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Abstract

The encapsulation of inorganic nanoparticles into polymer particles opens the door to 
countless applications taking advantage of the properties of both phases. In this chapter 
the UV absorbing capacity of CeO

2
 nanoparticles and the film forming capacity of acrylic 

polymers are combined. A synthetic route to produce waterborne acrylic/CeO
2
 hybrid 

nanocomposites for UV absorbing coatings applications is presented. This strategy leads 
to encapsulated morphology of the CeO

2
 nanoparticles into the polymer particles and 

therefore to the lack of agglomeration during film formation. A mathematical model 
developed for inorganic/organic hybrid systems is able to explain the morphology evolu-
tion from the initial monomer droplet to the polymer particles. The films cast from these 
latexes are transparent and show excellent UV absorption that increases with the amount 
of cerium oxide nanoparticles in the hybrid latex. Finally, the photoactivity behavior that 
the CeO

2
 nanoparticles may have on the polymeric matrix is studied, discarding addi-

tional effects on the acrylic polymer matrix.

Keywords: waterborne polymer dispersions, CeO
2
 nanoparticles, hybrid 

nanocomposites, encapsulation, UV absorption

1. Introduction

The incorporation of metal oxide nanoparticles into polymer matrices opens the way to the 

production of novel nanocomposite materials due to the synergetic effect of each phase in the 
final properties, as well as the possibility to use them in many different applications. In this 
direction, in the last decade, many authors have studied the benefits in properties that could 
be obtained when combining CeO

2
 nanoparticles with polymers. For instance, catalytic [1–3], 

thermal [4], mechanical [5, 6], optical [7–9], anticorrosion [10–12], and barrier properties [13] 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



of polymers have been considerably improved with the incorporation of CeO
2
 nanoparticles. 

Moreover, CeO
2
 nanocomposites can find application in many different fields such as chemi-

sensors and photocatalyst for environmental applications [14–16], temperature and humidity 

sensors [17] or extractants for yttrium ions [18].

Taking advantage of the excellent UV absorption capacity of the CeO
2
 nanoparticles, it is really 

interesting to incorporate these nanoparticles into polymer matrices in the field of outdoor 
clear coatings. Waterborne acrylic polymers, synthesized mainly by emulsion polymerization 

process, are widely used as protective coatings for different surfaces due to their low toxicity 
and good quality film forming properties [19]. However, the main drawback of these coatings 

is the photodegradation they suffer under UV light. Traditionally, organic UV absorbers and 
hindered amine light stabilizers (HALS) were used, but due to the increasing environmental 

pressure to reduce the volatile organic compounds (VOC) content in coatings, the use of metal 

oxides such as TiO
2
 [20, 21], ZnO [22, 23] and CeO

2
 [24, 25] have been considered as an attrac-

tive alternative. All of them absorb radiation around 400 nm [26] and posses a band gap energy 

of around 3 eV [27], which makes them good candidates for UV absorption purposes. There 

are some works in which TiO
2
 [28–31] and ZnO [32–35] nanoparticles have been incorporated 

into polymer matrixes to improve the UV absorbance capacity of the coating. Nevertheless, the 

photocatalytic activity of CeO
2
 nanoparticles is lower than that of TiO

2
 and ZnO [36], which 

might prevent a faster degradation of the acrylic coatings due to the presence of the metal 

oxide, making CeO
2
 nanoparticles ideal candidates for their incorporation into waterborne 

acrylic coatings.

In waterborne hybrid coatings, the final morphology of the hybrid system is governed by the 
different nature of the inorganic nanoparticles and polymer. Therefore, the control of the mor-

phology of the hybrid system is challenging. The compatibility between both phases (thermo-

dynamics) as well as the polymerization process (kinetics) will define the final morphology 
of the nanocomposite and thus, the final application [37]. In the literature a variety of CeO

2
 

nanoparticles (hydrophilic or hydrophobically modified) have been incorporated following 
different polymerization processes.

For instance, Fischer [2] and Mari [3] synthesized CeO
2
/polystyrene (PS) and CeO

2
/polymethyl-

methacrylate (PMMA) hybrids with raspberry like morphology, following the same procedure. 

They synthesized PS and PMMA latexes incorporating active groups (acrylic, methacrylic or 

phosphate groups) on the surface of either the PS or PMMA polymer particles, synthesized 

previously by minimemulsion polymerization. These active groups served as nucleating agents 

for the crystallization of the CeO
2
. As the CeO

2
 nanoparticles were generated in the surface of 

the polymer particles, this morphology was very favorable to take advantage of the catalytic 

behavior of the CeO
2
, giving for instance very efficient catalyst for the hydration reaction of 

2-cyanopiridine to 2-picolinamide.

Another possibility to obtain pickering morphology is to use the inorganic nanoparticles to 

stabilize the polymer particles. CeO
2
 nanoparticles were used as pickering stabilizers in the 

miniemulsion polymerization of acrylates by Zgheib et al. [38]. It was found that at least 35 wt% 

of CeO
2
 nanoparticles were necessary to obtain stable hybrid latexes at intermediate solids 

content (25 wt%). Therefore, the large amount of nanoparticles used and the solids content 

obtained, limited their application as coating. However, using other inorganic nanoparticles, 
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such as SiO
2
 or TiO

2
, it has been possible to obtain high solids content latexes [39]. The ability 

of these hybrid nanocomposites with Pickering morphology as protective coatings [40, 41] has 

been successfully proved.

Hawkett was the first one adsorbing amphiphilic macro-RAFT agents on the surface of 
inorganic nanoparticles and starting the polymerization from the macro-RAFT agents 
to obtain encapsulation of the inorganic nanoparticles [42, 43]. Garnier [44, 45], Warrant 

[46] and Zgheib [47] followed this method to encapsulate CeO
2
 nanoparticles. The hybrid 

acrylic/ CeO
2
 latexes were obtained by semibatch emulsion polymerization starting the 

polymerization from the macro-RAFT agent modified CeO
2
 nanoparticles. In general, good 

distribution of the CeO
2
 nanoparticles in the polymer particles was obtained and the CeO

2
 

nanoparticles were located close to particle-aqueous phase interface and even encapsulated 

in some examples.

In this Chapter, a polymerization approach to produce waterborne hybrid (polymer/CeO
2
) dis-

persions with encapsulated CeO
2
 nanoparticles will be presented. The prediction of the evolu-

tion of the morphology during the polymerization will be illustrated by means of a mathematical 

model and finally the UV absorbing properties of the clear coatings produced from these hybrid 
latexes and the potential photochemical degradation of the coatings will be discussed.

2. Synthesis of acrylic/CeO
2
 hybrid nanocomposites by seeded 

semibatch (mini)emulsion polymerization

In the production of waterborne binders (for coatings), emulsion polymerization is the most 

popular process. However, when it comes into hybrid waterborne binders, miniemulsion 

polymerization emerged as an alternative process, to overcome the limitations of emulsion 

polymerization when the inorganic material must be incorporated into the polymer par-

ticles [48–50]. Moreover, equilibrium morphology simulations have demonstrated that if 

the nanoparticles present good wettability in the monomer phase, they can be encapsulated 
in monomer nanodroplets and hence hybrid latexes with encapsulated morphology can be 

produced [51].

The approach presented here to produce waterborne acrylic/CeO
2
 nanocomposite dispersions 

uses a two-step seeded semibatch (mini)emulsion polymerization process. The approach is 

well suited to produce hybrid latexes with CeO
2
 contents spanning between 0.5 and 5 wt% 

based on the polymer [52, 53]. In the first step, hybrid seed particles are synthesized by batch 
miniemulsion polymerization. In the second step the solids content and the final concentra-

tion of the CeO
2
 nanoparticles can be tuned by controlling the composition of the feed of the 

semibatch process. Two feeding strategies can be used:

(i) Neat monomer preemulsion feeding. A preemulsion is fed containing monomers, emul-

sifier and water, to grow the already formed seed hybrid particles. In this case, all the 
CeO

2
 nanoparticles present in the final hybrid are only added in the seed prepared in the 

first step. Hybrid latexes with 40–50% solids content were synthesized [53, 54] with CeO
2
 

contents up to 1 wt% in the final hybrid composite.
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Figure 1. (a) Cryo-TEM image and (b) TEM image of the latexes, (c) and (d) CeO
2
 aggregate size distributions in the 

hybrid latex and (e) and (f) TEM of the hybrid films for the sample containing 1% CeO
2
 and 40% SC produced by neat 

monomer preemulsion feeding strategy (a,c,e) and for the sample containing 5% CeO
2
 and 40% SC synthesized using 

the hybrid miniemulsion feeding (b,d,f).

(ii) Hybrid monomer/CeO
2
 miniemulsion feeding. The same formulation of the miniemul-

sion used to synthesize the seed is used as feed allowing higher concentration of CeO
2
 

in the final latex. Hybrid latexes with CeO
2
 contents up to 5 wt% were obtained at 40% 

of solids content [55].

Figure 1 presents the transmission electron microscopy (TEM) images of relevant latexes 

with low (1 wt%) and high (5 wt%) content of CeO
2
 nanoparticles produced using the two 

feeding strategies discussed above, respectively. As it can be seen, the polymer particle size 
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distribution (PSD) obtained by both feeding strategies is different. Even if the PSD obtained 
for the hybrid seed is the same for both cases, with particles around 100 nm, the final PSD dif-
fers depending on the feeding strategy. When neat monomer preemulsion is fed (Figure 1a) 

the final PSD is narrow, suggesting lack of secondary nucleation during the semibatch pro-

cess. Nevertheless, the PSD obtained when feeding the miniemulsion (second strategy) is 

broader, as particles between 25 and 600 nm can be found (Figure 1b). This is related to 

the miniemulsion stability and to the monomer droplet nucleation efficiency in the reactor. 
According to Rodriguez et al., the nucleation efficiency in a seeded semibatch miniemulsion 
polymerization is related to the stability of the miniemulsion fed (the higher the stability, the 

higher the nucleation of the entering droplets), and also to the ratio of the number of entering 

droplets with respect to the number of particles in the seed (the higher this ratio, the higher 

the number of fed droplets nucleate because their efficiency for capturing radical is higher) 
[56]. In Figure 1b, very small polymer particles can be seen containing nanoceria, which is 

an indication that hybrid monomer droplets serve as monomer reservoirs when they enter 

into the reactor, but they do not lose their identity and finally they end up nucleating [55, 57].

In any case, the CeO
2
 nanoparticles (darker spots) are all present in the polymer particles in 

both cases (Figure 1a and b), and no one is present in the continuous water phase. It can be seen 

that the CeO
2
 nanoparticles aggregates are more centered in the polymer particles synthesized 

using the first strategy whereas they are more close to the border of the polymer particle in the 
hybrids synthesized using the second strategy. The difference comes from the feeding strategy 
used in each case. When the neat monomer preemulsion strategy is used, the monomer enter-

ing the reactor in the semicontinuous process covers de hybrid seed particles containing the 

CeO
2
 nanoparticles. However, in the case of the miniemulsion feeding, a large fraction of the 

entering hybrid droplets nucleates, and hence not all the fed monomer is used to grow the seed 

particles and as a consequence CeO
2
 nanoparticles aggregates are not fully encapsulated.

Nevertheless, the encapsulation of inorganic nanoparticles inside polymer particles cannot 

be proved just by TEM images, as sometimes the micrographs are not conclusive enough. 

Therefore, TEM Tomography studies were carried out to a representative area of the hybrid 

latexes prepared following the seeded semibatch (mini)emulsion strategy presented so far. 

The results demonstrated that the CeO
2
 nanoparticles were surrounded by polymer in all 

directions in both, the seed and the final polymer particles, demonstrating beyond any doubt 
the encapsulated morphology [54].

Furthermore, it is remarkable that every polymer particle contains one CeO
2
 nanoparticle 

aggregate in average. In Figure 1a and b it can be seen that the number of polymer particles 

with zero, two and three nanoparticles is very small. It is observed that the CeO
2
 aggregate size 

increases with the nanoceria content in the formulation of the hybrid nanocomposite; namely, 

the higher the CeO
2
 content, the larger the aggregates. Figure 1c and d presents the quantifica-

tion of the CeO
2
 aggregate sizes in the hybrid latexes containing 1 and 5% of CeO

2
 nanopar-

ticles. As it can be seen, aggregate sizes between 3 and 73 nm can be found for the hybrid latex 

containing 1% of CeO
2
 nanoparticles, whereas aggregate sizes between 3 and 123 nm can be 

found for the nanocomposite containing 5% of CeO
2
 nanoparticles. Volume average aggregate 

sizes are 26 and 50 nm, respectively. However, it should be mentioned that the initial average 

size of the CeO
2
 nanoparticles dispersed in the monomer mixture was 12 nm (measured by 
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dynamic light scattering). Therefore, it seems that all the nanoparticles present in each mono-

mer droplet aggregate during the first stages of the polymerization process to form a CeO
2
 

aggregate per polymer particle. This effect will be discussed deeply in the following section.

One of the main advantages of having inorganic nanoparticles encapsulated in polymer 

particles is the lack of agglomeration during the film formation process, obtaining homo-

geneous distribution of the nanoparticles in the polymeric film and avoiding their leaching 
during the lifetime of the coating. Figure 1e and f show the hybrid films obtained after drying 
hybrid latexes with 1 and 5% of CeO

2
 nanoparticles. It can be seen that after film formation 

the nanoceria aggregates are homogeneously dispersed in the polymer matrix in both cases. 

The average CeO
2
 aggregate size was also analyzed and it was found that the average size in 

volume of the CeO
2
 nanoparticles in the film is 26 nm for the film containing 1% of CeO

2
 and 

46 nm for the film with 5% of CeO
2
. Therefore, the average size of the CeO

2
 aggregates does 

not change during the film formation process in which the polymer particles coalesce between 
them, indicating that the encapsulation is an efficient method to avoid the agglomeration of 
the inorganic nanoparticles in the final film.

3. Evolution of particle morphology during the synthesis of acrylic/

CeO
2
 hybrid nanocomposites synthesized by miniemulsion 

polymerization

The morphology obtained in a hybrid nanocomposite may affect directly the final application 
of the composite material as it has been shown in Section 1 of this chapter. The particle mor-

phology will develop during the polymerization and the final particle morphology will be 
determined by the interplay of thermodynamics and kinetics. The equilibrium morphology is 

the one that minimizes the total interfacial energy ( 𝜽 ) of the system, for an organic/inorganic 

system being the organic phase polymer (monomer), and it is given by:

  𝜽 =  A  
PW

   ∙  𝜸  
PW

   +  A  
IW

   ∙  𝜸  
IW

   +  A  
IP

   ∙  𝜸  
IP

   +  A  
II
   ∙  𝜸  

II
    (1)

where, Aij and 𝜸ij are the interfacial area and interfacial tensions respectively, between phase 

i and j, where P, I and W are polymer (monomer), inorganic material, and aqueous phase, 

respectively. In this particular case the CeO
2
 inorganic nanoparticles were previously modi-

fied in order to make them hydrophobic and more compatible with the monomers, so the 
interfacial tension 𝜸

II
 should be very low because when the inorganic particles come into 

contact, the contact occurs between the same hydrophobic materials. Neglecting 𝜸
II
, Eq. 

(1) reduces to an equation that has the same mathematical form that the equation used to 

calculate equilibrium morphologies of two phase polymer-polymer systems [58–60]. Using 

the morphology map developed in these studies, Asua showed a similar one (see Figure 2) 

adapted to a polymer/inorganic system [61], where the gray phase represents the inorganic 

material and the white the polymer (monomer).

According to this morphology map presented in Figure 2, the possible equilibrium mor-

phologies that can be obtained in a polymer/inorganic hybrid nanocomposite are core-shell 
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(encapsulated), inverted core-shell, hemispherical or separated particles. During the miniemul-

sion polymerization, the system and thus, the composition of the monomer droplets, are 

changing as polymerization proceeds. The monomer becomes polymer, initiator or other 

compounds may incorporate into the polymer and grafting might occur between the polymer 

being formed and the inorganic material. All these factors will alter the interfacial tensions 

between the phases and hence, the final equilibrium morphology. In this way, it would be 
possible to shift from encapsulated morphologies in the initial miniemulsion to hemispherical 

or separated phases after polymerization. There are some examples in the literature in which 

the initiator type [62, 63], emulsifier amount [64] and monomer type [65] variations affected 
strongly the final particle morphology.

Figure 2. Morphology map and evolution of the particle morphology for (a) acrylic/CeO
2
 monomer droplets, (b) 1% 

monomer conversion, (c) 8% monomer conversion, (d) 18% monomer conversion, (e) 40% monomer conversion, and (f) 

100% conversion. Reprinted from [67] with permission from ACS Publications.
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In order to analyze the effect that polymerization may have on the morphology of the system 
described in this chapter, the evolution of the acrylic/CeO

2
 nanocomposite is followed during 

the polymerization process (the hybrid seed preparation by batch miniemulsion polymer-

ization) by cryo-TEM, analyzing samples withdrawn from the reactor at different monomer 
conversion, and the morphology map (Figure 2) is used as a reference to explain the different 
morphologies obtained, even if some of the morphologies presented are not at equilibrium. 

It can be observed that at the beginning in the miniemulsion, the CeO
2
 nanoparticles are 

well dispersed in the monomer droplets (Figure 2a). This means that the compatibility of 

the nanoceria with the monomer mixture is really good in the monomer droplets or in other 

words, that the interfacial tension between the acrylic monomers and the inorganic material, 𝜸
IP
, is low and the interfacial tension between the CeO

2
 nanoparticles and water, 𝜸

IW
, is high. 

This morphology is presented by the core-shell morphology on the left side where 𝜸
IP

/ 𝜸
PW

 < 1 

and | 𝜸
PW

- 𝜸
IP

|/ 𝜸
IW

 < 1. It should be mentioned that the nanoparticles are sterically stabilized 

by the hydrophobic modification they bear in the monomer droplets.

In Figure 2b the acrylic/CeO
2
 nanocomposite system at 1% of conversion is shown. The 

morphology observed is completely different, as the nanoparticles tend to aggregate, which 
means that the incompatibility between the newly formed polymer and the surface of the CeO

2
 

nanoparticles has increased or that 𝜸
IP

 has become higher. This change in the morphology with 

the presence of polymer is observed too when the acrylic/CeO
2
 hybrid miniemulsion is pre-

pared adding a polymer in order to increase the stability of the miniemulsion [66]. At 8% of con-

version, the difference becomes more evident, the nanoparticles are more aggregated and they 
tend to move towards the border of the polymer particles. The fraction of the polymer increases 

and thus, 𝜸
IP

 increases. This way, the equilibrium morphology evolves following the red arrow 

crossing to the hemispherical region as shown in Figure 2. At 18 and 40% of conversion the 

CeO
2
 aggregates are more compact and most of the aggregates are situated in the border of the 

polymer particle (equilibrium position). It should be mentioned that all these morphologies 

are not at equilibrium, since more than one nanoceria aggregate can be found in the polymer 

particles. However, when full conversion is achieved, one single aggregate can be seen in each 

polymer particle, which corresponds to the hemispherical equilibrium morphology.

In the literature there are some mathematical models to predict equilibrium morphologies of 

hybrid systems [51, 59, 61]. However, these models are not enough to explain the evolution 

of the acrylic/CeO
2
 hybrid nanocomposites, since equilibrium morphology is not obtained 

until 40% of conversion is reached. Recently, Hamzelou et al. [67] developed a mathematical 

model for the dynamic evolution of this particular nanocomposite system. This approach pro-

vides the distribution of particle morphologies in the whole population of polymer particles. 

The distribution of particle morphologies is described by a distribution of clusters of CeO
2
 

nanoparticles (aggregates) dispersed in the monomer phase (see Figure 3). According to their 

position in the particles, the clusters are divided into two different categories: those at equi-
librium positions (red dashed line in Figure 3) and clusters at non-equilibrium positions (blue 

line in Figure 3). Thermodynamics are used to calculate the equilibrium morphology and all 

relevant kinetic events of the system including cluster nucleation, polymerization, polymer 

diffusion and cluster aggregation are taken into account. Figure 3 shows the simulated weight 

distributions for the CeO
2
 aggregates (clusters). It is shown that at 1% of conversion, most 

of the nanoceria aggregates are in nonequilibrium positions. At 18% of conversion, most of 
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the aggregates are at equilibrium, however, in some of the polymer particles more than one 

aggregate can be found. At 100% conversion all the nanoceria aggregates are in equilibrium. 

TEM-like images are generated and they can be compared to the cryo-TEM images presented 

in Figure 2. It can be seen that CeO
2
 nanoparticles aggregates follow the same evolution in 

the experimental cryo-TEM images and in the TEM-like images generated from the model.

To summarize, the morphology evolution of the whole acrylic/CeO
2
 nanocomposite is as 

follows. During the first step, homogeneous distribution of the CeO
2
 nanoparticles in the 

monomer droplets is obtained in the hybrid miniemulsion. During the miniemulsion polymer-

ization, the CeO
2
 nanoparticles aggregate and migrate to the surface of the polymer particles. 

Up to 40% of conversion, the concentration of monomer is high enough and the nanopar-

ticles are able to move inside the monomer droplets towards equilibrium positions. Thus, the 

nanoceria aggregates are at the edge of the polymer particles, mostly surrounded by polymer, 

but not always encapsulated [66]. During the second step (neat monomer feeding), the migra-

tion of the CeO
2
 aggregates is constrained due to the high internal viscosity of the particles. 

The monomer feeding is done under starved conditions and thus, the seed hybrid particles 

are covered by a shell of polymer leading to an encapsulated morphology. The proposed 

mechanism is graphically described in Figure 4.

Figure 3. Simulated weight distributions (m and n represent aggregates in non-equilibrium and equilibrium positions, 

respectively) and the TEM-like images obtained from the distributions. Reprinted from [67] with permission from ACS 

Publications.

Figure 4. Schematic representation of the morphology evolution of the acrylic/CeO
2
 nanocomposite system.
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4. UV absorption properties of acrylic/CeO
2
 hybrid nanocomposites

One of the main reasons to incorporate the CeO
2
 nanoparticles into waterborne clear coat-

ings is their excellent UV absorption capacity. This can be assessed by measuring the UV 

absorbance of 50 μm thick hybrid films. It should be mentioned that all the hybrid films are 
transparent and yellowish (Figure 5). The color of the films increases with the CeO

2
 nanopar-

ticle content from 1 to 5 wt% and hence, the transparency decreases. Even if the dispersion of 

the nanoparticles is good in all the hybrid films, the large sizes measured for the hybrid film 
containing 5% of CeO

2
 nanoparticle affect the transparency.

Figure 6 shows that the UV absorption of the hybrid films is higher in the presence of the 
nanoceria in the whole spectrum range (250–600 nm), but the absorption enhancement is most 

noticeable above 300 nm, where the pristine copolymer absorption is negligible. Furthermore, 

the higher the amount of CeO
2
 nanoparticles, the higher the absorption. However, scattering 

is observed for the film containing 5% of CeO
2
 nanoparticles due to the large size of aggre-

gates obtained for this nanocomposite.

Photodegradation of the hybrid film is a major concern due to the photocatalytic activity 
of the CeO

2
 nanoparticles. In the literature, the photodegradation of hybrid acrylic coatings 

has been studied in different substrates such as glass, stone or wood [68–71]. In these cases, 

the hybrid film was tested in a substrate and there might be two sources of radicals. One 
coming from the substrate and the other one from the nanoparticles present in the polymer 

matrix. To skip this problem the degradation behavior of the bare acrylic/CeO
2
 hybrid films 

was analyzed. Accelerated weathering tests were conducted in a solar box, for the nanocom-

posite film without nanoparticles and for the one containing 1% of CeO
2
. Different proper-

ties of the hybrid films exposed to UV light were measured [72]. Thermal properties reveal 

one step thermal degradation (around 380°C) and negligible changes in the glass transition 

temperature (Tg) values for all the hybrid films before and after the exposure. Regarding the 
microstructure, molecular weight distributions (MWD) and the formation of cross-linked or 

gel structures were also analyzed. The results show that there is degradation of the polymeric 

film since the cross-linked fraction increases in the films, but there is no additional effect in the 
films containing metal oxide nanoparticles. On the other hand, neither the Fourier Transform 
Infrared Spectra (FTIR) nor the TEM micrographs show any significant difference in the films. 
It is therefore concluded that the possible photodegradation that CeO

2
 nanoparticles may 

produce in the bare hybrid films is negligible, owing to the similar properties obtained for 
the blank film and the hybrid film containing 1% CeO

2
 nanoparticles after the UV irradiation.

Figure 5. Picture of films cast at room temperature for different CeO
2
 loadings: (a) 0% CeO

2
, (b) 1% CeO

2
 and (c) 5% CeO

2
.
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To study the effect of different metal oxides nanoparticles, a nanocomposite film with 1% 
ZnO nanoparticles was also synthesized following the same seeded semibatch polymeriza-

tion approach as described in Section 2 [34]. The morphology obtained in the final hybrid 
films was different to that obtained for the CeO

2
 hybrid films. The ZnO nanoparticles 

aggregate sizes were much bigger (~75 nm), preventing the homogeneous distribution of 

the nanoparticles in the film. However, the acrylic/ ZnO hybrid films presented higher UV 
absorption above 350 nm than the counterpart hybrids with CeO

2
. In the photodegradation 

studies carried out in the work mentioned above [72], even if it is known that the photocata-

lytic activity of the ZnO is larger than that of the CeO
2
, as it was mentioned in the introduc-

tion, the behavior of the hybrid films containing both types of nanoparticles did not differ 
significantly.

5. Conclusions and future perspectives

A polymerization strategy to synthesize waterborne hybrid acrylic/CeO
2
 nanocomposites for 

their application as UV blocking coatings has been discussed in this Chapter. The designed 

two-step polymerization approach is able to produce different loadings of CeO
2
 nanoparticles 

with industrially relevant solids content. Moreover, the strategy ensures the encapsulation of 

the nanoparticles in the polymer particles that avoids agglomeration during film formation 
process and provides good UV absorption properties, making these coatings good candi-

dates as clear coats for outdoor applications. A mathematical model developed to predict the 

evolution of the particle morphology for polymer-polymer systems has been applied for the 

polymer-CeO
2
 hybrids and it is able to predict the evolution of the morphology of the two 

stage semicontinuous polymerization opening the door to the use of the model for optimiza-

tion and control of waterborne polymer-inorganic particle morphology purposes.

The designed strategy opens the possibility to encapsulate other nanoparticles and extend the 

application region. The incorporation of hydrophobically modified ZnO nanoparticles has also 
been tested, providing film forming hybrid latexes with improved UV absorption capacity [73]. 

Moreover, with the incorporation of a fluorinated monomer to the acrylic/ZnO hybrid system, 

Figure 6. UV–vis absorption capacity of 50 μm hybrid films.

Waterborne Acrylic/CeO2 Nanocomposites for UV Blocking Clear Coats
http://dx.doi.org/10.5772/intechopen.81332

105



anticorrosion properties have been improved. It was demonstrated that the incorporation of the 

ZnO nanoparticles by blending was not enough to improve the corrosion protection, whereas 

when the nanoparticles were encapsulated and hence, well distributed in the polymeric film, 
the benefits were substantial [74]. Recently, many authors’ investigation has been directed to 
improve anticorrosion properties with the incorporation of CeO

2
 nanoparticles. For instance, 

polyurethane coatings containing CNT/CeO
2
 [10], polyacrylic acid/CeO

2
 coatings [11], CeO

2
/

graphene-epoxy nanocomposite coatings [12] and water based polyurethane/ CeO
2
 coatings 

[13]. None of these works obtained encapsulated morphology and hence, the possible aggrega-

tion of the nanoparticles during film formation and leaching could be a problem, even though 
the anticorrosion properties were improved in all the cases. This means that combining the 

strategy developed in this work, with the appropriate monomers and the anticorrosion proper-

ties that CeO
2
 nanoparticles exhibit in all the works mentioned above, synergetic effects could 

be obtained making these nanocomposites ideal candidates for corrosion protection.

Very recently, De San Luis et al. [75] incorporated quantum dots into core-shell particles 

made of polystyrene/divinyl benzene (DVB) as core and PMMA/DVB as shell. The cross-

linked polymeric phases were synthesized in two stages following the strategy developed in 

this Chapter. Thanks to the encapsulated morphology obtained, the fluorescence emission 
of the QD containing core-shell particles was preserved for more time than any other work 

published so far. The same authors incorporated CeO
2
 nanoparticles obtaining PS/QD/CeO

2
/

PMMA hybrid particles. Interestingly, the films casted from these hybrid particles exhibit 
increasing fluorescence under sunlight exposure [76]. This opens the possibility to use CeO

2
 

nanoparticles to enhance the optical properties of different technological devices.
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