
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

1

Chapter

How to Keep the Binary
Compatibility of C++ Based
Objects
Donguk Yu and Hong Seong Park

Abstract

This chapter proposes the binary compatibility object model for C++ (BiCOMC)
to provide the binary compatibility of software components in order to share
objects among C++ based executable files such as .exe, .dll, and .so. In addition, the
proposed model provides the method overriding and overloading, multiple inheri-
tance, and exception handling. This chapter illustrates how to use the proposed
model via a simple example in the Windows and Linux environment. The proposed
method is validated by application examples and comparisons with known object
models such as C++, COM, and CCC in terms of the call time of a method during
execution and the binary compatibility such as reusability due to interface version
and the types of compilers. Also this chapter shows that BiCOMC-based compo-
nents compiled with Microsoft Visual C++ and GCC can call each other and the
interface version problems are resolved.

Keywords: binary compatibility, component, C++, interface, object model, Windows

1. Introduction

Nowadays, lots of software have been developed based on components because
of reusability and composability which can make development and maintenance
easier. The component-based approach has some advantages that the cost and
time required for maintenance and development can be reduced through the
combination of components and the property of encapsulation. In particular, the
robot software platforms such as OPRoS [1–3], openRTM [4, 5], and OROCOS [6],
which are examples of component-based systems, have been using components
of dynamic libraries, such as .dll and .so, in order for components to be able to be
developed and maintained with ease. Despite these advantages, there are some
hurdles in reusing of the components. The biggest hurdle is the binary compat-
ibility issue of C++ based components, which is whether or not the components in
the binary code compiled by a type of compiler are executing together on the same
operating system with other components compiled by its old version compiler or
other types of compilers. In practice, the number of components implemented
with programming languages such as Java and Python has been increasing because
those languages do not cause the binary compatibility problems. However, C++ is an
important programming language needed for the control of automation machines/
devices such as robots and SW-based PLCs because it provides fast performance
[7, 8]. In addition, there have been lots of C++ based components or modules

Computer Methods and Programs in Biomedical Signal and Image Processing

2

developed and stably used till now for industrial/office/home automation. Because
the components were compiled by different types and/or versions of compilers, it
is necessary to reuse them effectively. Therefore, the binary compatibility of C++
components (or objects) should be resolved. Note that examples of the components
(or objects) are classes, variables, and methods, where a class can include variables,
methods, and zero or more classes.

There are following two types of methods in dynamical sharing of C++ classes:
the C-based dynamic library method and the sharing method supported by a com-
piler. Because the C-based dynamic library method cannot directly share classes,
the executable files such as .exe, .dll, and .so refer to the abstract class of the same
header files and deliver the address of the instance of the class. The sharing method
by compiler can directly share classes. But the method cannot share instances of
classes compiled by different types of compilers [9]. In other words, there is a
serious problem that the sharing of classes is applicable only to the same compiler,
which makes spreading of C++ based components difficult.

For instance, let us consider two types of components in the Windows environ-
ment, which are made using Visual C++ from Microsoft (MSVC) and GCC from
GNU, respectively. A MSVC-based component and a GCC-based component are not
mutually compatible in most cases even though they have been made in the same
Windows environment. This situation occurs due to the binary compatibility problem.
The binary compatibility problem generally causes the situations where the methods
of the object cannot be suitably called or its operation is not properly executed. And
then the system can enter into a down (or dead) state. To solve the problem, it is neces-
sary to design an object structure compatible in all types of compilers [10].

There have been some researches to solve the binary compatibility problem of
C++ objects, examples of which are COM [11], CCC [12], and ZL [13]. COM solves
the binary compatibility problem of C++ objects but has some limitations that it
should operate in a Windows environment and be supported only by the MSVC
compiler [11]. CCC is a library that the classes are composed of only header files to
maintain the binary compatibility and designed to use the C++ 11 features [14] to
make binary compatible objects with ease. But CCC has a limitation that it can be
used only by compilers that support the C++ 11 standard. In other words, CCC does
not share objects compiled by compilers not supporting the C++ 11 standard. In the
C++ compatible language ZL [13], the binary compatible classes are supported by
customized preprocessors and macros. It does not however support multiple inheri-
tances and provides the binary compatibility only for GCC because the compiler for
ZL is made from modified version of GCC. In addition COM and CCC do not sup-
port the method overloading, but ZL partially supports it. CCC supports exception
handling, COM does it in the restricted manner, but ZL does not support it.

This chapter proposes the binary compatibility object model for C++ (BiCOMC)
for reusability of software components which provide binary compatibility for shar-
ing objects between C++ executable files in the Windows or the Linux environment.
In addition, the proposed model provides the method overloading and overriding,
multiple inheritance, and exception handling. And BiCOMC makes each other
share the objects generated by different types of compilers such as MSVC, GCC,
and ICC. This chapter provides macros of C++ preprocessor for sharing the binary
compatible objects easily and independently of the types and versions of compilers.
This chapter illustrates how to use the proposed model via a simple example in the
Windows and Linux environment. To validate the proposed method, BiCOMC is
compared with COM and CCC in terms of the call time during execution and the
binary compatibility among interface versions and the types of compilers. Moreover,
it is shown that BiCOMC-based components made using both MSVC and GCC can
call the methods of each other and the interface version problems are resolved.

3

How to Keep the Binary Compatibility of C++ Based Objects
DOI: http://dx.doi.org/10.5772/intechopen.77383

In the next section, a binary compatibility object model for C++ (BiCOMC) is
proposed, which has the structures of virtual function tables including multiple
inheritance and the casting algorithm for conversion of interfaces. It is shown that
method overloading and multiple inheritances are supported. In Section 3, the
component based on BiCOMC is defined, and its implementation is shown using
examples. Section 4 suggests two examples. One is a simple example to illustrate
how to use the proposed method in Windows and Linux environment. The other
is an example of a robot application to validate the proposed method, where the
application consists of three components compiled by different types of compilers.
In Section 5, the binary compatibility and the performance measure of the call time
of methods are evaluated. Finally, the conclusions are given in Section 6.

2. Binary compatibility object model for C++ (BiCOMC)

2.1 Object model

A BiCOMC is shown in Figure 1 and has the interface Object as the root of the
hierarchy of the class diagrams. Since interfaces are public and can be used by
many objects, they do not have any member variables so that binary compatibility
is maintained. Note that the interface Object has one pointer variable as shown
in Figure 1 for sharing of a virtual function table. The point variable is the vftptr
pointer for accessing of the table and exists at the topmost of the interface. The
structure of the virtual function table is explained later.

Let us consider the case where an executable file A can create an object but a
different executable file B can delete the object. In this case, the memory allocated
by the file A cannot normally be deleted using the C++ delete operator in the file B
because the delete operator of the file B cannot invoke the destructor of the class in

Figure 1.
Class diagram of Object and ErrorDetail interface for BiCOMC.

Computer Methods and Programs in Biomedical Signal and Image Processing

4

the file A. To solve this problem, the interface Object has a destroy() method so that
objects can be deleted by the executable file which created the objects.

Because objects that are shared externally are exposed in the form of an inter-
face, they cannot know the prototype of the object and then cannot be replicated
through the C++ copy constructor. The interface Object has a clone() method that is
allowed to clone the object.

When interface methods are implemented, the order of the methods in the
virtual function table should be the same as the declaration order of the methods
in the interface. So the order of the methods in the interface should not be changed
once the interface is open in public. Adding a new method to the interface is allowed
if its order is not changed. In other words the insertion of a new method is allowed
only as the last method of the interface.

All methods can cause exceptions which are related to the interface ErrorDetail
in Figure 1. Therefore, only objects implemented in the interface ErrorDetail
should be thrown at the occurrence of the exceptions. The interface ErrorDetail has
a value() method, a category() method, and a message() method that return an
error value, an error category, and a description of the error, respectively.

An interface can inherit only one parent interface, but a class can inherit multi-
ple interfaces. When a class has inherited multiple interfaces, the class has multiple
vftptr pointers, which are the addresses of virtual function tables for individually
inherited interfaces. The class, which is inherited multiple interfaces, refers to as
many virtual function tables as the number of the inherited interfaces, which is
shown in Figure 3.

2.2 Structure of a virtual function table

The vftptr pointer of the interface Object points to a virtual function table.
A virtual function table contains the address of the overridden method and the
interface information for the interface. Figure 2 shows the structure of the virtual

Figure 2.
Structure of a virtual function table.

5

How to Keep the Binary Compatibility of C++ Based Objects
DOI: http://dx.doi.org/10.5772/intechopen.77383

function table. The sizes of depth, version, and next offset are equal to the size of a
void pointer (or void*), respectively.

A virtual function table contains all the parent interfaces inherited by the
interface. The first element, depth, of a virtual function table in Figure 2 stores the
number of inheritances from the interface Object to the last interface. If the interface
directly inherited by the implementation class is the interface Object, the value of
depth is 0. The second element, version, means the version number of BiCOMC for
future extension of BiCOMC. The third element, next offset, is used for the objects
that inherit multiple interfaces and represents the offset between the current vftptr
and the next vftptr, which is explained later. The fourth element Object FT refers to
the address of the function table of the interface Object where the actual addresses
of overridden methods and the interface information are stored. The remaining ele-
ments i-th interface FT points to the function table of the i-th interface (i = 1… N).

The entry interface info in the function table means the interface information.
The entry j-th mth. addr. (j = 1… M) is the address of the j-th method. Note that the
addresses of the methods are stored in the same order as the order of declaration of
the methods.

The interface info includes some elements such as hash, subhash, mth. count,
interface name, and j-th mth. sig. (j = 1… M). The hash is a 64bit value, and it is
calculated with the name of the interface and the names of inherited interfaces.
The same hash means that the name of the interface and the names of the inherited
interfaces are the same. The subhash is also a 64bit value, and it is calculated with
M method signatures which contain the name of the method, a return type, and
parameters’ types. The same subhash means that the method definitions of two
interfaces are the same. The sizes of the hash and the subhash of the interface may
not be the same as the size of void*. Their sizes are calculated in (1) in bytes. If the
hash values of two objects are different, the objects are incompatible. The subhash
values are used for the method overloading and backward compatibility. So the
method signatures should be checked if the subhash values are not matched. Note
that the interface name and the j-th mth. sig. (j = 1…M) are null-terminated char-
acter strings encoded by UTF-8 and j-th mth. sig. consists of the method name, the
return type, and types of parameters:

 size = ⌈16 / sizeof (void ∗) ⌉ × sizeof (void ∗) (1)

As mentioned above, the method signature can distinguish other methods with
the same name because the method’s signature is based on the method name as
well as the types of parameters and the return type. So it can be said that BiCOMC
supports the method overloading.

2.3 Structure of virtual function tables in multiple inheritance

In BiCOMC, an object that inherits multiple interfaces has as many vftptr point-
ers as the number of inherited interfaces. Note that the basic structure of the virtual
function table is described in Section 2.2. Figure 3 shows the structure of the virtual
function tables of an object inheriting three interfaces.

In the case where three interfaces have been inherited, three vftptr pointers exist
as shown in Figure 3. Assume that a 32bit system is used and the next offset of the
virtual function Table 1 is 4, which is the difference between the address of vftptr 2
and the address of vftptr 1 in the instance of class. And the next offset of the virtual
function Table 3 is −8, which is the difference between the address of vftptr 1 and
the address of vftptr 3.

Computer Methods and Programs in Biomedical Signal and Image Processing

6

2.4 Interface casting

General casting methods of C++ such as static_cast and dynamic_cast cannot
be used among objects created by different types of compilers. Therefore, methods
that can cast BiCOMC objects are necessary regardless of a type of compilers used.
Figure 4 shows an algorithm for casting BiCOMC objects to other interfaces.

The casting algorithm gets virtual function tables using two parameters of obj
and tgtTable. The algorithm compares the tables of obj with the tables of the target
interface in order to check whether or not two interfaces are compatible. NULL is
returned if two interfaces are not compatible each other. The seventh, tenth, and

BiCOMC Dynamic library (DLL)

MSVC GCC ICC

9 14 4.5 5.2 14 16

Executable (EXE) MS VC 9 O O O O O O

14 O O O O O O

GCC 4.5 O O O O O O

5.2 O O O O O O

ICC 14 O O O O O O

16 O O O O O O

Table 1.
Tests of the binary compatibility in BiCOMC.

Figure 3.
Structure of virtual function table in the case of multiple inheritance.

7

How to Keep the Binary Compatibility of C++ Based Objects
DOI: http://dx.doi.org/10.5772/intechopen.77383

forty-second lines in Figure 4 are for processing of multiple inheritance. Lines
21–24 check hash values to test the names of interfaces and inheritance relation-
ships. That is, lines 21–24 compare the hash values and detect whether they are
compatible by detecting whether a new interface is added or a different interface
name exists. Lines 25–37 compare subhash values, and two interfaces are considered
as compatible interfaces if the values are the same. If they are different, it examines
method signatures of interface information to check compatibility. An example of
interface casting is shown in Figure 6.

3. Definition and implementation of component based on BiCOMC
model

In this section the component based on BiCOMC is defined, and its implementa-
tion is shown using examples. Figure 5 shows an example of the class Comp_1 based
on BiCOMC, where the interface Interface_1 and the interface Interface_2 inherit
the interface Object and Interface_3 inherits Interface_2. The definition of the inter-
faces in Figure 5 is shown in Figure 7. The class Comp_1 is one of the components
that provide interfaces Interface_1 and Interface_3. Interface Interface_1 consists
of void mth_1(int) and int. mth_2(), and interface Interface_3 inherits interface
Interface_2 and consists of void mth_1() and int. mth_2(int).

Figure 4.
Algorithm for interface casting.

Computer Methods and Programs in Biomedical Signal and Image Processing

8

Figure 6 shows an example of the interface casting algorithm in Figure 4, which
shows that Interface_1 is converted to Interface_2 using bicomc_cast based on the
algorithm in Figure 4.

The macro BICOMC_INTERFACE defines interfaces as shown in Figure 7,
using one or two parameters. The first parameter is the name of the interface, and
the second parameter is the name of the parent interface and optional. In the case
where the second parameter is empty, the interface Object is inherited. The macro
BICOMC_DECL_METHOD in Figure 7 declares the method of the interface.
The macro has three parameters as follows: the first parameter is the name of the
method, the second parameter is the function type of the method, and the third
parameter is the number of parameters of the method. For example, let us consider
BICOMC_DECL_METHOD(mth_2, int.(), 0). This macro represents the method
int. mth_2() in Figure 8.

The interface definition in Figure 7 is converted into the C++ code of Figure 8
by C++ preprocessor. Note that C++ code for Interface_2 is not represented. The
macro BICOMC_INTERFACE in Figure 7 is converted to the C++ code related
to the inputted interface name such as Interface_1. As seen in the 1st and 17th
lines of Figure 8, the macro BICOMC_INTERFACE (Interface_1) and BICOMC_
INTERFACE (Interface_3, Interface_2) create the codes of class Interface_1 public
Object and class Interface_3 public Interface_2, respectively. The macro BICOMC_
DECL_METHOD is converted to a method which consists of a name, a return type,
and parameters. The second, third, and eleventh lines in Figure 7 are converted into
the third–seventh lines, ninth–fourteenth lines, and nineteenth to twenty-fourth
lines in Figure 8, respectively. From the virtual function table pointed at by the
vftptr pointer of the interface Object, the addresses of functions(or methods) are
acquired using the inheritance depth of the interface and the order of declarations
of the interface methods as shown in the 5th, 11th, and 21st lines in Figure 8, and
then the actual overridden methods are called. These methods are converted into
the function type as shown in Figure 9 and then stored. Note that ErrorCode is a
wrapper class of ErrorDetail in Figure 1.

Figure 6.
An example of interface casting.

Figure 5.
Class diagram example of relationship between component and interface.

9

How to Keep the Binary Compatibility of C++ Based Objects
DOI: http://dx.doi.org/10.5772/intechopen.77383

In Figure 9, parameter I* is the address of the interface instance, the second
parameter R* is the address of the variable receiving the return value of the method,
and other parameters (P_1…P_N) are parameters of the method. The method stored
in the function type is called with the same function-calling convention. Note that
exception information is returned using the interface ErrorDetail. When the excep-
tion information has been returned, the C++ code of the method throws the excep-
tion on behalf of the method as shown in the 6th, 12th, and 22nd lines in Figure 8.

Figure 10 shows the implementation of the interfaces in Figure 7. The interfaces
in Figure 7 are inherited, and the methods are overridden in order to define the
class Comp_1. The interfaces and methods for overriding are set using the macros
BICOMC_OVERRIDE and BICOMC_OVER_METHOD. Parameters of the macro

Figure 7.
Definition of interface using macro in Figure 5.

Figure 8.
C++ code of Figure 7 after preprocessing.

Figure 9.
Function type stored in the virtual function table.

Computer Methods and Programs in Biomedical Signal and Image Processing

10

BICOMC_OVERRIDE are names of all interfaces that the component inherits.
Parameters of the macro BICOMC_OVER_METHOD are the names and signatures
of the overridden methods. Figure 11 shows C++ code converted from Figure 10
by C++ preprocessor. The macro BICOMC_OVERRIDE is converted to bool over-
rideMethod(), and parameters of the macro such as Interface_1 and Interface_3 are
used for clear conversion of overridden methods related to the type of the interface.
The BICOMC_OVER_METHOD macros on lines 3–7 in Figure 10 are converted to
codes on lines 6–11 in Figure 11 and the macro BiCOMC_OVERRIDE_INIT() to
holder(overrideMethod()) on the 16th line in Figure 11.

4. Examples of BiCOMC-based application

4.1 A simple example

This section describes in sequence how to make a file copy application, which is
a simple example based on BiCOMC. The file copy application is designed to run on
Windows and Linux and is built using MSVC and GCC, respectively. The dynamic
library providing the file copy function, which named utility, is created, and the
executable file using this dynamic library, which named app, is generated as the
application. The interface is first defined to share an object that provides a method for

Figure 10.
Implementation of interfaces and overriding.

Figure 11.
C++ code of Figure 10 after preprocessing.

11

How to Keep the Binary Compatibility of C++ Based Objects
DOI: http://dx.doi.org/10.5772/intechopen.77383

copying files. The interface to provide this functionality is defined in the utility.h file
as the ICopy interface. Figure 12 shows that the ICopy interface is defined based on
the macro of BiCOMC and is the source code of the dynamic library named utility.cpp.

The BiCOMC macro is defined in object.h, which is added as shown on line 5 in
Figure 12 to use it. ICopy has a copy() method that receives two file names of src
and dst as the input parameters and copies src to dst, which is shown on the eighth
line in Figure 12.

In order to implement the ICopy interface in Figure 12, the Copy class is written
made as shown in the utility.cpp of Figure 13. In addition, copy() method of ICopy is
overridden in Figure 13. Note that the utility.cpp file is the source code for the utility
dynamic library.

The utility.h which defines the ICopy interface is added as one of the header files
on the second line in Figure 13, and some header files for the Copy class implemen-
tation on lines 4–13 are defined for Windows and Linux. The Copy class inherits the
ICopy interface on the 15th line, and the overriding methods are explicitly specified
using the BiCOMC macro on lines 16–19, where the specified methods are written
on lines 23–37. The create() function on lines 40–46 creates an instance of the Copy
class in order to pass its instance outside of the dynamic library called utility. The
main() function of app using utility dynamic library is written in the app.cpp file,
which is illustrated in Figure 14.

The create() function is called on the 21th line in Figure 14 to get an instance of
the Copy class in Figure 13 but casted to ICopy* using bicomc_cast() since create()
returns Object*. The copy() method is called to perform file copy on the 24th line.
This method is used in try-catch because it generates an exception when copy()
fails. The commands shown in Figure 15 are executed to build utility.cpp into utility
dynamic library and app.cpp into app executable file, respectively.

4.2 BiCOMC-based component for robot application

This section explains how to implement BiCOMC-based components using
a robot applications. The robot application consists of three components in a
Windows environment as follows: the ManipulatorComp, the MobileComp, and the
AppComp in Figure 16.

The component ManipulatorComp is compiled with GCC 5.2 and controls the
manipulator. The component MobileComp is compiled with MSVC 14 and controls
the mobile platform. The component AppComp is compiled with MSVC 10 and
coordinates the components MobileComp and ManipulatorComp. The component
AppComp accesses the components MobileComp and ManipulatorComp through
the interfaces IMobile and IManipulator, respectively. Definitions of these inter-
faces are illustrated in Figure 17. Figure 18 shows the definition of the component
MobileComp that inherits the interface IMobile and overrides the methods of the

Figure 12.
C++ code of utility.h.

Computer Methods and Programs in Biomedical Signal and Image Processing

12

Figure 13.
C++ code of utility.h.

Figure 14.
C++ code of app.cpp.

13

How to Keep the Binary Compatibility of C++ Based Objects
DOI: http://dx.doi.org/10.5772/intechopen.77383

interface. The component ManipulatorComp and the component AppComp can be
defined in the similar manner, which is shown in Figures 19 and 20, respectively.

Figure 21 shows the operation results of the robot after three components in
Figure 16 are successfully implemented, which are parts captured from a video clip
[15]. It can be observed from Figure 21 that the BiCOMC-based components func-
tion properly regardless of the types of compilers.

Figure 15.
Compilation commands of app.cpp and utility.cpp.

Figure 16.
Configuration example of components for a robot application.

Figure 17.
Definition of interfaces IMobile and IManipulator.

Figure 18.
Definition of component MobileComp.

Computer Methods and Programs in Biomedical Signal and Image Processing

14

5. Evaluation

This section evaluates the binary compatibility occurred among different types
of compilers and verifies whether backward compatibility can be maintained
when the interface version has been changed. There are some binary compatibility
checking tools like ABI Compliance Checker [16], shlib-compat [17], libabigail
[18], and ABICheck [19], but these tools are used to check API/ABI in C language
level or to compare virtual function tables generated by the supported compiler.
So they cannot check the binary compatibility of C++ objects created by differ-
ent types of compilers. In addition these tools cannot detect the compatibility

Figure 19.
Example of component AppComp.

Figure 20.
Definition of component ManipulatorComp.

Figure 21.
Video capture of robot application running.

15

How to Keep the Binary Compatibility of C++ Based Objects
DOI: http://dx.doi.org/10.5772/intechopen.77383

maintained by BiCOMC. For checking of the binary compatibility, this chapter
uses the proposed methods explained in Sections 5.1 and 5.2. Finally the call times
as performance measures are compared among BiCOMC, COM, and CCC using
different types of compilers.

5.1 Evaluation of binary compatibility between compilers

Compilers generally reorder a virtual function table according to each
compiler’s ABI, which makes the binary compatibility difficult. The interface
CompatibilityChecker is suggested to check whether the methods of objects
shared by different binaries (or executable files) created by different types of
compilers normally call each other. The interface CompatibilityChecker has the
methods check1(), check2(), and check3() arranged in an unordered fashion and is
illustrated in Figure 22. The methods simply return the values 1, 2, and 3, respec-
tively. In addition, all methods’ calling convention is controlled as the same.

These methods are called to check whether the normal return value is delivered.
The tests are considered successful if the three methods are normally called and are
judged to have failed if any of the methods are not normally called or the program has
shut down. The experiments using the interface CompatibilityChecker are performed
using MSVC 9 and 14, GCC 4.5 and 5.2, and the Intel C++ Compiler 14 and 16 in
Windows 10 in order to verify binary compatibility among different types of compil-
ers. Note that the GCC of MinGW-w64 is used. In Tables 1–3, “O” means pass, “X”
means failure, and “-” means not testable. ICC is the abbreviation of the Intel C++
Compiler. In other words, “O” means that the three methods are normally called.

It can be seen in Tables 1 and 2 that BiCOMC and CCC guarantee the binary
compatibility among MSVC, GCC, and ICC. However, CCC is only available in
compilers supporting C++ 11. Table 3 shows that the binary compatibility between
MSVC and ICC is guaranteed as stated in [20], but these two compilers are not
compatible with GCC. As stated earlier, the different types of compilers reorder
the virtual function table, and then the reordered methods are not called normally.
So C++ methods are called abnormally by different types of compilers as shown
in Table 3, whereas BiCOMC and CCC worked normally because they prevent to
reorder a virtual function table.

5.2 Evaluation of backward compatibility of different interface versions

In developing the program, it is necessary to add a new method to the existing
interface. That is, the interface version is changed in this case, which is shown in
Figure 23.

Figure 23 shows two interfaces of IfaceA and IfaceB, where IfaceB inherits IfaceA.
In the version v1, IfaceA has a method, mth_1(). But the interface IfaceA should be
upgraded to the new version v2 because a new method of mth_3() is added. Let us
consider the following: the v1-related interfaces and the v2-related interfaces are
used in the caller and the callee programs, respectively.

Figure 22.
Interface for binary compatibility test.

Computer Methods and Programs in Biomedical Signal and Image Processing

16

This test also uses simple methods that return values of 1, 2, and 3, respectively,
which are similar to methods used in Section 5.1. The experiments are done using
MSVC 14, GCC 5.2, and ICC 16 in Windows 10.

Table 4 shows that BiCOMC can enable the binary compatibility between inter-
faces of versions v1 and v2, but CCC, COM, and C++ are not compatible between
codes with different interface versions. Therefore, BiCOMC supports the backward
compatibility of interface versions. MSVC, GCC, and ICC generate a virtual func-
tion table in contiguous memory space regardless of inheritance. In this structure
of the table, if a new method is added in the parent interface, the offset of child’s
methods will be changed. For this reason, C++ does not provide the backward
compatibility. COM and CCC also have the same reason. BiCOMC has the structure

CCC Dynamic library (DLL)

MSVC GCC ICC

9 14 4.5 5.2 14 16

Executable (EXE) MS VC 9 — — — — — —

14 — O — O — O

GCC 4.5 — — — — — —

5.2 — O — O — O

ICC 14 — — — — — —

16 — O — O — O

Table 2.
Tests of the binary compatibility in CCC.

CCC Dynamic library (DLL)

MSVC GCC ICC

9 14 4.5 5.2 14 16

Executable (EXE) MS VC 9 O O X X O O

14 O O X X O O

GCC 4.5 X X O O X X

5.2 X X O O X X

ICC 14 O O X X O O

16 O O X X O O

Table 3.
Tests of the binary compatibility in C++.

Figure 23.
Interface for backward compatibility test per version.

17

How to Keep the Binary Compatibility of C++ Based Objects
DOI: http://dx.doi.org/10.5772/intechopen.77383

of Figure 2 so that the parent’s methods and the child’s methods can be stored at
independent memory space of each other. Thus BiCOMC supports the backward
compatibility of interface versions.

5.3 Call time evaluation

Call times as performance measures are measured in Windows 10 using MSVC
14, GCC 5.2, and ICC 16. The methods of objects are called 10 million times, and
the call times are obtained as the average values of all call times. These are shown
in Figures 24–26, in which MSVC, GCC, and ICC compilers are used for evalua-
tion, respectively. In these figures, two notations such as XXX and XXX-R are used,
where XXX is one of BiCOMC, CCC, CPP (or C++), and COM and -R means that
the method used in the test has a return value.

Tables 1–4 show that BiCOMC provides the best binary compatibility among
different types of compilers. Figures 24–26 show that C++ has the best call time,
but the call time of BiCOMC is similar to those of C++ and COM. CPP is generally
faster than others because the method calling accesses an optimized virtual func-
tion table which accesses directly addresses of methods. COM is also similar to
CPP. Note that GCC does not support COM. CCC is slower as std::function, one of
the C++ 11 features [14], is basically used [12]. BiCOMC is slower slightly than CPP
and COM because it accesses addresses of methods in the function table pointed by
the virtual function table. But the test results show no or little significant difference
among BiCOMC and CPP/COM.

Method compiler BiCOMC CCC COM C++

MSVC 14 O X X X

GCC 5.2 O X — X

ICC 16 O X X X

Table 4.
Tests of the backward compatibility.

Figure 24.
Call time in MSVC.

Computer Methods and Programs in Biomedical Signal and Image Processing

18

6. Conclusion

This chapter proposed the binary compatibility object model for C++ (BiCOMC)
to provide the binary compatibility of objects necessary for reusability of software
components in the Windows and Linux environment in order to share objects
among C++ based executable files such as .exe, .dll, and .so. The interfaces for the
component, method overloading and overriding, multiple inheritance, and the
exception handling were suggested based on BiCOMC model.

The proposed model was validated by application examples and comparisons
with commonly known object models such as C++, COM, and CCC in terms of
the call time of a method during execution and the binary compatibility such as
reusability. The application examples showed that components compiled by GCC
and MSVC call each other without any restrictions. From Tables 1–3, it can be seen
that the BiCOMC provides better binary compatibility in a Windows environment
than object models in C++, COM, and CCC, which are compiled in GCC, MSVC,
and ICC. The BiCOMC was compared with C++, COM, and CCC in terms of the
call times of methods during run time. The results showed that the call time of

Figure 25.
Call time in GCC.

Figure 26.
Call time in ICC.

19

How to Keep the Binary Compatibility of C++ Based Objects
DOI: http://dx.doi.org/10.5772/intechopen.77383

the BiCOMC was similar to C++/COM. In other words, the application examples
and the evaluation results verified that the proposed method was provided for the
binary compatibility among different types of compilers.

In future we will develop and distribute BiCOMC-based components for vari-
ous applications such as industrial/medical robot applications and factory/home
automation application, which can be used regardless of the types of compilers.

Author details

Donguk Yu and Hong Seong Park*
Department of Electrical and Electronics Engineering, Kangwon National
University, Chuncheon, Republic of Korea

*Address all correspondence to: hspark@kangwon.ac.kr

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

20

Computer Methods and Programs in Biomedical Signal and Image Processing

[1] Han S, Kim M, Park HS. Open
software platform for robotic services.
IEEE Transactions on Automation
Science and Engineering;9(3):467-481

[2] Jang C et al. OPRoS: A new
component-based robot software
platform. ETRI Journal;32(5):646-656

[3] OPRoS Site [Online]. Available from:
http://ropros.org [Accessed: 03 January
2018]

[4] Ando N et al. Software deployment
infrastructure for component based
RT-systems. Journal of Robotics and
Mechatronics;23(3):350-359

[5] OpenRTM Site [Online]. Available
from: http://www.openrtm.org
[Accessed: 03 January 2018]

[6] OROCOS Site [Online]. Available
from: http://www.orocos.org [Accessed:
04 January 2018]

[7] Gherardi L, Brugali D, Comotti D. A
Java Vs. c++ performance evaluation:
A 3d modeling benchmark. In:
Proceedings of International
Conference on Simulation, Modeling,
and Programming for Autonomous
Robots (SIMPAR 2012); 5-8 November
2012; Tsukuba. Berlin, Heidelberg:
Springer; 2012. p. 161-172. DOI:
10.1007/978-3-642-34327-8

[8] Hildstrom G. Programming
Language Performance Comparison
[Online]. Available from: http://
hildstrom.com/projects/langcomp/
index.html [Accessed: 04 January 2018]

[9] Sayfan G. Building Your Own
Plugin Framework [Online]. Available
from: http://www.drdobbs.com/cpp/
building-your-own-plugin-framework-
part/204202899 [Accessed: 04 January
2018]

[10] Goldstein TC and Sloane AD. The
object binary interface—C objects

for evolvable shared class libraries.
In: Proceedings of the 6th Conference
on USENIX Sixth C++ Technical
Conference (CTEC'94). Vol. 6; 11-14
April 1994; Cambridge, MA

[11] COM: Component Object Model
Technologies [Online]. Available
from: https://msdn.microsoft.com/
en-us/library/windows/desktop/
ms680573(v=vs.85).aspx [Accessed: 04
January 2018]

[12] Bandela JR. Cross Compiler Call
[Online]. Available from: https://github.
com/jbandela/cross_compiler_call
[Accessed: 04 January 2018]

[13] Atkinson K. ABI compatibility
through a customizable language. In:
Proceedings of the Ninth International
Conference on Generative Programming
and Component Engineering
(GPCE’10); 10-13 October 2010;
Eindhoven. The Netherlands. DOI:
10.1145/1868294.1868316

[14] ISO/IEC 14882:2011 Information
Technology—Programming
Languages—C++, ISO/IEC JTC 1/SC 22

[15] Yu D. Video of Robot Application
Running [Online]. Available
from: https://www.youtube.com/
watch?v=gMMsNINp14g [Accessed: 04
January 2018]

[16] ABI Compliance Checker [Online].
Available from: https://lvc.github.io/
abi-compliance-checker [Accessed: 05
January 2018]

[17] Kurtsou G. Shlib-Compat: ABI
Compatibility Checker for Shared
Libraries with Symbol Versioning
[Online]. Available from: https://github.
com/glk/shlib-compat [Accessed: 04
January 2018]

[18] The ABI Generic Analysis and
Instrumentation Library [Online].

References

21

How to Keep the Binary Compatibility of C++ Based Objects
DOI: http://dx.doi.org/10.5772/intechopen.77383

Available from: https://sourceware.org/
libabigail [Accessed: 05 January 2018]

[19] Abicheck [Online]. Available
from: http://abicheck.sourceforge.net
[Accessed: 06 January 2018]

[20] Intel C++ Compiler Compatibility
with Microsoft Visual C++ [Online].
Available from: https://software.intel.
com/en-us/articles/intel-c-compiler-
compatibility-with-microsoft-visual-c
[Accessed: 06 January 2018]

