
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 10

Hard, firm, soft … Etherealware:
Computing by Temporal Order of Clocking

Michael Vielhaber

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.80432

Abstract

We define Etherealware as the concept of implementing the functionality of an algorithm
by means of the clocking scheme of a cellular automaton (CA). We show, which functions
can be implemented in this way, and by which CAs.

Keywords: cellular automaton, etherealware, asynchronous, update rule, universality,
temporal order, clocking-computable

Your task: Compute a lot of different functions on n-bit inputs.

Your device: A (fixed!) cellular automaton (CA) on the (fixed!) ring or torus topology with n

cells, is capable of holding one bit each.

You may not change the CA (its update rule) nor the topology. You may not enter additional

information in the form of parameters (there would be no space to store them anyway)—and yet

you are supposed to evaluate many different functions. The available degree of freedom is the

clocking scheme of the cells, anything from synchronous to completely asynchronous is allowed.

Can you do it?

The perhaps surprising answer is: yes!

Every bijective function on the set 0; 1;…; 2n � 1f g, which acts as an even permutation is

clocking-computable, as well as many non-bijective functions.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

1.1. What is etherealware?

Computation takes place in dedicated hardware or on general-purpose hardware by dedicated

software. Different functionality requires either changing the hardware (think ASIC, FPGA) or

changing the software running on it. Firmware is an intermediate concept, where the hardware

is modified by microprogramming a CPU or personalizing an FPGA.

Etherealware is the first way to use fixed hardware (certain cellular automata (CA) in this case),

run fixed software (the same update rule for all cells, for all time, for all purposes), and still

deliver diversity in the resulting function: by changing only the clocking scheme, the order in

which the CA’s cells are updated.

1.2. State-of-the-art

The study of synchronous CAs starts with Wolfram [1]. We use asynchronous CAs as deter-

ministic devices with a finite number of computation steps, which is a new point of view.

Previously, asynchronous CAs have been treated as dynamical systems, where infinite com-

putations are considered, and the focus lies on concepts like orbits, fixed points, ergodicity,

transients, cycles and their periods, and long-term behavior. Also, randomness can be intro-

duced to average over many possible asynchronous schemes. Papers in this respect are:

Ingerson and Buvel [2], 1984, distinguish synchronous, random (completely asynchronous),

and periodic clocking, which yield clearly distinguishable behavior.

Barrett et al. [3–6], 1999–2003, consider sequential dynamical systems (SDS), including CAs

with arbitrary toplogy and neighborhoods. They cover random graphs as topology and

dynamical systems topics such as fixed points and invertibility.

Siwak [7], 2002, gives an overview of simulating machines, including CAs and SDSs, and

unifies them under the concept of “filtrons.”

Lee et al. [8], 2003, give an asynchronous CA on the two-dimensional grid Z� Z, which is

Turing universal.

Laubenbacher and Pareigis [9], 2006, build upon [3–6] and observe that not all n! permutations

of the cells lead to different temporal rules. Their equivalence classes coincide—for our setting,

CAs on the torus—with our result ([10], Thm. 1]).

Fatès et al. [11], 2006, consider ECAs with quiescent states (000↦ 0; 111↦ 1, i.e., with even

Wolfram rule ≥ 128). They show that 9 ECAs diverge, while the other 55 converge to a random

fixed point, in 4 clearly distinguishable time frames Θ n log nð Þð Þ,Θ n2
� �

,Θ n3
� �

, or Θ n2nð Þ with

characteristic behavior per time frame.

Macauley, McCammond, andMortveit [12, 13], 2007–2010, also treat SDSes, in particular ECAs.

For each ECA, [13] gives the periodic states and the dynamics group. Conjecture 5.10 in [13]

about Wolfram rule 57 coincides with our finding that ECA-57 generates the alternating groups

From Natural to Artificial Intelligence - Algorithms and Applications186

on patterns of n bits. They verified this claim for n up to 8, while in [14] this is extended to

n ≤ 10 and in this paper up to n ≤ 28.

Dennunzio et al. [15, 16], 2012–2013, consider ACAs, every turing machine can be simulated

by an ACA, with quadratic slowdown. Introducing a certain fairness measure, they show that

injectivity and surjectivity are equivalent (μ-a.a.), and the existence of a diamond is equivalent

to not μ-a.a. injectivity.

Salo [17], 2014, shows that nonuniform CA generates all SFTs (subshifts of finite type) and

several non-SFT sofic shifts.

2. Notations: ECA and update rules

Here, continuing the work in [10, 14], we again employ CAs as computing devices, whose

work comes to an end, when the pattern transformation or function evaluation has been

obtained. Also, the clocking, the temporal update rule, is completely deterministic and

replaces the usual ways of representing an algorithm, either in software (initial data) or in

hardware (choice of ECA and connecting graph). Thus, the algorithm resides exclusively in the

clocking scheme. We therefore call functions computable in this way as “clocking-computable

functions.” The main additional contribution of this paper is the introduction of unfair clocking

schemes.

2.1. Cellular automata: Neighborhoods and local update rules

We consider cellular automata (CA) on a torus or ring of n cells, that is index set Z=nZ, over the

binary alphabet 0; 1f g. Cell index wraparound, that is, ci ¼ cj for i � jmodn, and the canonical

cell names are cn�1, cn�2,…, c1, c0. We deal with elementary CAs (ECA) with three input cells,

where the middle one is also the output cell.

The neighborhood (ci+1, ci, ci�1) can have eight different values from ∈ F
3
2. Let k ≔ 4�

ciþ1 þ 2 � ci þ ci�1 ∈ 0;…; 7f g. Then ci is replaced by cþi ≔ pk ∈ 0; 1f g, where p0,…, p7 are

defined via Wolfram’s rule [1]
P7

k¼0 2
kpk ∈ 0;…; 255f g.

The 22
3

¼ 256 ECAs can be arranged into 88 equivalence classes under the symbolic symmetry

0/1 and the chiral symmetry left/right (ciþ1 $ ci�1); see ([14], Appendix A). It is sufficient to

consider one member per class.

We considered quad CAs (QCAs) with four inputs and nonstandard neighborhoods in ([10],

Section 1.2).

Local bijectivity requires that ECA a; 0; cð Þ ¼ 1� ECA a; 1; cð Þ. This is equivalent to requiring

that the hexadecimal digits of the rule be from 3, 6, 9, C.

Example: The behavior of the ECA with Wolfram rule 57 ¼ 001110012 ¼ 3916:

111↦ 0, 110↦ 0, 101↦ 1, 100↦ 1, 011↦ 1, 010↦ 0, 001↦ 0, 000↦ 1, in other words

0ci1↦ cþi ¼ ci, for all other contexts we have 0ci0, 1ci0, 1ci1↦ cþi ¼ ci.

Hard, firm, soft … Etherealware: Computing by Temporal Order of Clocking
http://dx.doi.org/10.5772/intechopen.80432

187

2.2. ECA: Global update rules on the torus

2.2.1. Fair update schemes

We repeat the definition of asynchronicity rules from ([10], Section 2).

The set ASn of asynchronicity rules over Z=nZ consists in all words of length n over the

alphabet <;�; >f g such that both “<” and “>” occur at least once. We also include the word

“� ⋯ �,” the synchronous case, and have.

ASn ¼ <;�; >f gn\ <;�f gn∪ �; >f gnð Þð Þ∪ �nf g with ∣ASn∣ ¼ 3n � 2nþ1 þ 2.

A rule AS ¼ ASn�1⋯ AS0 ∈ ASn defines the firing order as follows:

ASi Meaning

< Cell ci fires after cell ci�1

> Cell ci fires before cell ci�1

� Cell ci fires simultaneously with cell ci�1

To ensure bijectivity, we must first have a locally bijective CA, and, furthermore, no two

adjacent cells may fire simultaneously. Why this is so will be dealt with in Chapter 5. There

are exactly 2n � 2 bijective fair rules, those from <;>f gn\ <n, >nf g; see also ([10], 4.1]).

A fair update step (bijective or not) can be decomposed into a sequence of elementary steps

such that all cells fire exactly once during the execution of that sequence; see [3].

2.2.2. Unfair update schemes

We now include unfair updates, where some cells may fire less often than others (even not at all).

We start with elementary steps (μ steps in [10]). During one elementary step, any nonempty

subset I ⊆ n� 1; n� 2;…; 1; 0f g of indices may define the active cells.

These cells fire simultaneously, hence cþi ¼
ECA ciþ1; ci; ci�1ð Þ, i ∈ I,

ci, i =∈ I:

�

We define elementary steps as words s ¼ sn�1⋯s1s0 ∈ 0; 1f gn, with the meaning si ¼ 1, if cell ci
fires, and si ¼ 0 if cell ci is inactive in this step.

A sequence of such elementary steps is upper indexed by the time step tð Þ.

A fair update rule consists in a number of elementary steps such that every cell fires exactly once.

The fair rule as ¼ “<><><>” for n ¼ 6 can be decomposed into (s 1ð Þ ¼ 010101, s 2ð Þ ¼ 101010),

while the sequence (s 1ð Þ ¼ 010001, s 2ð Þ ¼ 101010) is unfair, since cell c2 does not fire at all.

The number of bijective elementary steps is the number of words of length n over the alphabet

0; 1f g, such that no adjacent 1’s occur to ensure bijectivity. For n ¼ 3; 4; 5; 6 there are 3, 6, 10, 17

such steps, respectively. The sequence obeys the law nk ¼ nk�1 þ nk�2 þ 1. At least for

n ¼ 3,…, 7, the sets are as follows: prepend a 0 to each pattern of length k� 1, prepend a 10

(a 01) to each pattern of size k� 1 terminating in 0 (in 1), and add the new pattern 10k�1. The

From Natural to Artificial Intelligence - Algorithms and Applications188

sequence is used again in Section 5 and has been verified to coincide with OEIS A001610 up to

n ¼ 24.

We also can define unfair bijective rules (full steps), where we first fix some subset of size

1 ≤ k ≤ n� 1 of active cells by a word a from 0; 1f gn\ 0n; 1nf g, ai ¼ 1 meaning that cell ci is active.

We next order adjacent active cells by the usual < , > signs. Hence, a run of r consecutive 1’s

(with wraparound) has 2r�1 ways to fix the internal firing order. This order is independent of

the other 1-runs, since the cells are separated by at least an inactive cell with ai ¼ 0. The

number of bijective unfair rules on a torus of size n is

X

2n�1

p¼1

Y

#runs

i¼1

2ri�1

where the pattern p avoids 0n and 1n and then the 1-runs in the pattern have lengths r1, r2,…,

considering wraparound.

For n ¼ 3,…, 7, we have 9 ¼ 3þ 6, 30 ¼ 4þ 10þ 16, 90 ¼ 5þ 15þ 30þ 40, 257 ¼ 6þ 21þ

50þ 84þ 96, and 714 ¼ 7þ 28þ 77þ 154þ 224þ 224, such unfair rules, respectively. The

terms count how many patterns with k ¼ 1, 2,…, n� 1 active cells are feasible. These terms

can be found in OEIS [18] as subsequences of A209697.

3. Patterns

We consider pattern conversions F
n
2 ∋ v↦w ∈ F

n
2 , where F

n
2 can be identified with the set

0; 1;…; 2n � 1f g. From Definition ([10], Def. 3), by ECAAS vð Þ ¼ w, we mean that the elementary

CA with rule ECAmaps v ∈ 0; 1f gn to w ∈ 0; 1f gn via the asynchronicity scheme AS. We define

ECAτ

AS vð Þ ¼ ECAAS ECAτ�1
AS vð Þ

� �

recursively for τ ∈ N, startingwith ECA1
AS vð Þ ¼ ECAAS vð Þ.

In [10, 14], we considered five universality properties oð Þ to ivð Þ, where each v↦wmakes use of a

certain update rule AS applied several times.We only give a summary here. Property ivð Þ is ruled

out for any n ∈ N, while properties oð Þ to ivð Þ have only been verified experimentally, for n ≤ 15.

oð Þ ∃v ∈ F
n
2 , ∀w ∈ F

n
2 , ∃τ ∈ N, ∃AS ∈ ASn : ECAτ

AS vð Þ ¼ w:

Some v is mapped to every w by varying the rule AS and the required number of time steps.

There are 44 ECAs doing this.

ið Þ ∀v ∈ F
n
2 , ∀w ∈ F

n
2 , ∃τ ∈ N, ∃AS ∈ ASn : ECAτ

AS vð Þ ¼ w:

All v are mapped to all w by varying the rule AS and the required number of time steps. There

are 6 ECAs (rules 19, 23 (for n =� 0 mod 2), 37 (for n =� 0 mod 3), 41, 57, 105 (for n =� 0 mod 4))

doing this (checked for n ≤ 15).

iið Þ ∀v ∈ F
n
2 , ∃τ ∈ F, ∀w ∈ N

n
2 , ∃AS ∈ ASn : ECAτ

AS vð Þ ¼ w:

All v are mapped to all w at the same time, which time may vary for v but not for w, for

different rules AS .

Hard, firm, soft … Etherealware: Computing by Temporal Order of Clocking
http://dx.doi.org/10.5772/intechopen.80432

189

ECA-57 realizes this for n ¼ 5,…, 15 (no further n has been considered).

ECA-105 realizes this for odd n ¼ 7; 9; 11; 13; 15 (no further n has been considered).

iiið Þ ∃τ ∈ N, ∀v ∈ F
n
2 , ∀w ∈ F

n
2 , ∃AS ∈ ASn : ECAτ

AS vð Þ ¼ w:

All v are mapped to all w at the same time, varying the rule AS. This is actually possible for the

two survivors of property iið Þ; see Table 1. The required time roughly decreases with growing n,

since we have 3n � 2nþ1 þ 1 rules to choose from for 2n patterns w. Thus for higher n the

probability to meet the conversion early on increases.

ivð Þ ∃τ0 ∈ N, ∀τ ≥ τ0, ∀v, w ∈ F
n
2 , ∃AS ∈ ASn : ECAτ

AS vð Þ ¼ w:

Eventually, all conversions may happen at all times for some update scheme. This property

cannot be satisfied, for no ECA; see ([14], Thm. 2).

For more details and results for QCAs consult Section 2 of [14] and Section 3 of [10].

4. Bijective functions

We first introduce the computer algebra system GAP and then give several examples.

4.1. GAP: Graphs, algorithms, programming

4.1.1. GAP and the alternating group A2n

GAP [19] is a system for computational discrete algebra, in particular computational group

theory. We use GAP to decide, whether certain fair or unfair update rules generate the full

symmetric or alternating group S2n or A2n , respectively.

Our results so far:

Theorem 1.

i. The fair update rules for ECA-57 generate the full symmetric group S8 for n ¼ 3.

ii. The fair update rules for ECA-57 generate the full alternating group A2n for n ¼ 4,…, 11.

ECA n ¼ 5 6 7 8 9 10 11 12 13 14 15

57 445 — 70 242 35 13 13 13 13 13 10

105 — — 570 — 14 — 6 — 6 — 8

Table 1. Minimum time τ required to satisfy iiið Þ:

From Natural to Artificial Intelligence - Algorithms and Applications190

iii. The ðunfairÞ elementary update rules with exactly one active cell for ECA-57 generate the

full alternating group A2n for n ¼ 4,…, 28.

Proof.

ið Þ By exhaustive generation of all 8! ¼ 40320 permutations on 000, 001;…; 111gf .

ii; iiið Þ First observe that all these rules consist of an even number of transpositions. Hence, we

will at most obtain the alternating group A2n . This group comprises those bijective functions on

0; 1;…; 2n � 1f g which have positive sign as a permutation.

We checked iið Þ with GAP for certain sets of 5 fair rules for each of these sizes n, and GAP’s

function IsNaturalAlternatingGroup(G) returned true.

For iiið Þ we have the canonical set of n elementary unfair update rules, with exactly one cell

active in each rule. This set generates all fair and unfair update rules and hence is sufficient to

decide on the group generated by all rules.

Again, GAP shows that indeed the alternating group is generated, for n ¼ 4,…, 28. We used

144 GB of RAM, which was sufficient for n ¼ 28 but not so for n ¼ 29. □

We believe that, apart from the special case n ¼ 3, we always obtain the alternating group.

Conjecture.

For every torus size n ∈ N, n ≥ 4, both the 2n � 2 fair update rules, as well as the n elementary

unfair update rules with a single active cell, are a generating set for the full alternating group

on 2n elements, using ECA-57.

4.1.2. Example for GAP usage with n ¼ 4

We replaced 0 by 2n, since GAP only uses numbers from N. P00 to P03 are the permutations

generated by the elementary steps s ¼ 0001; 0010; 0100, and 1000, respectively.

mjv@Panda �/GAP $gap -b

gap> P00 := (16,1)(2,3)(4,5)(6,7)(10,11)(14,15);

(1,16)(2,3)(4,5)(6,7)(10,11)(14,15)

gap> P01 := (16,2)(4,6)(5,7)(8,10)(12,14)(13,15);

(2,16)(4,6)(5,7)(8,10)(12,14)(13,15)

gap> P02 := (16,4)(1,5)(8,12)(9,13)(10,14)(11,15);

(1,5)(4,16)(8,12)(9,13)(10,14)(11,15)

gap> P03 := (16,8)(1,9)(2,10)(3,11)(5,13)(7,15);

(1,9)(2,10)(3,11)(5,13)(7,15)(8,16)

gap> G04 := Group(P00,P01,P02,P03);;

gap> IsNaturalAlternatingGroup(G04);

true

gap> Size(G04);

10461394944000

Hard, firm, soft … Etherealware: Computing by Temporal Order of Clocking
http://dx.doi.org/10.5772/intechopen.80432

191

4.1.3. Example for GAP usage with n ¼ 5

mjv@Panda �/GAP $cat G5

P00 := (32,1)(2,3)(4,5)(6,7)(8,9)(10,11)(12,13)(14,15)

(18,19)(22,23)(26,27)(30,31);

P01 := (32,2)(4,6)(5,7)(8,10)(12,14)(13,15)(16,18)

(20,22)(21,23)(24,26)(28,30)(29,31);

P02 := (32,4)(1,5)(8,12)(9,13)(10,14)(11,15)(16,20)

(17,21)(24,28)(25,29)(26,30)(27,31);

P03 := (32,8)(1,9)(2,10)(3,11)(16,24)

(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31);

P04 := (32,16)(1,17)(2,18)(3,19)(4,20)(5,21)(6,22)

(7,23)(9,25)(11,27)(13,29)(15,31);

G05 := Group(P00,P01,P02,P03,P04);

mjv@Panda �/GAP $gap -b

gap> Read("G5");

gap> IsNaturalAlternatingGroup(G05);

true

gap> Size(G05);

131565418466846765083609006080000000

gap> quit;

Here, 1:315… � 1035 ¼ 32!=2.

4.1.4. Example for GAP usage with n ¼ 28

We define the permutations P00 to P27 via a C++ � program; see Appendix A. Using it like

gap.out 28 > G28, its output, the file G28, is then read in by GAP.

mjv@turing:/var/GAP$ gap -b -m 140G

gap> Runtime();Read("G28");Runtime();IsAlternatingGroup(G28);Runtime();

IsNaturalAlternatingGroup(G28);Runtime();

5592

1639756

true

8915688

true

8915688

gap>

Times are in milliseconds. Therefore, reading in the 56 GB of permutations P00 to P27 gener-

ating the group G28 took 1640 seconds, or about half an hour, while actually checking the

resulting group for A228 took another 7280 seconds or 2 hours. The same procedure for G29

resulted in lack of memory; 140 GB of RAM are not sufficient.

From Natural to Artificial Intelligence - Algorithms and Applications192

Recall that, according to Stirling’s formula, A228 has 2
28

!=2 ≈ 228

e

� �228

≈ 1010
9

elements, a number

with about 1 billion (10003) digits. Amazingly, GAP gets it done!

4.2. Examples for bijective functions

4.2.1. Multiplication by 9 mod 16

We give two realizations of the function byNine : x↦ 9x mod 16 in Table 2.

Observe that the first 23 steps only implement the permutation 08ð Þ 2Að Þ, consisting of two

transpositions. The final 24th step is almost identical to the whole function.

First realization in hexadecimal 1. Active cells 2. Active cells Second realization in hexadecimal

0xFEDCBA9876543210 0101 0100 0xFEDCBA9876543210 (Id)

0xAB98EFDC67012345 1010 1000 0xBA98FEDC76103254

0x0312C57E4DA98B6F 0101 0001 0x32107E5CF698BAD4

0x5243806B19FDCE7A 1000 1000 0x23016F4CE798ABD5

0xDA4B08639175CEF2 0001 0001 0xAB89674CEF10235D

0xDB5A18729064CFE3 0010 1010 0xBA89765CFE01324D

0xFB781A509246EDC3 0100 0101 0x3021D4FE5CA9B867

0xBF7C5E14D206A983 1000 0010 0x253491AB08FDEC76

0x37FCDE945A86210B 0001 0001 0x0736918B2ADFCE54

0x26ECDF954B87301A 1010 1010 0x1627908A3BDECF45

0x84CE751F632DBA90 0101 0101 0x948D1A20B37CE56F

0xC18B604A7239EFD5 1010 1010 0xD1C94F35E268B07A

0xE9234A60D8B1C57F 0101 0101 0x79E165BFC8423AD0

0xBD321F759CE4806A 1010 1010 0x6DB470EA8C132F95

0x37B895DF1EC62A40 0100 0100 0x4736DAC02E9B851F

0x37FCD19B5A862E04 1000 0010 0x07369E842ADFC15B

0xBF7C5913D206AE84 0100 0101 0x25349CA608FDE17B

0xFB781D539246EAC0 0010 1010 0x3021D8F75CA9B46E

0xDB5A1F739064C8E2 0001 0001 0xBA89725DFE01364C

0xDA4B0E629175C8F3 1000 1000 0xAB89634DEF10275C

0x52438E6A19FDC07B 0101 0001 0x23016B45E798AFDC

0x0312CB7F4DA9856E 1010 1000 0x32107A54F698BEDC

0xAB98E3D567012F4C 0101 0100 0xBA98F2D476103E5C

0xFEDCB29076543A18 1000 1000 0xFEDCB29076543A18 (08)(2A)

0x7E5C3A18F6D4B290 0x7E5C3A18F6D4B290

Table 2. Multiplication x↦9x in Z=16Z.

Hard, firm, soft … Etherealware: Computing by Temporal Order of Clocking
http://dx.doi.org/10.5772/intechopen.80432

193

Hence byNine ¼(19)(3B)(5D)(7F) = [(08)(2A)][(08)(19)(2A)(3B)(5D)(7F)],

where the first bracket requires 23 steps, and the second is the elementary rule 1000 (only the

leftmost cell is active). The difference between the two realizations (sequences s 1;…;24ð Þ in hex),

where the outer parentheses are inverses of each other and the inner part is self-inverse, and

their difference:

1.: (5A581248)1(A5A5A)4(842185A5)8

Diff 124–81A——-A18–421-

2.: (48181A52)1(A5A5A)4(25A18184)8

Active cells FED...210 ! 62C...931 some patterns in binary All values F...0 in hexadecimal

0001 1111 1110 1101 … 0010 0001 0000 0xFEDCBA9876543210

1010 1110 1111 1101 … 0011 0000 0001 0xEFDCAB9867452301

0101 1100 0101 0111 … 1011 1010 1001 0xC57E03124D6F8BA9

1010 1000 0000 0110 … 1110 1111 1101 0x806B5243197ACEFD

0101 0010 1010 0100 … 1100 0101 0111 0x2A43F86B91D0EC57

1000 0011 1111 0001 … 1000 0000 0110 0x3F12AC7ED495B806

0100 1011 0111 1001 … 0000 1000 0110 0xB79A2CFE541D3086

1000 1111 0111 1101 … 0100 1100 0110 0xF7DE28BA105934C6

0001 0111 1111 0101 … 0100 1100 0110 0x7F5EA03298D1B4C6

1000 0110 1110 0100 … 0101 1100 0111 0x6E4FB12398D0A5C7

0100 0110 1110 0100 … 1101 1100 1111 0x6E4739AB10582DCF

1010 0110 1010 0000 … 1001 1000 1011 0x6A073DEF541C298B

0100 0100 0000 1010 … 0001 0010 0011 0x40ADB7C5F69E8123

1010 0000 0100 1110 … 0101 0010 0011 0x04E9F781B6DAC523

0001 1010 0110 1100 … 1111 1000 1011 0xA6C15D293470EF8B

1000 1011 0111 1100 … 1110 1000 1010 0xB7C04D392561FE8A

0101 0011 1111 1100 … 1110 0000 0010 0x3FC845B1AD697E02

1000 0010 1010 1000 … 1011 0101 0011 0x2A8C10E4F97D6B53

0100 1010 0010 0000 … 0011 1101 1011 0xA20C98E471F563DB

1000 1110 0010 0100 … 0011 1001 1111 0xE248DCA075B1639F

0100 1110 1010 0100 … 1011 0001 0111 0xEA405C28FD396B17

1010 1010 1110 0000 … 1111 0101 0111 0xAE04182CB93D6F57

0100 0000 1100 1010 … 0101 1111 1101 0x0CA6928E31B745FD

1010 0100 1000 1110 … 0001 1011 1001 0x48E6D2CA35F701B9

0110 0010 1100 … 1001 0011 0001 0x62C478E0BF5DA931

Table 3. Exponentiation x↦3
x in F17.

From Natural to Artificial Intelligence - Algorithms and Applications194

4.2.2. Exponentiation and logarithm in F17

Identifying 16 with 0b0000, we can map F
∗

17 to 0; 1f g4. Here is the exponentiation x↦ 3x; see

Table 3.

FEDCBA9876543210 ! …

s 1;…;24ð Þ = [0001, 1010, 0101, 1010, 0101, 1000, 0100, 1000, 0001, 1000, 0100, 1010, 0100, 1010,

0001, 1000, 0101, 1000, 0100, 1000, 0100, 1010, 0100, 1010]

… !62C478E0BF5DA931

The inverse function x↦ log 3 xð Þ is therefore computed by the inverse update sequence s 1;…;24ð Þ

= [1010, 0100, 1010, 0100, 1000, 0100, 1000, 0101, 1000, 0001, 1010, 0100, 1010, 0100, 1000, 0001,

1000, 0100, 1000, 0101, 1010, 0101, 1010, 0001].

5. Non-bijective functions

5.1. Non-bijective global rules and in-degree distributions

In Section 2.2, we have said that, in order to ensure bijectivity, we must first have a locally

bijective CA, and furthermore, no two adjacent cells may fire simultaneously. Here is why:

Example.

We start with the effect of AS i = “�” for the locally bijective ECA-57. We consider four adjacent

cells and the effect of � between the two middle cells, which are thus updated simultaneously,

s ¼ 0110.

v↦ ECA-570�00 vð Þ

0000 ↦ 0110 0001 ↦ 0101 1000 ↦ 1110 1001 ↦ 1101

0010 ↦ 0000 0011 ↦ 0011 1010 ↦ 1100 1011 ↦ 1111

0100 ↦ 0010 0101 ↦ 0011 1100 ↦ 1010 1101 ↦ 1011

0110 ↦ 0100 0111 ↦ 0101 1110 ↦ 1000 1111 ↦ 1001

We obtain the patterns 0011 and 0101 twice, while missing 0001 and 0111. Hence the image is

smaller than the full 24 by 2 or by a factor 7/8 in general.

We have the following in-degree distribution (loss pattern 4 of [[10], Table 8]):

#(domain) #(range) In-degree Distribution φ

12 12 1 φ 1ð Þ ¼ 12

4 2 2 φ 2ð Þ ¼ 2

0 2 0 φ 0ð Þ ¼ 2

Twelve patterns map bijectively (1,1) to 12 patterns, 4 patterns map 2:1 to 2 patterns, while 2

patterns of the range are not met at all (0,1).

Hard, firm, soft … Etherealware: Computing by Temporal Order of Clocking
http://dx.doi.org/10.5772/intechopen.80432

195

We have #(domain) = in-degree�#(range) for every in-degree. Also, the overall sum is

X

domainð Þ ¼
X

in-degree� # rangeð Þ ¼ 2n:

Any additional simultaneous firing may increase the losses. Additional in-degree distributions

(loss patterns) for ECAs and QCAs may be found in ([10], Table 8).

We restate Theorem 3 (i) from [14]:

Theorem 2.

We assume an ECA that generates at least the alternating group A2n , when using temporal

rules from <;>f gn\ <n, >nf g. Let f : F
n
2 ! F

n
2 be any non-bijective function on n symbols,

where we require n ≥ 4 for ECA.

Let # wð Þ ¼ ∣ vjf vð Þ ¼ wf g∣ be the number of configurations v leading to configuration w. Then f

is clocking-computable by an ECA with in-degree distribution φ 0; 1; 2ð Þ ¼ 12; 2; 2ð Þ or

24; 4; 4ð Þ, if and only if

X

w ∈ F
n
2

wð Þ=2b c ≥φ 2ð Þ � 2n=
X

2

k¼0

φ kð Þ:

Proof. See [14], Theorem 3. □

5.2. Algorithm for non-bijective functions

The computation of a non-bijective function can be decomposed into 3 steps:

Step I. We start in the middle: Shrink the 2n singletons of the domain to the desired distribution

on the range. Find a sequence of elementary steps, necessarily including non-bijective ones,

which generates the same distribution of counts in the image space as for the original function.

Usually there are more than one of these sequences with the same complexity. Values/patterns

as such do not yet play a role; therefore the requirements are usually easy to meet in a variety

of ways, and the sequence of necessary elementary steps is short.

Step II. Bijectively map the input of the original function to the input of any of the results of

Step I in such a way that the desired image counts are matched. Only the occurence counts

must be observed, while, within this restriction, pattern values can be permuted.

Step III. Bijectively map the output from Step I to the output of the desired function, consider-

ing the flow within Steps II and I in that order. Now all values matter and cannot be permuted.

However, this step takes place on a subset of size ∣Im fð Þ∣ instead of 2n.

In Steps II and III we use the meet-in-the-middle approach, applying update rules starting

both from the input (identity) and the desired function values to take advantage of the

birthday paradox: In this way, 2 �
ffiffiffi

#
p

patterns are sufficient to generate
ffiffiffi

#
p

�
ffiffiffi

#
p

¼ # potential

matches in the middle (here # ≈ ∣A2n ∣), a considerable saving in both space and time.

From Natural to Artificial Intelligence - Algorithms and Applications196

5.3. Example of a non-bijective function

multiplication up to 3 � 3 ¼ 9 on the torus of size n ¼ 4

The 4-bit input is interpreted as a pair of numbers from the set 0; 1; 2; 3f g, whose product, the

output, lies within the set 0; 1; 2; 3; 4; 6; 9f g.

In Out In Out In Out In Out

00.00 0000 01.00 0000 10.00 0000 11.00 0000

00.01 0000 01.01 0001 10.01 0010 11.01 0011

00.10 0000 01.10 0010 10.10 0100 11.10 0110

00.11 0000 01.11 0011 10.11 0110 11.11 1001

5.3.1. Step I

The image consists of 7 patterns with occurence counts 7 (0000), 2 (0010,0011,0110), and 1

(0001,0100,1001).

In Step I, we thus have to shrink the set of patterns present from 16 to 7 in such a way that

(any) 7 patterns are mapped to the same one, and additionally 3 sets of two patterns are joined

within each set. Finally, the three remaining input patterns stay on their own.

An exhaustive search over sequences with 4 update rules, starting and ending with a non-

bijective one, yields 72 such sequences with the desired shrinking factor, one example is the

sequence s 1;…;4ð Þ ¼ 0011; 1101; 0110; 0111 of active cells.

All patterns in hex Active cells Occurrence counts

1 2 3 5 7

0123.4567.89AB.CDEF 0011 16 0 0 0 0

3012.7654.A99A.EFDC 1101 14 2 0 0 0

ADCB.E781.7557.B218 0110 5 4 1 0 0

CBAF.85E5.5335.F05E 0111 5 3 0 1 0

AED8.E292.2222.8729 3 3 0 0 1

5.3.2. Step II

After Step I, the output pattern 2 has frequency 7. Therefore, 2 has to match 0 in Step III, while

0,1,2,3,4,8,C are matched to 5,7,8,9,A,B,E in any order in Step II. Thus, we already have 7!

different possibilities for Step II.

Similarly, we can maps 0110 and 1001 to either 1; 4f g, 3;Cf g, or 6; Ff g and so forth. Let c run

through the occurrence counts, here c ¼ 7, 2 and 1 are actually taken, and let then p cð Þ be the

number of output patterns with in-degree c, here p 7ð Þ ¼ 1, p 2ð Þ ¼ p 1ð Þ ¼ 3. We get

Hard, firm, soft … Etherealware: Computing by Temporal Order of Clocking
http://dx.doi.org/10.5772/intechopen.80432

197

Y

c

c!p cð Þp cð Þ! ¼ 7!
11! � 2!ð Þ33! � 1!ð Þ33! ¼ 1451520

bijective functions consistent with the count distribution to choose from in Step II. One of these

is given in the left column of Table 4.

5.3.3. Step III

The outcome of Steps I + II completely fixes the necessary permutation for Step III. However,

we do not have to deal with 2n values, but only ∣Im fð Þ∣ are relevant, in our example 7 instead of

Step II Step I Step III

0xFEDCBA9876543210 0001 0x0123456789ABCDEF 0011 0x2AE879D 0001

0xEFDCAB9867452301 1010 0x30127654A99AEFDC 1101 0x3BF869D 0010

0xC57E03124D6F8BA9 0100 0xADCBE7817557B218 0110 0x3BDA49F 0100

0x817A4352096BCFED 0010 0xCBAF85E55335F05E 0111 0x3F9E0DB 1010

0xA1586370294BEDCF 0001 0xAED8E29222228729 0xB51CA73 0101

0xB0487261395AFDCE 1010 0xE048F62 0010

0x3A62D849B1F057EC 0100 0xC26AD40 0101

0x3E629C0DF5B417A8 0010 0x837F915 0010

0x3C409E2FD7B6158A 0100 0xA35D917 0101

0x3804DA2B97F651CE 1010 0xF209D46 1000

0xB2A670831D54F9EC 0001 0x7A81546 0100

0xA3B761820D45E9FC 1000 0x7EC5106 1010

0x2B3F690A854DE17C 0100 0xDCEF9A4 0101

0x2F3B6D4EC109A578 0x98BADF1 1000

0x1032579 0001

0x0123469

Table 4. Steps II, I, and III for multiplication up to 3� 3 ¼ 9.

IN Step II Step I Step III IN Step II Step I Step III

0010 5 2 0 0110 1 E 2

0001 7 2 0 1001 4 E 2

0000 8 2 0 1101 3 8 3

0100 9 2 0 0111 C 8 3

0011 A 2 0 1010 D 7 4

1100 B 2 0 1011 6 9 6

1000 E 2 0 1110 F 9 6

0101 0 A 1 1111 2 D 9

Table 5. Steps II, I, and III by output patterns.

From Natural to Artificial Intelligence - Algorithms and Applications198

16. Again, meet-in-the-middle yields a match. Be aware that the necessary effort does not drop

from 16! to 7! but only to 16!

16�7ð Þ! ≈ 11! or 2n!

2n�jIm fð Þjð Þ! in general.

In total, 13 + 4 + 15 = 32 steps are required to compute this multiplication function (Table 5).

6. Efficiency

In the case of unfair bijective functions, any subset of cells may fire simultaneously, provided

that no adjacent cells are contained in the set.

We define local efficiency of a bijective update sequence by two properties:

• No cell is active during two consecutive time steps (these two would cancel each other).

• No active cell can be moved to the previous time step.

Global efficiency—which shortest update sequence generates a certain function/permutation—

is beyond the scope of this paper (it is dealt with implicitly by brute force in a breadth-first

manner).

Lemma 3.

A sequence of rules is bijective and efficient, if s
tð Þ
k ¼ 1 ðcell ck active in step tÞ implies that.

i. s
tð Þ
k�1 ¼ 0 and s

tð Þ
kþ1 ¼ 0 ðboth inactiveÞ,

ii. s
t�1ð Þ
k ¼ 0 ðinactiveÞ, and.

iii. at least one of s
t�1ð Þ
k�1 and s

t�1ð Þ
kþ1 equals 1, active.

Proof.

ið Þ is required for and then ensures bijectivity.

If s
t�1ð Þ
k was active, both s

t�1ð Þ
k and s

tð Þ
k could be removed, since each single-location action is an

involution. Thus iið Þ is required.

If s
t�1ð Þ
k�1 and s

t�1ð Þ
kþ1 were both inactive, the active cell s

tð Þ
k could be moved to s

t�1ð Þ
k , maintaining

bijectivity. Hence iiið Þ is required. □

Using this lemma, we now can compute an upper bound on the number of bijective functions

realizable with t update steps: We define a matrix A with rows and columns indexed by the

bijective elementary update rules, here named s 1ð Þ, s 2ð Þ,…. Set aij ≔ 1, if rule s ið Þ followed by

rule s jð Þ is efficient, aij ≔ 0 otherwise.

Let λ nð Þ be the largest eigenvalue of A.

Hard, firm, soft … Etherealware: Computing by Temporal Order of Clocking
http://dx.doi.org/10.5772/intechopen.80432

199

Example

Aij for n ¼ 5:

s ið Þ\s jð Þ s 1ð Þ s 2ð Þ s 3ð Þ s 4ð Þ s 5ð Þ s 6ð Þ s 7ð Þ s 8ð Þ s 9ð Þ s 10ð Þ

s 1ð Þ = 00001 0 1 0 0 0 0 0 1 1 0

s 2ð Þ = 00010 1 0 1 1 0 0 0 0 0 0

s 3ð Þ = 00100 0 1 0 0 1 0 1 0 0 0

s 4ð Þ = 00101 0 1 0 0 1 0 1 1 1 0

s 5ð Þ = 01000 0 0 1 0 0 0 0 1 0 1

s 6ð Þ = 01001 0 1 1 0 0 0 0 1 1 1

s 7ð Þ = 01010 1 0 1 1 0 0 0 1 0 1

s 8ð Þ = 10,000 1 0 0 0 1 1 0 0 0 0

s 9ð Þ = 10,010 1 0 1 1 1 1 0 0 0 0

s 10ð Þ = 10,100 1 1 0 0 1 1 1 0 0 0

Observe that 10,100 followed by 00001 is efficient, while the other way round 00001 leaves

room to move s
2ð Þ
2 up to s

1ð Þ
2 . Hence, A is not symmetrical for n ≥ 5.

In Table 6, we denote several figures describing the number of efficient bijective update

schemes (including unfair ones). The number of rules is denoted by #S nð Þ; it can be found as

A001610 in OEIS [18]; see also Section 2.2.2. The number of nonzero entries in the matrix A is

#A nð Þ. The quotient #A nð Þ/#S nð Þ is the average number of 1’s in each row/column.

We denote by #n tð Þ the number of effective bijective update schemes of length t on a torus of

size n. Essentially, #n tð Þ ¼ Θ λ nð Þt
� �

.

Let r nð Þ ¼ limt!∞

#n tð Þ

λ nð Þt
. Then r nð Þ gives the constant hidden in the Landau symbol Θ.

We have #n tð Þ= λ nð Þt � r nð Þ
� �

! 1.

Finally,

T nð Þ ¼ log λ nð Þ 2n!= 2 � r nð Þð Þð Þ

is the number of steps necessary such that #n T nð Þð Þ ≈ ∣A2n ∣ ¼ 2n!=2. Invoking the birthday

paradox by the meet-in-the-middle approach, we therefore expect to require T nð Þ=2 steps each,

starting from the initial identity permutation and backwards from the desired function, to

achieve a match yielding the function evaluation.

The asymptotic behavior, as far as we can infer from the range n ¼ 3,…, 24, is

#S nð Þ ¼ Θ φnð Þ,φ ¼ 1:618…

λ nð Þ ¼ Θ 1:3nð Þ

From Natural to Artificial Intelligence - Algorithms and Applications200

T nð Þ ¼ 2:4 � 2n � 1þ o 1ð Þð Þ:

We can compare the asymptotic number T nð Þ of elementary steps necessary for unfair update

rules with the lower bound on the (full) steps for fair rules.

Lemma 4 ([10], Section 5, Lemma 1(i)).

There are clocking-computable bijective functions that require at least

log 2n!ð Þ= log 2n � 2ð Þd e ¼ 2n þO 1ð Þ

steps or evaluations per cell.

Remarkably, as far as the experimental results for n ≤ 24 indicate, the number T nð Þ of elemen-

tary steps is only a constant factor (≈ 2:4) higher than the lower bound for full update steps.

n #S nð Þ #A nð Þ #A nð Þ
#S nð Þ

j k

λ nð Þ r nð Þ ⌊log(|A2n|)⌉ ⌊T(n)⌉

3 3 6 2 2.000 1.500 10 14

4 6 18 3 3.000 2.000 30 27

5 10 40 4 3.732 2.887 81 61

6 17 98 5 5.000 4.000 204 126

7 28 224 8 6.236 6.261 495 270

8 46 514 11 8.522 7.044 1166 544

9 75 1158 15 10.697 11.581 2685 1132

10 122 2602 21 14.599 11.142 6077 2266

11 198 5808 29 18.288 20.464 13,571 4668

12 321 12,930 40 24.941 17.141 29,978 9319

13 520 28,704 55 31.253 35.107 65,630 19,065

14 842 63,618 75 42.634 25.696 142,612 38,002

15 1363 140,806 103 53.426 58.716 307,933 77,402

16 2206 311,362 141 72.878 37.982 661,287 154,189

17 3570 688,024 192 91.321 96.473 1.413e + 06 313,092

18 5777 1,519,586 263 124.571 55.699 3.008e + 06 623,547

19 9348 3,354,944 358 156.098 156.314 6.380e + 06 1.26e + 06

20 15,126 7,405,058 489 212.932 81.313 1.348e + 07 2.51e + 06

21 24,475 16,341,254 667 266.822 250.502 2.842e + 07 5.08e + 06

22 39,602 36,056,154 910 363.969 118.336 5.976e + 07 1.01e + 07

23 64,078 79,547,616 1241 456.085 397.758 1.253e + 08 2.04e + 07

24 103,681 175,485,442 1692 622.138 171.942 2.623e + 08 4.07e + 07

Table 6. Efficiency related values for n ¼ 3,…, 24.

Hard, firm, soft … Etherealware: Computing by Temporal Order of Clocking
http://dx.doi.org/10.5772/intechopen.80432

201

If that result remains valid for all n ∈ N, and the reported values strongly suggest this, this

would mean that the typical full step can be replaced by no more than 2..3 elementary unfair

steps, independent of n.

As can be appreciated, n ¼ 5 might be feasible for an attack by meet-in-the-middle, but n ¼ 6

and above is certainly no candidate for this brute-force approach. Dealing with these sizes will

require a more intelligent approach, for instance using group-theoretic techniques like repre-

sentation theory, applied to the alternating group.

7. Conclusion

We have seen that many functions are clocking-computable, namely, the even bijective ones

and the non-bijective ones with enough “loss” in their image.

The elementary cellular automaton ECA-57 can be used to implement an etherealware com-

puting device: The computed function is a result only of the clocking order.

Temporal order of activating the CA cells is thus a new way to encode algorithms, a “volatilization of

information”.

We increased the size for example programs from n ¼ 3 in [10, 14] to n ¼ 4 and are confident to

also be able to tackle the case n ¼ 5.

From n ¼ 6 onwards, we shall need more mathematical concepts, e.g., from group theory.

Acknowledgements

My thanks go to Dr. Mónica del Pilar Canales Chacón for proofreading, commenting, and all the

rest. Furthermore, the anonymous referee gave valuable comments concerning the first draft of the

paper, pointing out a substantial error and several occasions for clarifying the intended meaning.

Appendix A. gap.cc

#include <stdlib.h>

#include <iostream>

#include <fstream>

#include <iomanip>

using namespace std;

int main(int argc, char** args) {

long long N = atoi(args[1]); // size of torus

const long long EN = 1LL<<N; // 2^N

From Natural to Artificial Intelligence - Algorithms and Applications202

long long ix;

cout << "P00˽:=˽(" << (1LL<<N) << ",1)";

ix = 0; // rightmost cell active, n=0

for (long long i = 1; i < EN; i++) {

if (((i ^ 1LL) > i) (((5LL<<(N-1LL))

& (i ^ (i<<N))) != (1LL<<(N-1LL)))) {

cout << "(" << i << "," << (i^1LL) << ")";

ix++;

if ((ix%6LL) == 0) {cout << endl ;}

}

}

cout << ";" << endl;

for (long long n = 1; n < N; n++) { // active cell/bit

long long En = 1LL<<n;

ix = 0;

cout << "P" << (char) (0x30+((n/10)%10))

<< (char) (0x30+(n%10)) << ”˽:=˽(”

<< (1LL<<N) << "," << (1LL<<n) << ")";

for (long long i = 1; i < EN; i++) // all 2^N patterns

if (((i ^ En) > i) && (((0x5LL<<(n-1LL)) & (i ^ (i<<N)))

!= (1LL<<(n-1LL)))) {

cout << "(" << i << "," << (i^En) << ")";

ix++;

if ((ix%6LL) == 0) {cout << endl ;}

}

}

cout << ";" << endl;

} // n

cout << "G" << (char) (0x30+((N/10)%10))

<< (char) (0x30+(N%10)) << ”˽:=˽Group(P00” ;

for (int n = 1; n < N; n++) {

cout << ",P" << (char) (0x30+((n/10)%10)) << (char) (0x30+(n%10));

}

cout << ");" << endl;

//remainder, what to put interactively in GAP, no use as part of file

cout << "#IsNaturalAlternatingGroup(G"<< (char) (0x30+((N/10)

<< (char) (0x30+(N/10)%10)) << ”); ” << endl ;

cout << "#IsNaturalSymmetricGroup(G"<< (char) (0x30+((N/10) %10))

<< (char) (0x30+(N%10)) << ”); ” << endl ;

cout << "#Size(G"<< (char) (0x30+((N/10)%10))

<< (char) (0x30+(N%10)) << ”); ” << endl ;

}

Hard, firm, soft … Etherealware: Computing by Temporal Order of Clocking
http://dx.doi.org/10.5772/intechopen.80432

203

Author details

Michael Vielhaber1,2*

*Address all correspondence to: vielhaber@gmail.com

1 HS Bremerhaven, Bremerhaven, Germany

2 Universidad Austral de Chile, Instituto de Cs. Físicas y Matemáticas, Valdivia, Chile

References

[1] Wolfram S. Cellular automata as models of complexity. Nature. 1984;311:419-424

[2] Ingerson TE, Buvel RL. Structure in asynchronous cellular automata. Physica. 1984;10D:

59-68

[3] Barrett CL, Reidys CM. Elements of a theory of computer simulation I: Sequential CA over

random graphs. Applied Mathematics and Computation. 1999;98:241-259

[4] Barrett CL, Mortveit HS, Reidys CM. Elements of a theory of simulation II: Sequential

dynamical systems. Applied Mathematics and Computation. 2000;107:121-136

[5] Barrett CL, Mortveit HS, Reidys CM. Elements of a theory of simulation III: Equivalence of

SDS. Applied Mathematics and Computation. 2001;122:325-340

[6] Barrett CL, Mortveit HS, Reidys CM. ETS IV: Sequential dynamical systems: Fixed points,

invertibility and equivalence. Applied Mathematics and Computation. 2003;134:153-171

[7] Siwak P. Filtrons of automata. Proc. UMC 2002, unconventional models of computation.

LNCS. 2002;2509:66-85

[8] Lee J, Peper F, Adachi S, Morita K, Mashiko S. Reversible computation in asynchronous

cellular automata. Proceedings of Unconventional Models of Computation, LNCS. 2002;

2509:20-229

[9] Laubenbacher P. Update schedules of sequential dynamical systems. Discrete Applied

Mathematics. 2006;154:980-994

[10] Vielhaber M. Computing of functions on n bits by asynchronous clocking of cellular

automata. Natural Computing. 2013;12:307-322. DOI: 10.1007/s11047-013-9376-7

[11] Fatès N, Thierry E, Morvan M, Schabanel N. Fully asynchronous behavior of double-

quiescent elementary cellular automata. TCS. 2006;362:1-16

[12] Macauley M, McCammond J, Mortveit HS. Order Independence in Asynchronous Cellu-

lar Automata. 2007. arXiv:0707.2360v2 [math.DS]

From Natural to Artificial Intelligence - Algorithms and Applications204

[13] Macauley M, McCammond J, Mortveit HS. Dynamics groups of asynchronous cellular

automata. Journal of Algebraic Combinatorics. 2010;33:31-55

[14] Vielhaber M. Computing by temporal order: Asynchronous cellular automata. Formenti

E, editor. EPTCS 2012. Proceedings of Automata & JAC. Vol. 90; 2012. arXiv:1208.2762.

DOI: 10.4204/EPTCS.90.14

[15] Dennunzio A, Formenti E, Manzoni L, Mauri G. Computing issues of asynchronous cellu-

lar automata. Fundamenta Informaticae. 2012;120:165-180

[16] Dennunzio A, Formenti E, Manzoni L, Mauri G. M-asynchronous cellular automata: From

fairness to quasi-fairness. Natural Computing. 2013;12(4):561-572

[17] Salo V. Realization problems for nonuniform cellular automata. TCS. 2014;559. DOI: 10.10

16/j.tcs.2014.07.031

[18] The On-Line Encyclopedia of Integer Sequences https://oeis.org

[19] The GAPGroup, GAP—Groups, Algorithms, and Programming, Version 4.9.1; 2018. www.

gap-system.org

Hard, firm, soft … Etherealware: Computing by Temporal Order of Clocking
http://dx.doi.org/10.5772/intechopen.80432

205

