linear line was obtained by plotting (αhv)1/n against hv. The intersection of this straight 
line on x-axis gives the value of optical band gap. The values of band gap as listed in Table 5 do 
change with thickness. A dependence of band-gap energy shift on the grain size is attributed 
to electron confinement effect related with the grain size in the films. As a result, the observed 
decrease in E

g
 with increasing grain size is due to the decrease of resistivity and the increase of 

film thickness. It has been studied that the band gap does not change significantly with the thick-

ness after the film grows completely [37]. The band gap becomes saturated for a particular value 
of thickness [38]. The presented values of optical band-gap energy are larger than reported value 
for NiZn ferrite film 1.66 eV [39] and bulk NiZn ferrite, 1.55–1.66 eV [40]. The direct and indirect 
band energy increases could be the effect of strain present in the films during heat treatment [41].

Annealing 
temperature (°C)

Thickness 

(nm) (±0.1 nm)
Direct band-gap 
energy (αhv)2 

(±0.01 eV)

Indirect band-gap 
energy (αhv)−1/2 

(±0.01 eV)

Average 
transmittance (T%) 
(±0.1%)

Grain size 
(±0.01 nm)

400 145.7 3.76 3.03 85.0 18.61

500 180.7 3.66 3.08 78.0 26.25

600 221.5 3.58 3.16 70.0 28.12

700 285.6 3.04 3.30 70.0 41.32

Table 5. Thickness, band gap, transmittance and grain size of sample at various annealing temperatures.
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5. Summary

NiZn ferrite thin film with composition Ni0.3Zn0.7Fe
2
O

4
 was successfully prepared using sol-

gel spin-coating technique. The structure formed in the thin films is a normal characteristic of 
film derived from sol-gel. Sol-gel spin-coating method was able to produce the similar trend 
and behaviour, among others, of ferrite thin film. The results are summarized as follows:

• The phase analysis of films produced the complete phase with the formation of spinel 
structures of Ni0.3Zn0.7Fe

2
O

4
 ferrite which were observable at annealed 400°C and upwards. 

Figure 8. (a) Plot of (αhv)2 as a function of photon energy (eV) and (b) Plot of (αhv)1/2 as a function of photon energy (hv).
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Further annealing temperature demonstrated the improvement in the degree of crystallin-

ity of the annealed films.

• The saturation magnetization, Ms, of the synthesized Ni0.3Zn0.7Fe
2
O

4
 ferrite thin films has 

been obtained at room temperature from the hysteresis loops which increases with anneal-
ing temperatures. The hysteresis shape shown is narrow and has linear loops which have a 
low Ms. The coercivity, H

c
, decreases as the average grain size increases since the alignment 

of the magnetic moments inside the domain is fully controlled by thermal energy.

• The micrograph revealed the increasing average grain size with the annealing temperature. 
The grains of the films are spherical and uniform, and cohesion of grains is due to the 
magnetic attraction.

• The absorption spectrum exhibits that NiZn ferrite thin films have low absorbance in visible 
region and close to infrared region. The films are highly transparent in the visible range 
below 90%. The optical transmittance spectra of annealed thin films show a good transmis-

sion in the visible region and a sharp fall in the UV region which corresponds to the band 
gap.
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