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Chapter

Modeling Thermoregulatory 
Responses to Cold Environments
Adam W. Potter, David P. Looney, Xiaojiang Xu,  

William R. Santee and Shankar Srinivasan

Abstract

The ability to model and simulate the rise and fall of core body temperature 
is of significant interest to a broad spectrum of organizations. These organiza-
tions include the military, as well as both public and private health and medical 
groups. To effectively use cold models, it is useful to understand the first principles 
of heat transfer within a given environment as well as have an understanding of 
the underlying physiology, including the thermoregulatory responses to various 
conditions and activities. The combination of both rational or first principles and 
empirical approaches to modeling allow for the development of practical models 
that can predict and simulate core body temperature changes for a given individual 
and ultimately provide protection from injury or death. The ability to predict these 
maximal potentials within complex and extreme environments is difficult. The 
present work outlines biomedical modeling techniques to simulate and predict cold-
related injuries, and discusses current and legacy models and methods.

Keywords: hypothermia, cold injury, clothing, military, biophysics, survival

1. Introduction

Mitigating hot and cold injuries is a complex problem and has been shown to 
have significant links to a number of individualized factors, to include race, gender, 
job specialty, and geographic origin [1, 2]. There are many other individualized 
elements (e.g., fitness, body composition, and genetics) that are intuitively linked 
to these health outcomes; however, there is a lack of adequate data to scale that 
sufficiently addresses these issues.

The history of characterizing heat exchange and thermoregulatory functions 
in humans can be traced back to the late 1770s; where British military physiologist, 
Sir Charles Blagden conducted descriptive studies of man, dog, and beef steak 
responses in a hot room [3]. Mathematically describing heat exchange theory has 
roots in physics and with the development of the laws of thermodynamics and heat 
exchange, specifically as described in Fourier’s law [4] a mathematical expression of 
the dynamics of heat balance in solids, simplified as:

  ρ ∙ c ∙  (  ∂ T ___ 
∂ t

  )  = ∇ k ∇ T + H  (1)

where   ρ  is density (g/m3), c is specific heat [(kcal/°K. kg)], k is heat conduc-
tance [kcal/(hr cm °K)], T is temperature (°K), t is time (hours), and H is the net 
flow rate of heat other than by diffusion.
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Key work by Pennes in 1948 [5], reported measured temperatures of tissue and 
blood at the forearm and enabled the creation of the bioheat transfer equation. This 
equation has proven to be a key underlying basis of future models, seen as:

  ∇  ∙ k ∇ T +  q  p   +  q  m   −  W   C  b     (T −  T  a  )  = ρ  c  p   (  ∂ T ___ 
∂ t

  )   (2)

where k (w/m °C) is the tissue thermal conductivity, T is tissue temperature 
in °C,   q  p    (w/m3) is energy deposition rate,   q  m    (w/m3) is metabolism, W (kg/m3/s) 
is local tissue blood perfusion rate,   C  b    (J/kg/°C) is specific blood heat,   T  a    (°C) is 
arterial temperature, ρ (kg/m3) is the tissue density, and   c  p    (J/kg/°C) is the specific 
tissue heat.

Conceptually, heat exchange between the human and the environment was first 
described by Lefevre in 1911; where he characterized the human as a sphere with 
an internal core that exchanged heat through the shell into the environment [6]. In 
1934, Burton applied Fourier’s law, presenting this exchange mathematically and 
describing the human as one uniform cylinder in what is considered by many as the 
first visual conceptualization of human thermoregulatory modeling [7].

Representation of the human in a thermoregulatory model is most often done 
by sectioning the human into nodes, segments, and elements; typically using one of 
four different designs, (1) one-node, (2) two-node, (3) multi-node, or (4) multi-ele-
ment [8]. An example of the difference between these designs is shown in Figure 1; 
while the multi-element approach is more realistic human shape (e.g., finite analysis 
distribution). Typically each node represents an independent layer with unique 
thermal properties, each segment represents a section or grouped section of an area 
of the body, and each element represents multiple thermal components that make up 
the whole body (often more geometrically accurate to the shape of the human).

One node models are essentially empirically derived and do not include elements 
within the thermoregulatory response system. There are several one node thermo-
regulatory models that have been used extensively over time to predict core body 
temperature and thermal discomfort within a given environment [9–12].

Simple two-node models describe specific thermodynamic responses of a single 
segment, typically separated into concentric core and shell nodes. They have often 
been used examine thermal discomfort and physiological responses, to include 
the work by Gagge and Nishi [13–15], and several others [16–19]. Two node model 
approaches have been used where the two node design was applied to multi-seg-
ments [20–23]. Multi-node models are essentially expanded versions of the two-
node methods with additional shells or layers within them where the heat balance is 

Figure 1. 
Example of model designs.
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calculated for each layer. Multi-node models, with both single- and multi-segment 
designs have become the more prevalent approach. The first multi-node model 
was developed by Crosbie et al. [24] and has been followed by many since [25–29]. 
Notable is the work of Solwijk and Hardy [30–33], where they first introduced the 
concepts of temperature set points and negative feedback in a controlled theory 
design. Their work has been built upon by many researchers over time [34–42]. The 
first multi-element model was originally published in 1961 by Wissler, and later 
improved upon [43–45]. Additional multi-element models include work by Smith 
[46], with the first three-dimensional (3D) transient multi-element model. As 
computation methods improved, a series of improvements has led to more realistic 
and complex models [8, 47–50].

While the majority of these models were developed with the intent of charac-
terizing thermoregulation in various environments; several have been designed 
specifically to address cold environments or thermoregulatory events that specifi-
cally address cold issues (e.g., finger, hand, foot temperatures). With the intricacies 
of human response to cold, studies have focused on extremities, the specific areas 
most subject to cold injuries. One of the first attempts was by Molnar in 1957, used a 
heat balance approach to study hand temperature responses to cold [51]. This work 
was followed by work focused on finger freezing points [52–57] and whole hand 
modeling [58, 59]. Specific models have also been developed of the foot [60], toes 
[61], and facial tissues [62, 63]. Cold survival models have been developed over 
time to make predictions in both open air and submerged environments [64–68].

2. Clinical definitions of cold injuries

Characterizing cold related injuries is fairly complex, as the responses to cold 
have higher individual variability when compared to heat related injuries. From a 
clinical perspective, cold related injuries can be broadly divided into three catego-
ries: frostbite, nonfreezing cold injuries, and hypothermia. In addition, each of 
these has varying levels of severity and subcategories associated to them.

Frostbite is below the point at which skin tissue begins to freeze. While 0°C 
(32°F) is traditionally considered the freezing point of water, the freezing point of 
skin is understood to be marginally lower due to electrolytes [69]. Observed freez-
ing points range from as low as −4.8°C to as high as −0.6°C [69, 70].

Nonfreezing cold injuries include an array of injury events where tissue freezing 
has not occurred but damage occurs. The level of severity of nonfreezing injuries is 
determined by the temperature, duration, and wetness of the exposure to the tissue. 
Four of the more common specific types of nonfreezing injuries include immersion 
(trench) foot, chilblain, cold urticaria, and cold-induced bronchoconstriction [71].

Immersion foot is a nonfreezing injury. The foot presents swollen, the skin is 
red initially but as severity increases the skin becomes lower in oxygen saturation 
and becomes cyanotic (purple, bluish discoloration) [69, 71]. Immersion foot is 
most often reported after tissue have been exposed for extended periods of time to 
non-freezing temperatures, between 0 and 15°C (32–60°F) [71]. The term ‘immer-
sion’ itself refers to when the foot is actually immersed in water when the foot is wet 
within boots for sustained periods of time [69, 71].

Chilblain is a fairly common nonfreezing injury to the skin. It can occur during 
1–5 hours of temperatures below 16°C (60°F) [69]. Cold urticaria is expressed as a 
quick onset of redness, swelling and itchiness of the skin in response to short-term 
exposure (i.e., minutes) to cold environments [71]. Cold-induced bronchoconstric-
tion is a physiological response where an individual’s airways are narrowed during 
exercise in cold environments [69, 71–73].
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Hypothermia is a broad category of cold injury and is clinically described to 
be the point at which core body temperature has dropped below 35°C (95°F) [74]. 
However, hypothermia is more specifically defined with four levels of severity; 
where normothermia (normal temperature level) is approximately 37°C (98.6°F), 
mild hypothermia is between 91.4–95°C (33–35°F), moderate hypothermia being 
85.2–89.6°C (29–32°F), and severe hypothermia being 56.7–82.4°C (13.7–28°F) 
[69, 71]. Figure 2 outlines specific core temperature reference points associated 
with physiological responses using work by Castellani et al. [69] and Pozos and 
Danzl [74] and described in Army Guidance [75].

3. Basics of thermophysiology

The human body is capable of maintaining thermal balance while operating 
within a wide range of temperatures. The human system generally maintains an 

Figure 2. 
The range of human core temperatures and associated physiological responses [76].
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internal core temperature (Tc) of approximately 37°C. Due to natural circadian 
rhythm, Tc fluctuates ~0.5°C daily. However, Tc can fluctuate based on physical 
activity or environmental conditions, and may range from 36.0–40.0°C. The 
microenvironment created between human skin and clothing typically must remain 
within 28–30°C to maintain thermal homeostasis at rest [45]. This microenviron-
ment changes significantly with physical activity due to metabolic heat production 
and air movement.

Humans have an internal control system, primarily the preoptic area of the 
anterior hypothalamus, responsible for maintaining healthy body temperature. The 
hypothalamus uses feedback from two main sources, the skin and the blood. When 
temperature changes (hot or cold) are identified by either of these two sources, 
impulses are sent to the hypothalamus which in turn directs physiological changes 
to compensate for these temperatures. To protect from cold or heat injury, the 
human body attempts to either generate or dissipate heat to stay warm or cool off. 
Heat production is a natural process for humans and is a function of metabolism, 
oxidation of foods, and muscular activity. Heat transfer between the human and 
environment occurs via four pathways: conduction, convection, radiation, and 
evaporation. This heat exchange process is typically referred to as heat or thermal 
energy balance, and can be described in the heat balance equation:

  S = M ± W ± R ± C ± K − E  [W /  m   2 ]   (3)

where S is heat storage; M is metabolic rate; W is work rate; R is radiation; C is 
convection; K is conduction; and E is evaporation. Radiation is heat that is trans-
ferred via electromagnetic waves (e.g., solar radiation). Conduction is heat transfer 
due to the body’s direct contact with a solid object (e.g., touching a cold surface). 
Convection is heat transfer between the body and a fluid such as air or water. 
Evaporation is heat loss to the environment due to the phase change from liquid to 
vapor, typically associated with evaporation of sweat and respiratory water.

Hyperthermia is when heat gain exceeds heat loss; while hypothermia occurs 
when body temperature drops below normal levels as heat production is inadequate 
to compensate for the rate of heat loss to the environment [77].

Vasoconstriction and vasodilation are the two key physiological responses 
of how heat transfer is regulated from the body to the periphery [78, 79]. 
Vasoconstriction is the constriction of blood vessels and occurs in response to cold 
environments to reduce the amount of blood flow to the skin. Vasoconstriction 
protects the internal organs from cold exposure but increases cold injury risk in the 
extremities due to lower blood flow and lower skin temperatures. Vasoconstriction 
in effect creates a two-layer distribution of body temperature; a cold outer shell sur-
rounding a warmer core. The colder outer shell reduces heat loss to the environment 
by reducing the temperature gradient between the skin surface and the environ-
ment, and a colder surface radiates less heat.

Vasodilation is essentially the opposite of vasoconstriction; where blood vessels 
open to allow increased blood flow across the body and out to the extremities to 
enable increased heat dissipation [78, 79]. During these responses, there are other 
associated physiological responses that help compensate for the increased skin 
blood flow (e.g., increased heart rate and cardiac output).

The extremities are more affected by cold exposure than other parts of the body. 
When the human body cools, blood flow is reduced to the extremities (i.e., the 
hands and feet) decreasing the amount of warm blood flowing to these areas. It is 
a challenge to protect the hands and feet as they have lower metabolic heat produc-
tion of the hands and feet due to their inherently small muscle mass and large 
surface area to mass ratio.
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From a functional perspective, the balance of control within the human system 
depends on the response to cold exposure and interaction between peripheral (skin) 
and core body temperatures with the central nervous system (CNS) and the various 
physiological responses (Figure 3); [74].

4. Importance of clothing

Clothing has long been used to provide protection from environmental elements 
(heat, cold, etc.) or physical or biological hazards (e.g., rocks, thorns). Clothing 
properties and requirements vary widely among users and use cases. A single clothing 
ensemble cannot protect an individual from the extremes of the temperature spectrum 
of earth, being approximately −89°C at its coldest and 58°C at its warmest. However, 
clothing is a toll to protect each end of this spectrum of environmental extremes 
[80]. However, protections must be based on use cases to achieve the desired thermal 
comfort. For example, protective equipment for American football players (i.e., pads 
and helmet) is vastly different than protective equipment worn by soldiers (i.e., body 
armor, ballistic helmet). It should be noted that added protection may increase the 
thermal burden to wearers, and thus increases risk of heat injuries [81–83].

It is critical to understand the clothing option tradespace in order to predict and 
prepare for the impact clothing has on protecting or impairing human health. That 
is to say, the selection of the proper clothing, requires an understanding of how the 
human (physiology, anthropology, etc.), the anticipated activities (i.e., work rate, 
length of exposure and metabolic heat production), the work environments (tem-
perature, humidity, etc.), and the biophysical properties of clothing worn (heat 
transfer performance) will interact in each workplace scenario.

Figure 3. 
Peripheral (skin) and core temperature influence on central nervous system (CNS) and physiological outcomes.
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4.1 Clothing biophysics

Clothing protects the wearer from environmental threats, but may impose a 
level of thermal burden. Both the biophysical resistances (thermal and evaporative) 
and spectrophotometric (reflectance, absorptivity, and transmittance) properties 
of clothing can have a significant influence on the impact of the environment on 
the wearer. Measurements of the biophysical properties of clothing can be used to 
model the impacts on thermal sensation (e.g., thermal comfort) and thermoregula-
tory responses (e.g., heat strain, cold protection). The thermal and evaporative 
resistances, wind effects, and spectrophotometric properties of the clothing are 
critical measurements for this purpose.

4.1.1 Thermal and evaporative resistance

Sweating thermal manikins have long been used to provide biophysical measures 
of clothing and equipment worn by the human [84]. While direct biophysical com-
parisons can be helpful, i.e., comparing one ensemble’s value to another [85], a more 
informative approach is to combine these measured values with thermoregulatory 
modeling. Models enable the prediction of thermoregulatory responses based on 
different individuals, as well as varied environments, clothing, or activity levels.

The current standard for thermal manikin testing calls for two fundamental 
measures: thermal resistance (Rt) [86] and evaporative resistance (Ret) [87]. These 
two measures represent the dry heat exchange (Rt: convection, conduction, and 
radiation) and wet heat exchange (Ret: evaporation). After converting both Rt and 
Ret into units of clo and im [88, 89], a ratio can be used to describe an ensemble’s 
evaporative potential (im/clo) [90].

Each ensemble should be tested using chamber conditions from the American 
Society for Testing and Materials (ASTM) standards for assessing Rt (ASTM F1291-
16) and Ret (ASTM F2370-16) [86, 87] (Table 1).

Thermal resistance (Rt) is the dry heat transfer from the surface of the manikin 
through the clothing and into the environment, mainly from convection, and 
described as:

   R  t   =    ( T  s   −  T  a  )  _______ 
Q / A

   [ m   2  K / W]   (4)

where Ts is surface temperature and Ta is the air temperature, both in °C or °K. Q 
is power input (W) to maintain the surface (skin) temperature (Ts) of the manikin 
at a given set point; A is the surface area of the measurement in m2. These measures 
of Rt can then be converted to units of clo:

  1 clo = 6.45 ( I  T  )   (5)

Variable 

(unit)

Skin/surface 

temperature  

(Ts, °C)

Ambient 

temperature 

(Ta, °C)

Relative 

humidity 

(RH, %)

Wind 

velocity 

(V, ms−1)

Saturation 

(%)

Rt (m2 
K/W)

35 20 50 0.4 0

Ret (m2 
Pa/W)

35 35 40 0.4 100

Table 1. 
American Society for Testing and Materials standard chamber and manikin conditions for testing thermal (Rt) 
and evaporative (Ret) resistance.
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where IT is the total insulation including boundary air layers. Evaporative resis-
tance (Ret) is heat loss from the body in isothermal conditions (Ts ≈ Ta), described as:

   R  et   =    ( P  sat   −  P  a  )  _______ 
Q / A

   [ m   2  Pa / W]   (6)

where Psat is vapor pressure in Pascal at the surface of the manikin (assumed 
to be fully saturated), and Pa is ambient vapor pressure, in Pascal, of the chamber 
environment. Measures of Ret can then be converted to a vapor permeability index 
(im), a non-dimensional measure of water vapor resistance of materials defined as:

                                  i  m   =   
60.6515   Pa ___ 

     
°
  C

    R  t  
 _____________________ 

 R  et  
                                                         (7)

4.1.2 Wind effects on thermal and evaporative resistance

In order to use the biophysical measures, i.e., measures of Rt (clo) and Ret (im) 
for thermoregulatory modeling there is a need to first estimate the effects of wind 
velocity on the biophysical characteristics of the ensemble (i.e., to determine how 
wind affects clo and im values). These effects are typically referred to as wind 
velocity coefficients or gamma values (g) [91]. Historically, these coefficients were 
determined by collecting measurements of both Rt and Ret at multiple wind veloci-
ties above the ASTM standard of 0.4 m/s. However, recent work suggests these coef-
ficient values can be accurately estimated from single wind velocity tests [91, 92].

Clothing properties and wind coefficients are critical inputs to a number of 
predictive mathematical models [10, 11, 93, 94], as they use these values to describe 
wind-related effects, such as intrinsic insulation (Icl) and intrinsic permeability 
index (icl) for either the whole body or segments of the body, as seen with:

   I  cl   =  I  t   −  (   I  a   __ 
 f  cl  

  )   (8)

where Ia is insulation measured on a nude thermal manikin, It is total insulation, 
and (fcl) is clothing area factor, calculated by:

   f  cl   =   A ___ 
 A  cl  

    (9)

where A (m2) is surface area of the nude manikin, and Acl (m2) is surface area 
the clothed manikin.

True measures of Acl require a three-dimensional scan. However, methods for 
estimating Acl have been derived by McCullough et al. [95]. Simplified or estimated 
Acl and fcl is often used where a value of 1 is assumed for warm-weather or indoor 
clothing. For cold-weather clothing a value would be calculated from:

   f  cl   = 1.0 + 0.3 ∙  I  cl    (10)

While these estimation methods have been studied and produce acceptable 
variance between estimated and direct measured results [96], there are questions 
whether estimates remain acceptable for clothing insulation outside typical cold 
weather clothing insulation ranges, e.g., 0.2–1.7 clo [97].

Most clothing-based thermal models, by design, predict human thermo-
regulatory responses to various environmental conditions and therefore require 
quantitative insights into the change in clothing properties with changes in wind 
velocity. Furthermore, elements of wind can significantly influence physiological 
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responses and injury outcomes in cold environments due to wind chill effects [69, 
98, 99]. There has been work to develop that relates exposure time to predicted 
injury (e.g., frostbite) likely to occur due to temperature and levels of wind speed 
exposure [98].

5. Modeling risk and predicting heat and cold related injuries

Mathematical models can predict the human thermal response (e.g., meta-
bolic heat production, core body temperature (Tc), endurance time) resulting 
from activity, environment, and clothing. These mathematical models are typi-
cally binned into one of three categories, either as rational, empirical, or hybrid. 
Rational (mechanistic) models mathematically represent phenomena based on an 
understanding of physics and physiology (biology, chemistry, physics). Empirical 
models mathematically reflect the observed relationship among experimental data. 
While both methods, rational and empirical, are scientifically valid approaches, 
perhaps the most effective approach is the hybrid or mixed model method that uses 
a combination of the two.

5.1 Rational models

Rational modeling incorporates equations that describe heat balance and thermo-
regulatory processes [100]. Two fundamental equations are used to describe internal 
heat balance and for heat exchange between skin and environment. One equation 
outlines the temperature gradient change from core to skin and can be seen as:

  ρc ∙   ∂T ___ 
∂t

   =  q  m   + λ ∙  ∇   2  T +  ω  bl   ∙  ρ  bl    c  bl   ∙  ( T  bl   − T)   [W  m   −3 ]   (11)

where  ρ  is tissue mass (kg m−3), c is the specific heat of the tissue (kJ kg−1 °C−1), 
T is the tissue temperature (°C),  t  is time (sec), qm is metabolic heat production rate 
(W m−3), λ is the tissue heat conductivity (W m−1 °C−1),   ∇   2   is a Laplace transform 
for heat conduction based on the tissue temperature gradient,   ω  bl    is blood flow rate 
(m3 s−1 m−3 tissue),   ρ  bl    is blood flow mass (kg m−3),   c  bl    is the blood specific heat (kJ 
kg−1 °C−1), and   T  bl    is the blood temperature (°C).

The second equation describes heat exchange from the skin surface to the 
environment as:

  − λ ∙   ∂T ___ 
∂n

   = R + C + K + E  [W  m   −2 ]   (12)

where λ is the tissue heat conductivity (W m−1 °C−1), T is tissue temperature 
(°C),  n  is the tissue coordinate normal to the skin surface; while the balance is the 
array of avenues of heat exchange (W m−2): R is radiative, C is convective, K is 
conductive, and E is evaporative.

Rational models of thermoregulatory processes usually include equations for the 
controlling signals of the thermoregulation system and equations for thermoregula-
tory actions such as sweating, vasodilation, vasoconstriction, and shivering.

Understanding the interplay between each of the different layers of the human 
(grossly consisting of core, muscle, fat, and skin) along with clothing and air 
layers within clothing is only the first step to modeling the human’s response in 
a given environment. Figure 4 shows the rational basis behind the SCENARIO 
model where the human is mathematically represented as one multi-layer cylinder, 
based on the relationship of the layers of the human, their respective physiological 
responses, and clothing [93, 94].
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5.2 Empirical models

Empirical models are mathematical representations of data, often using 
statistical methods such as regression or correlational analysis. An example model 
is the Heat Strain Decision Aid (HSDA), empirically derived by the U.S. Army 
from an extensive database of human studies that incorporates the biophysics of 
heat exchange [10, 11, 101] and predicts core temperature, maximum work times, 
sustainable work-rest cycles, water requirements, and the estimated likelihood 
of heat casualties. This model has been used to derive guidance and doctrine for 
military [102] and fluid intake guidance for the public [103]. The basis of HSDA 
includes both principles of heat exchange along with empirical predictions of 
physiological responses. Collectively 16 inputs from four elements (individual 
characteristics, physical activity, clothing biophysics, and environmental condi-
tions) are used to mathematically predict the rise in core body temperature during 
physical activity [10].

5.3 Simple models

Originally developed by Holmér [104], a simple calculation was adopted by the 
International Organization Standardization (ISO) technical report (ISO 11079) 
[105], as an evaluation metric of the insulation required (IREQ ) for given environ-
ments and activities to compare ensemble performance. The IREQ method func-
tionally describes the concept for balancing the heat exchange between the human 
and the environment, and simplified as:

  M − W =  E  res   +  C  res   + E + K + R + C + S  (13)

where M is metabolic heat produced, W is effective mechanical work and 
collectively M-W represents the heat produced within the human; while the 
opposite side of this balance, Eres and Cres represent the respiratory heat exchange 
(evaporative and convective), and E, K, R, and C represent the conventional heat 
exchange methods (evaporative, conductive, radiative, and convective) and S is 
heat storage.

The IREQ equation illustrates the rational balance between thermal insulation 
and heat transfer, seen as:

  IREQ =     t ̄    sk   −  t  cl   _____ 
R + C

    (14)

Figure 4. 
Fundamental rational basis (SCENARIO model) [93], reused with permission. Note: BFcr is core blood flow, 
BFmu is muscle blood flow, BFfat is muscle blood flow, BFsk is skin blood flow.



11

Modeling Thermoregulatory Responses to Cold Environments
DOI: http://dx.doi.org/10.5772/intechopen.81238

or more formally as:

  IREQ =     t ̄    sk   −  t  cl   _______________  
M − W −  E  res   −  C  res   − E

    (15)

where tsk is mean skin temperature, tcl clothing surface temperature, and  
M − W −  E  res   −  C  res   − E = R + C. 

This method also determines the minimum and neutral IREQ (IREQmin and 
IREQneutral), and describes amounts of insulation needed to maintain thermal balance 
(minimum) and to maintain an equilibrium balance (neutral). The ISO 11079 also outlines 
general scenarios for the minimum required insulation (IREQmin) for multiple work inten-
sities and environments. Collectively this method provides a simple method for evaluating 
the effectiveness of specific cold weather clothing at protecting from cold injuries [106].

5.4 Key elements for model development

When developing a cold-based thermal model there are a number of physiologi-
cal, environmental, and biophysical parameters that can and should be considered. 
Particular attention should be paid to the extremity temperatures blood flow and 
metabolic heat production.

5.4.1 Blood flow

As blood flow is a major component to the overall movement of heat, it is impor-
tant to be able to predict blood flow to the muscle, skin, and distribution of blood 
flow to these regions within the body. Table 2 outlines some historical methods 
used in models for predicting each of these elements.

5.4.2. Shivering

Shivering is where, in response to cold exposure, muscles involuntarily contract 
rhythmically off and on in an attempt to increase body temperature [74]. During 

Prediction Equation Units References

Cutaneous blood 
flow (  q  s   )

  q  s   =  q  s,r   ∙ AVD ∙ CVCM ∙ CVCL ∙ CVCE mL 100 mL 
tissue−1 min−1

[79, 
107–115]

Skin vasodilation 
(dilat)

 dilat =  β  dil,1   ∙ erro  r  1   +  β  dil,2   ∙  (warms − colds)  +  
β  dil,3   ∙ war  m  1   ∙ warms 

L h−1 [33]

Skin vasoconstriction 
(stric)

 stric =  β  str,1   ∙ erro  r  1   +  β  str,2   ∙  (warms − colds)  +  
β  str,3   ∙ col  d  1   ∙ colds 

L h−1 [33]

Skin blood flow ( b  f  s   )   bf  s   = 0.53 ∙ b  f  forearm   − 0.83 mL min−1 [116]

Local blood flow ( l  q  s   )   lq  s   =   
 q  s,r   +  γ  dil   ∙ dilat

 ___________ 
1 +  γ  str   ∙ stric

   ∙  Q  10    T− T  0   _____ 
10

    L h−1 [33]

Muscle blood flow 
(  q  m   )

  q  m   =  q  m,r   +  c  m   ∙ ∆  M  w   L h−1 [33]

Muscle blood flow 
( b  f  m   )

  bf  m   = 0.47 ∙ b  f  forearm   + 0.83 mL min−1 [116]

Note: qs and qs,r are skin blood flow and rate; AVD is active vasodilation; CVC is cutaneous vascular conductance—
addition of M (mediated), L (locally), and E (effect of exercise);  β dil and  β str are control coefficients for vasodilation 
and vasoconstriction; warms and colds refer to calculated net warm and cold receptors;  b  f  forearm    is blood flow at 
the forearm;   γ  dil    and   γ  str    are distribution coefficients for vasodilation and vasoconstriction; cm is a proportionality 
coefficient; and MW is metabolic heat produced from exercise.

Table 2. 
Methods for predicting skin blood flow in thermoregulatory models.
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cold exposure the shivering response is a critical element to model, as the produc-
tion of heat protects the body core temperature despite skin to the ambient heat 
loss. Table 3 outlines some of the modeling approaches that have been used to 
predict the shivering response as they relate to the total metabolic rate (M) and the 
heat production from shivering (Mshiv).

Prediction Equation Units References

Total shivering 
(TOTMshiv)

  = 300 ∙  ( T  h   −  T  h,set  )  + 1.35 ∙  (   ∑ m=1  
14     W  a,m   ∙  (  q  s,m      ̇   −  q  s,set,m  )   

+ 75 ∙  (   ∑ m=1  
14     W  a,m   ∙  ( T  s,m   −  T  s,set,m  )   

kcal h−1 [37]

Maximal 
shivering 
(Shivmax)

 = 30.5 + 0.348 ∙ V  O  2max   − 0.909 ∙ BMI − 0.233 ∙ age (yrs)  
mLO2 kg−1 

min−1
[37]

Metabolic rate 
of shivering 
(Mshiv)

 = 60 ∙  (36.6 −  T  ty  )  ∙  (34.1 −  T  s  )  
kcal h−1 [30]

Metabolic rate 
of shivering 
(Mshiv)

 = 36 ∙  (36.5 −  T  ty  )  ∙  (32.2 −  T  s  )  + 7 ∙  (32.2 −  T  s  )  
kcal h−1 [117]

Metabolic rate 
to open air 
(M1)

 = 41.31 − 57.77 ∙   d  T  s   ___ 
dt

   − 5.01 ∙  ( T  s   − 34)  
W m−2 [118]

Total metabolic 
rate (M2)

 = M1 +  (894.15 − 23.79 ∙  T  re  )  W m−2 [118]

Total metabolic 
rate (M)

 = 0.0314 ∙  ( T  s   − 42.4)  ∙  ( T  re   − 41.4)  W kg−1 [119]

Metabolic rate 
of shivering 
(Mshiv)

 =   
155.5 ∙  (37 −  T  es  )  + 47 ∙  (33 −  T  s  )  − 1.57 ∙   (33 −  T  s  )    2 

    _________________________________  
 √ 

_____
 BF%  
   

W m−2 [120]

Note: T is temperature; h is head; set is set point of temperatures; Wa,m is a weighting coefficient; qs is heat flux s is 
skin; BMI is body mass index; ty is Tympanic membrane; re is rectal; and es is esophageal; BF% is body fat percentage.

Table 3. 
Methods for predicting shivering related model calculations.

Prediction Equation Units References

Metabolic rate

=1.44 + 1.94∙S0.43 + 0.24∙S4 W kg−1 [124]

=3.5 + 6∙S + 1.08∙S∙G mLO2 
kg−1 

min−1

[125]

=17.7–18.138∙S + 9.72∙S2 mLO2

kg−1 
min−1

[126]

=1.4 + 0.42∙G + 3.68∙S − 0.01∙M − 0.03∙Age W kg−1 [127]

=1.5∙M + 2∙(M + L)∙(L∙M−1)2 + η(M + L)
(1.5∙S2 + 0.35∙S∙G)

W [128]

=Ht∙(0.0136∙Ht − 0.375)−1∙(1.92∙S0.176–1.445) 
∙Wt∙105∙(0.82∙S2–3.94∙S + 9.66)

l O2 min−1 [129]

Note: G is grade (° for Ref. [125], % for others); Ht, height (inches for Ref. [129]); L, external load (kg); M, mass 
(kg); η, terrain factor; S, speed (mph for Ref. [129], m s−1 for others); VO2-rest, resting oxygen consumption (ml kg−1 
min−1); Wt, weight (lbs).

Table 4. 
Methods for predicting metabolic rates during walking or standing.
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5.4.3 Metabolic heat production

An individual’s metabolic heat production can be estimated at rest and during 
activity using the assumed basal rate of 58.2 W/m2 [121] and the estimated metabolic 
equivalents (METS) of activity; where 1 MET is resting. Ainsworth et al. [122] outlines 
a wide range of activities and their associated MET level for reference. However, there 
are metabolic rate estimation methods available based on energy costs of standing or 
walking (Table 4). Recently work has also been published that makes corrections to 
some of these prediction methods specific to traveling over snow terrain [123].

6. Summary and discussion

Mathematical models and decision aids are tools for inspiring advancements 
within the field of thermophysiology, and for providing solutions to help mitigate 
injury risk.

Scientifically based models have been used in the development of public [97, 
98, 103, 104, 130–132] and military guidance [75, 131, 133], for forensic assess-
ments [134–140], as well in the creation of operational tools for survival [141, 142]. 
Notably, the use of Xu and Werner’s six cylinder model [41] was used to develop 
the Probability of Survival Decision Aid (PSDA), a computer model used to predict 
hypothermia and dehydration impact on functional time (i.e., duration of ability 
for useful work), and survival time while exposed to marine environments [67, 143, 
144]. The PSDA model is underpinned by the rational principles described herein 
and the outputs are provided in a customized graphical user interface. This tool has 
been transitioned for use by Search and Rescue (SaR) personnel and continues to be 
refined and verified based on real-world feedback and data collected [144].

There is a need for continued advancement in the development of individual-
ized modeling methods such as finite element models as well as providing models 
and decision aids that can be used in dynamic settings and for complex scenarios 
with prolonged durations. Additionally, inclusion of probabilistic and statistically 
based risk factors should be used as elements that help improve individualized 
predictions. The accessibility of the information from these tools continues to be a 
challenge for the scientific community. While providing usable information to the 
public, military, and other user communities should be the ultimate goal of these 
work efforts; feedback from these communities should be translated back to the 
scientists to ensure relevant improvements are made from real-world information.
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