
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1

Chapter
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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disease and the 
most common form of senile dementia. Recently, scientists have put significant 
effort into exploring the molecular mechanisms involved in the pathological 
processes leading to the disease. A vast number of studies have focused on under-
standing the nitric oxide (NO) signaling pathway, which culminates with the 
phosphorylation of the transcription factor cAMP-responsive element-binding 
protein (CREB) through the increase of the second messenger cyclic guanosine 
monophosphate (cGMP) and activation of cGMP-dependent protein kinase. This 
book chapter provides an overview of the progress being made in modulating the 
hippocampal synaptic transmissions, which are critical for learning and memory, 
by targeting the different components of the NO/cGMP/CREB phosphorylation 
signaling pathway. Furthermore, a description of recent research on this pathway 
through the use of phosphodiesterase inhibitors is emphasized.

Keywords: Alzheimer’s disease, nitric oxide, cyclic guanosine monophosphate, 
cGMP-dependent protein kinase, phosphodiesterases, phosphodiesterase inhibitors, 
cAMP-regulatory element-binding protein

1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that 
involves cognitive impairment, such as loss of memory and reasoning and decline in 
mental ability. The AD brain is characterized by cell death and intra- and extracel-
lular accumulation of amyloid-beta (Aβ) and tau proteins that form senile plaques 
and neurofibrillary tangles, respectively. Nowadays, medical treatments available 
on the market comprise two classes of drugs, acetylcholinesterase (AchE) inhibi-
tors (i.e. donepezil, galantamine, and rivastigmine) and N-methyl-D-aspartate 
(NMDA) receptor antagonist (i.e. memantine). Based on the AD cholinergic 
hypothesis, acetylcholine-containing neurons project diffusely to the cortex and 
modulate cognitive processing. Damage of these projections has been associ-
ated with learning and memory impairment. Thus, AchE inhibitors block the 
acetylcholine-degrading enzyme consequently raising the levels of the acetylcholine 
neurotransmitter in the brain [1]. Differently from AchE inhibitors, memantine 
antagonizes the NMDA receptors, modulating dysfunctions in the glutamatergic 
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neurotransmission associated to AD. Even if glutamate NMDA receptors are essen-
tial for synaptic transmission [2], excessive stimulation of glutamatergic signaling 
results in excitotoxicity, a condition in which nerve cells are damaged leading to 
gradual loss of synaptic function and ultimate neuronal cell death. Thus, meman-
tine reduces glutamate excitotoxicity effects [3]. Although these medications have 
been used for decades, they help with cognitive and behavioral symptoms but fail 
stopping or reversing the progression of the disease. Because of this limitation, the 
discovery of new therapeutic strategies for the treatment of AD has become a criti-
cal and shared goal to academia and industry.

Much progress has been made since Aβ and tau proteins were recognized as the 
major hallmarks of AD. With the aim of finding novel and more effective thera-
peutic targets, scientists have put enormous effort in understanding the molecular 
mechanisms causing the development and progression of the disease. Long-term 
potentiation (LTP) is the primary experimental model for investigating synaptic 
transmission and strength in the hippocampus [2]. Changes in synaptic strength, 
resulting from specific patterns of synaptic activity, define the biological process 
called synaptic plasticity, which is thought to contribute to learning and memory 
[4]. It is widely recognized that LTP at the CA3-CA1 synapse is triggered by post-
synaptic NMDA receptors in response to high-frequency synaptic transmission. 
During the induction of LTP, the depolarization of the postsynaptic membrane, 
induced by tetanic stimulation, removes the Mg2+ block from the NMDA recep-
tor channel that would otherwise occupy the lumen of the channel at resting 
membrane potential levels. At the same time, the neurotransmitter L-glutamate is 
released to activate NMDA receptors, upon which Ca2+ as well as Na+ ions enter the 
dendritic spine. Consequently, the elevation of intracellular Ca2+ triggers LTP. The 
implication of the NMDA receptors in the process of LTP has been proven by a 
variety of NMDA antagonists, such as MK-801 and 2-amino-5-phosphopentanoate 
that are able to prevent the induction of LTP [2, 5]. Likewise, Ca2+ chelators injected 
intracellularly block the induction of LTP as demonstrated by Lynch and cowork-
ers [6]. Ca2+ triggers activation of second messenger cascades relevant to memory 
formation such as the NO cascade [7] on which we have focused in this chapter. 
LTP has been used as an electrophysiological model to investigate the correlation 
between memory impairment and synaptic strengthening in hippocampal slices 
of mice and to evaluate the effect of various compounds on synaptic transmis-
sion. Interestingly, Aβ1–42 has been found to block LTP through the disruption of 
different molecular pathways, such as the kinases c-Jun N-terminal kinase, cyclin-
dependent kinase 5, and p38 mitogen-activated protein kinase (MAPK) as well as 
the metabotropic glutamate receptor type 5 [8], the extracellular signal-regulated 
kinase (ERK)-MAPK cascade [9], the cyclic adenosine monophosphate (cAMP)/
cAMP-dependent-protein kinase/cAMP-regulatory element-binding protein 
(CREB) pathway [10], and the NO/cyclic guanosine monophosphate (cGMP)/
CREB pathway [11].

This chapter provides an overview of the NO/cGMP/CREB phosphorylation 
signaling pathway and its role in learning and memory mechanisms during aging 
and neurodegenerative diseases. Several studies have demonstrated the association 
between NO, cGMP and CREB phosphorylation and synaptic plasticity [11–13]. The 
overall pathway includes the gaseous molecule NO, which is synthesized by the 
enzyme nitric oxide synthase (NOS) from arginine and induces an increase in 
the levels of second messenger cGMP by activating the enzyme soluble guanylyl 
cyclase (sGC). cGMP, consequently, activates the cGMP-dependent protein kinases 
(PKGs), a family of enzymes that is involved as transduction mediators in a number 
of cellular signaling systems. Lastly, PKGs phosphorylate the transcription factor 
CREB at its serine 166 (Ser-166), leading to the transcription of genes relevant 
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to learning and memory during LTP. Additionally, phosphodiesterase enzymes 
(PDEs) act on the pathway by hydrolyzing cGMP and therefore lowering the 
intracellular levels of the second messenger (Figure 1). CREB phosphorylation has 
been recognized as a crucial event during synaptic plasticity. Indeed, not only does 
the increase of phosphorylated CREB (pCREB) levels regulate the transcription of 
important neuronal genes, such as the gene for brain-derived neurotrophic factor 
(BDNF) [14] but also leads to the generation of new dendritic spines that represent 
morphological changes crucial in LTP in central neurons [15]. The fundamental role 
of the NO/cGMP/CREB signaling pathway in strengthening the synaptic transmis-
sions has been explored by observing the effect of inhibiting the single components 
of the pathway on CREB phosphorylation [16–18]. On the contrary, the stimulation 
of this pathway has shown to restore the levels of pCREB and improve age-related 
learning and memory in in vivo tests [19, 20]. Importantly, in the presence of Aβ 
protein the NO/cGMP/CREB pathway is inhibited. In fact, findings have shown that 
the increase of pCREB during synaptic plasticity is blocked by Aβ in cultured corti-
cal and hippocampal neurons [10, 21] as well as in mouse hippocampal slices [11]. 
Furthermore, to correlate the molecular mechanisms involved during LTP to the 
cognitive functions of learning and memory in vivo, the NO/cGMP/CREB cascade 
has been explored in a variety of animal models using different memory-related 
tasks [11, 19].

Due to the high relevance of the NO/cGMP/CREB pathway in aging and 
neurodegenerative disorders, a growing number of studies have focused on 
developing therapeutic strategies aimed at regulating this signaling pathway. The 
following sections summarize the single components of the pathway and their 
implication in neurodegenerative disorders, with particular emphasis on AD, as 
well as the therapeutic approaches advanced for targeting each of these pathway 

Figure 1. 
NO/cGMP/CREB phosphorylation signaling pathway. Nitric oxide (NO) is produced during the conversion 
of arginine into citrulline by the enzyme nitric oxide synthase (NOS). NO activates soluble guanylyl cyclase 
(sGC), which stimulates cyclic guanosine monophosphate (cGMP) production from guanosine triphosphate 
(GTP). cGMP is degraded into 5’-GMP by the phosphodiesterases (PDEs). The increase of cGMP levels 
activates cGMP-dependent protein kinase (PKG), which induces phosphorylation of cAMP-responsive element 
binding (CREB).
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effectors. Among them, inhibitors of PDEs have been the most studied and 
developed agents modulating the NO/cGMP/CREB pathway.

2. NO and NO donors

Nitric oxide, •N〓O (abbreviated as NO) is a diatomic molecule with an 
unpaired electron in its outer orbit. NO is a highly diffusible gaseous molecule, 
which easily crosses cell membranes due to its high lipophilicity [22]. NO is involved 
in different metabolic pathways. NO can react with molecular oxygen (O2) or 
superoxide anion (O2

•−) to produce nitrogen reactive species, including peroxyni-
trite [22–24]. At a cellular level, NO is a signaling molecule that regulates important 
processes such as cell differentiation and death, immune response, vascular tone 
and function, platelet aggregation, angiogenesis, and neurotransmission [25–27]. 
NO is predominantly produced along the biosynthetic process that converts the 
amino acid arginine into citrulline, in the presence of oxygen and cofactors  
(Figure 1). This metabolic pathway is catalyzed by nitric oxide synthases (NOS) 
[28, 29]. NOS occur in three isoforms: neuronal NOS (nNOS), endothelial NOS 
(eNOS), and inducible NOS (iNOS). nNOS and eNOS are constitutively expressed 
and their activities are regulated by calcium-bound calmodulin. Both constitutive 
NOS isoforms respond immediately to increased levels of calcium and produce low 
levels of NO rapidly. The endothelial isoform is a key regulator of NO production in 
vascular endothelial cells and has a major role in the regulation of vascular tone and 
platelet aggregation. In the brain, the basal concentration of NO is mainly regulated 
by nNOS and, in a smaller extent, by eNOS [28]. iNOS is tightly bound to calmodu-
lin and acts independently of calcium levels; its activity is induced by a number 
of cytokines, such as interferon-gamma and tumor necrosis factor. While several 
studies have associated iNOS with the development of disease such as atheroscle-
rosis, others have proposed that the activity of iNOS in pathological conditions has 
a protective mechanism [28, 30]. The main receptor for NO is sGC. The binding 
of NO to the heme Fe center present in the catalytic site increases the enzymatic 
basal activity for conversion of guanosine 5′-triphosphate (GTP) to cyclic guano-
sine monophosphate (cGMP) [31–33]. Most recently, Martin and coworkers have 
reported the mechanism of binding of NO to sGC [34]. By using isotopic 14NO and 
15NO in rapid-freeze quench experiments, different intermediates of the complex 
NO−sGC were trapped and analyzed by electron paramagnetic resonance (EPR) 
spectroscopy. This study confirmed that NO binds to the distal side of heme Fe and 
then a second molecule of NO binds to the proximal side, leading to the release of 
NO from the distal side of the transient bis-NO-sGC complex. Also, a concerted 
mechanism in which the dissociation of the His-105 proximal ligand occurs simulta-
neously with the binding of the second NO has been unveiled [34].

In the central nervous system, NO plays crucial physiological functions as a 
neurotransmitter as well as regulator of the cGMP levels [35]. Specifically in the 
hippocampus, NO is involved in the processes of LTP, the persistent increase in 
synaptic strength upon high-frequency stimulation of a neuronal synapse [7, 36]. In 
the early 1990s, two studies demonstrated the link between NO and LTP concluding 
that the messenger NO was required in LTP [37, 38]. In electrophysiology experi-
ments using hippocampal slices, NOS inhibitors such as N-nitro-L-arginine and 
NG-methyl-L-arginine were found to block LTP when applied either extracellularly 
or intracellularly to the postsynaptic cell. At the same time, these findings have 
suggested that NOS is localized in the postsynaptic cell and that NO is a retrograde 
messenger that diffuses to the presynaptic terminal, leading to enhanced transmit-
ter release [37, 38]. Extensive research has been done to unveil the effect of NO 
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on learning and memory in a range of behavioral tasks [39–44]. The use of NOS 
inhibitors has provided a means for exploring the link between NO and memory 
formation. Several studies have found that NOS inhibitors significantly decrease 
rodent performance in a number of memory and behavioral paradigms, such as the 
radial arm water maze and novel object recognition tests.

2.1 Nitric oxide and neurodegeneration/neuroprotection

Unbalance in the concentration of NO plays an important role in the devel-
opment of neurodegenerative damage in AD [45]. For one thing, neural cell 
damage in the amygdala and hippocampus of AD brain has been associated 
with NO reactive species, which leads to the generation of oxidative stress [46]. 
Immunohistochemistry of hippocampal slices from AD human brains has spe-
cifically detected nitrotyrosine, a product of nitration of tyrosine residue by 
NO-reactive species peroxynitrite [47, 48]. In addition, neurotoxicity caused by 
excess of the excitatory neurotransmitter glutamate (defined as glutamatergic 
excitotoxicity) leads to the overexpression of NO through an increase in Ca2+ 
intraneuronal levels and activation of NOS. Yamauchi and colleagues measured 
the concentration of NO and survival of rat cultured cortical neurons upon 
treatments with NOS inhibitor (L-NMMA), NO donors (S-nitroso-N-acetyl-D,L-
penicillamine-SNAP) and NMDA receptor agonist (glutamate) and antagonists 
(MK-801, ketamine) [49]. Application of glutamate to the cultured medium 
increased NO concentration, while both pretreatment with NMDA antagonists pre-
vented glutamate-induced NO increase and neuronal death. L-NMMA prevented 
glutamate-induced NO production and neuronal death. The nitric oxide donor 
also caused neuronal death, and MK-801, ketamine and L-NMMA did not prevent 
SNAP-induced toxicity. This study demonstrated the link between changes of NO 
concentration and neuronal death [49].

Differently from above, other studies have reported the neuroprotective effects 
of NO. In cultures of differentiated cerebellar granule cells (CGCs), the inhibition 
of NO production for 3–4 days, obtained by using the NOS inhibitor L-NAME, 
resulted in progressive apoptotic death of CGCs. Cell death was rescued by adding 
to the culture medium slow-releasing NO donors, DETA-NONOate and Glyco-
SNAP2 [50]. In addition, to confirm the essential role of cGMP in NO-mediated 
action, inhibition of sGC through the specific inhibitor, 1H-[1,2,4]oxadiazolo[4,3-
a]quinoxalin-1-one (ODQ ), replicated the pro-apoptotic effect of NOS inhibi-
tion [50]. The NO neuroprotection effect was evaluated in the NMDA-mediated 
neurotoxicity model, in which prolonged stimulation of NMDA receptors causes 
excitotoxic cell death [51, 52]. These studies indicate that NO protects against such 
excitotoxicity by S-nitrosylating the NMDA receptor subunits, thus reducing the 
intracellular Ca2+ influx that is responsible for neuronal death. S-nitrosylation is a 
post-translational modification that regulates the activity of important signaling 
effectors [53]. Prolonged nNOS stimulation during excitotoxicity generates super-
oxide radicals that react with NO to form peroxynitrite and S-nitrosylate the NMDA 
subunits, leading to a reduction of either the formation of peroxynitrite or Ca2+ 
influx and promoting neuronal survival [51, 52].

2.2 NO donors

Since the handling of NO is particularly challenging, drugs that release NO have 
been developed as a useful means of systemic nitric oxide delivery. Although several 
types of NO donors (e.g., nitrates, nitrites, metal-NO complexes, and furoxans) 
have been reported over the years, sodium nitroprusside and organic nitrates such 
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as glyceryl trinitrate, isosorbide mononitrate, and pentaerythritol tetranitrate have 
been used for many years as effective therapies for cardiovascular diseases [22].

New NO donors have been investigated for their neuroprotective activity, 
together with anti-inflammatory and antioxidant effects. A NO-releasing derivative 
of ferulic acid (NO-FA, also named NCX 2057) has been studied on lipopolysaccha-
ride LPS-infused rats, an animal model of chronic neuroinflammation  
(Figure 2) [54]. Treatment with NO-FA for 14 days after LPS infusion produced a 
dose-dependent reduction in the level of microglial activation in the hippocampus 
and entorhinal cortex, demonstrating beneficial effects at a lower dose than that 
of the antioxidant ferulic acid. NO-FA or drug combining anti-inflammatory and 
antioxidant properties have been suggested as treatments that might significantly 
attenuate the processes driving the pathology associated with AD [54].

The importance of NO signaling in modulating synaptic plasticity and its 
correlation to enhanced learning and memory, as well as its neuroprotective 
effects, has also supported the development of NO donor for the treatment of 
neurodegeneration and AD. The nitrate ester GT 715 (Figure 2) is a NO mimetic 
drug that has shown to improve task acquisition in scopolamine-treated animals in 
a time and dose-dependent manner, activate hippocampal sGC and increase cGMP 
accumulation in hippocampal brain slices in vitro [55]. Most recently, Schiefer et al. 
have proposed another class of compounds, furoxans (1,2,5-oxadiazole-N-oxides) 
as neuroprotective and pro-cognitive agents [56]. Furoxan 9a (Figure 2) has 
exhibited neuroprotective effects in primary rat neuronal cell cultures subjected 
to oxygen glucose deprivation. Interestingly, neuroprotection was abolished by 
coincubation with the sGC inhibitor, ODQ, implicating the involvement of the 
NO/sGC cascade.

3. cGMP and PKG

3.1 cGMP and cGMP analogs

cGMP, as well as cAMP, is a cyclic nucleotide that functions as an intracellular 
second messenger in a variety of signal transduction cascades. cGMP is a hydrophilic 
molecule and therefore transmits signals within the cytosol, activating mainly 
protein kinases and ion channels. Synthesis of cGMP is regulated by sGC, which 
converts GTP into cGMP (Figure 1). However, the most important regulation of this 
cyclic nucleotide is seemingly not achieved by its synthesis but its breakdown in an 
inactive form, 5’-GMP. The enzymes responsible for this process are PDEs. Initially, 
the increase in cGMP has been associated with relaxation of tracheal, intestinal, and 
vascular smooth muscle [57, 58]. These studies led to the first proposed role of cGMP 
in the regulation of smooth muscle relaxation. In the hippocampus, cyclic nucleo-
tides play an important role in the regulation of CREB phosphorylation through the 

Figure 2. 
Structures of NO-donors.
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activation of cyclic nucleotide-dependent protein kinases. While some studies pro-
vide evidence that cAMP is critically involved in the processes of LTP and memory 
formation and consolidation [10, 59], others recognize cGMP as a key player as well 
[11, 59–61]. In an effort to identify biomarkers for AD, it was recently found that the 
levels of cGMP in the cerebrospinal fluid (CSF) of AD patients are reduced, support-
ing the relevance of cGMP in dementia and depression [62]. Molecules with molecu-
lar structures similar to cGMP (cGMP analogs) have been employed to provide 
insights into the mechanisms and functional role of the cGMP-dependent compo-
nent of LTP [11, 60]. cGMP analogs mimic the endogenous cGMP, thus activating 
PKG. Examples of such molecules are 8-Br-cGMP, 8-(4-chlorophenylthio)-cGMP, 
and 8-Br-PET-cGMP (Figure 3) [11, 63, 64].

3.2 PKG and PKG inhibitors

Along the NO/cGMP/CREB cascade, cGMP activates the cGMP-dependent, ser-
ine/threonine protein kinase PKG that, in turn, phosphorylates CREB [16, 65]. Two 
families of PKG are known, PKG-I and PKG-II. PKG-I is found in various regions 
of nervous system, including the hippocampus, and its isoforms (PKG-Iα and β) 
are more commonly involved when NO mediates the cGMP signaling [65, 66]. Both 
PKGs exist as homodimers and each monomer contains a regulatory domain that is 
located in the more N-terminal portion of the protein and a catalytic domain that is 
located in the C-terminal portion. Two molecules of cGMP bind to the regulatory 
domain at an allosteric site. In the catalytic domain, there are two major subdo-
mains: (1) a subdomain that binds Mg2+/ATP and (2) a substrate-binding subdomain 
[66]. Arancio et al. studied the role of pre- and post-synaptic PKG in LTP [67]. To 
this end, inhibition of PKG by injecting a highly specific peptide (Gly-Arg-Thr-Gly-
Arg-Arg-Asn-(D-Ala)lle-NH2) into the presynaptic but not the postsynaptic neuron 
has been found to block LTP in rat hippocampal neurons. This work supported the 
hypothesis that PKG functions as a target of NO during the induction of LTP in the 
hippocampus [61] and possesses a predominant pre-synaptic role. Other inhibitors 
of PKG, such as Rp-8-Br-cGMPS and KT5823 (Figure 3), have revealed the impor-
tance of the cGMP/PKG pathway in learning and memory in either electrophysi-
ological experiments or animal models [68, 69].

4. PDEs and PDE inhibitors

An important part of the signal transduction process is the rapid degradation of 
cGMP or cAMP by cyclic nucleotide PDEs. Specifically, PDEs catalyze the hydro-
lysis of the cyclic phosphate bond in cAMP and cGMP to generate the products 

Figure 3. 
Structures of cGMP analogs (8-Br-cGMP, 8-(4-chlorophenylthio)-cGMP, and 8-Br-PET-cGMP) and PKG 
inhibitors (Rp-8-Br-cGMPS and KT5823).
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5’-AMP and 5’-GMP, respectively [70]. PDEs include 11 families of enzymes, 
namely PDE1–11, that show specificity for one only or both cyclic nucleotides. 
PDE1–3, 10, and 11 hydrolyze both cAMP and cGMP; PDE4, 7, and 8 are highly 
specific for cAMP while PDE5, 6, and 9 are cGMP-hydrolyzing enzymes. Each fam-
ily of PDE comprises multiple isoforms, generated from 21 PDE genes by alternative 
splicing or transcription from distinct promoters [71]. PDEs exhibit tissue-specific 
differences in expression and functional characteristics. Some PDEs are expressed 
in a variety of tissues (PDE1, 2, 3, and 4) whereas others are more restricted, such 
as the PDE6 family that is mainly localized in retinal photoreceptors and regulates 
light perception [70, 72]. Importantly, splice variants of PDE1, 2, 4, 5, 7, 9, and 
10 have been identified in different regions of human brain [72–79]. It is worth to 
mention that studies aimed at measuring the levels of PDEs in various tissues have 
provided inconsistent results. This could be due to differences in age, tissue species 
and specific technique involved for the measurement of either the mRNA or the 
protein level.

PDEs are homodimers with the exception of PDE1 and PDE6, which are typi-
cally heterotetramers under physiological conditions. The representative structure 
for most PDE monomers includes an NH2-terminal regulatory domain (R domain) 
and a COOH-terminal catalytic domain (C domain). With exception of PDE4, 
which contains regulatory features also in the C domain, the R domain provides 
regulatory control through different types of domains, such as calcium-calmodulin 
binding (PDE1), GAF-A and -B (PDE2, 5, 6, 10, and 11), PAS (PDE8), and 
upstream conserved regulatory domain (PDE4) [70]. With regard to the C-terminal 
catalytic domain, approximately 270 amino acids are conserved, with a sequence 
identity of 35–50% among different PDE families. The catalytic site contains two 
major regions: (1) a region that interacts with the purine-like base in the nucleo-
tides, and (2) a distinctive histidine-rich region that forms a binuclear metal-ion 
binding site where a catalytic hydroxide ion is generated and catalysis occurs. 
The first region is formed of hydrophobic, aromatic residues that engage with the 
purine-like ring through π-π stacking interactions. The presence of a conserved 
tyrosine residue (Tyr-612) in this pocket contributes to its hydrophobicity. The 
histidine-rich region contains two metal ions that play a critical role in the hydroly-
sis of the cyclic phosphate bond. Several studies have confirmed the zinc ion as the 
metal occupying the M-1 site in all the PDEs, while the second ion in the M-2 site 
is magnesium [80]. The whole catalytic machinery is made of two histidines, two 
aspartic acid residues, and water molecules coordinating the two metal ions. The 
nucleophile responsible for the attack to the phosphorous atom and breakage of the 
cyclic phosphate bond has been identified as a bridging hydroxide ion [80].

By hydrolyzing the second messenger cGMP and/or cAMP, PDEs are related 
to specific intracellular transduction signals, ranging from cell proliferation and 
apoptosis to smooth muscle contraction to neuronal functions [81]. In the brain, 
an important target of both cyclic nucleotides in neuronal signaling is the CREB 
protein. CREB is a transcription factor that regulates the gene expression of neu-
rotransmitters, growth factors, and other signaling molecules [82]. Therefore, 
changes in PDEs expression and subsequently cyclic nucleotides alter the level of 
neuroprotection via CREB [83, 84]. For instance, an increase in PDE4 expression 
has been observed in primary cultures of cortical neurons of rats, while significant 
increase in PDE5 expression, together with a decrease in cGMP in the CSF, has been 
detected in the temporal cortex of AD patients [84, 85]. In animal studies, however, 
PDE4 activity was found to be reduced in the striatum and frontal cortex of aged 
monkey [86] and aged rat brains [87].
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4.1 Phosphodiesterase inhibitors

The important role of cGMP (and cAMP) levels and CREB phosphorylation in 
learning and memory has led to a growing interest in exploring PDE inhibitors for the 
treatment of neurodegenerative disorders, especially AD. The inhibition of PDEs has 
been proposed as a novel therapeutic approach based on a number of evidence show-
ing that several PDE inhibitors have exhibited remarkable effects in animal models 
related to AD when tested in different behavioral tests, including the Morris water 
maze, passive avoidance, and object recognition test (ORT). Recent studies have 
demonstrated that certain PDE inhibitors ameliorate memory impairment or enhance 
cognitive functions in rodent models. Examples include inhibitors of PDE2 (BAY60-
7550, [88–90]), PDE3 (cilostazol, [91–93]), and PDE5 (sildenafil, [19, 94]). Herein, 
a list of well-studied cGMP-degrading PDE inhibitors that modulate the NO/cGMP/
CREB signaling pathway and their effects on learning and memory is presented.

4.1.1 Phosphodiesterase 1 inhibitors

PDE1 is a Ca2+/calmodulin-dependent PDE family comprising three isoforms, 
PDE1A, 1B, and 1C). PDE1 hydrolyzes both cGMP and cAMP and is highly dis-
tributed in the brain. PDE1 has been considered as a pharmacological target for the 
improvement of cognitive impairment in neurodegenerative disorders, such as AD, 
Parkinson’s disease (PD), and schizophrenia.

A handful of selective PDE1 inhibitors have been discovered thus far [95] 
(Figure 4). Vinpocetine is a nutraceutical derivative of the alkaloid vincamine with 
moderate potency (PDE1, IC50 = 30 μM). In streptozotocin-induced rat model, 
chronic treatment with vinpocetine significantly improved learning and memory 
abilities in the Morris water maze and passive avoidance tests [95]. Intra-cellular 
therapies has identified a potent PDE1-inhibiting pyrazolopyrimidinone, namely 
ITI-214 with much higher potency than vinpocetine against PDE1B specifically 
(IC50 = 0.058 nM) [96]. ITI-214 has shown to improve memory performance of rats 
in the novel object recognition test at a dose of 3 mg/kg, i.p. [97]. Most recently, a 
thienotriazolopyrimidinone PDE1 inhibitor, DNS-0056 (PDE1B, IC50 = 0.026 μM) 
has been reported. In a rat model of recognition memory, DNS-0056 (0.3 mg/kg, 
p.o.) notably increased long-term memory, without altering exploratory behavior 
[98]. However, at odds with these findings, administration of the ICOS PDE1 
inhibitor IC354 (IC50 against PDE1 of 80 nM; ratio of IC50 value for the next most 
sensitive PDE to IC50 value for PDE1 equal to 127) failed to rescue the defect in LTP 
in a mouse model of amyloid elevation [19].

Figure 4. 
Structures of PDE1 inhibitors.



Neurochemical Basis of Brain Function and Dysfunction

10

4.1.2 Phosphodiesterase 2 inhibitors

PDE2 is found in the brain, where it hydrolyzes both cAMP and cGMP [72, 99]. 
PDE2A is the only isoform recognized in several brain regions [72]. In most periph-
eral tissues, except the spleen, PDE2 levels are relatively low. Due to this tissue 
distribution, PDE2 inhibitors exhibit less cardiovascular side effects than other PDE 
inhibitors. Thus, PDE2 inhibitors have been considered attractive therapeutic agents 
against cognitive disorders.

BAY-60-7550 is a highly selective PDE2A inhibitor developed by Bayer. It shows 
a high potency (IC50 = 4.7 nM) and selectivity versus the other PDEs. BAY-60-7550 
has been used in numerous behavioral tasks and animal models for testing learning 
and memory [88–90]. A study by Boess and coworkers has explored the effect of 
BAY-60-7550 on the synaptic plasticity as well as memory in rats. BAY-60-7550 at a 
concentration of 100 nM was able to increase hippocampal LTP. In the ORT, BAY-
60-7550 improved the recognition performance of adult rats at a dose of 1–3 mg/kg. 
Interestingly, similar doses of the PDE2 inhibitor reversed the memory impairment 
caused by an NMDA antagonist (MK-801) in a T-maze spontaneous alteration task 
[88]. Additionally, BAY-60-7550 has been tested in scopolamine-induced and MK-801-
induced memory deficit mouse models. A dose of 1–3 mg/kg given by oral gavage 
rescued the memory defects in the ORT [90]. Recently, young mice have shown a 
dose-dependent memory enhancement upon treatment with BAY-60-7550 (0–6 mg/
kg, i.c.v.) in the ORT. In this recent study, researchers have proven that the enhance-
ment of memory in the ORT following PDE2 inhibition during early consolidation is 
mediated via NOS/cGMP/PKG pathway by using a NOS inhibitor and an sCG inhibi-
tor. In support of these results, an increase in CREB phosphorylation was observed as 
well [89].

Two PDE2 inhibitors sharing the same chemical scaffold were developed by 
Pfizer, PF-05085727 and PF-05180999 (also called PF-999) [100, 101]. PF-05085727 
showed an IC50 of 2.0 nM and selectivity of up to 4000-fold over other PDEs 
was identified by Pfizer as well [101]. PF-05085727 increased the level of cGMP 
in rodent brain regions expressing the highest levels of the PDE2A enzyme. 
PF-05085727 (0.032–1 mg/kg, s.c.) significantly attenuated memory impairments 
induced by ketamine in rats subjected to the radial arm maze task. Additional 
behavioral experiments using the MK-801-induced memory deficit mouse model 
revealed that the PDE2 inhibitor is able to reverse the MK-801-induced local field 
potential disruption. This study represents another evidence of the potential 
use of selective PDE2A inhibitors in treating neurological and neuropsychiatric 
disorders [101].

Likewise, PF-05180999 showed remarkable inhibitory activity (IC50 = 2.3 nM) 
and selectivity over other PDEs. PF-05180999 was found to increase the level of 
cGMP in the CSF of rats, attenuate ketamine-induced memory deficits, and reverse 
spatial learning and memory in scopolamine-induced models [100]. In 2015, a study 
that explored the primarily presynaptic mechanism of PDE2A inhibition was also 
performed by using PF-05180999 [102]. These results showed that the inhibition of 
PDE2 might be involved in short-term synaptic plasticity by modulating the hydro-
lysis of cAMP to accommodate changes in cGMP levels associated with presynaptic 
short-term plasticity.

In 2017 Takeda disclosed the discovery of compound 20 as a novel PDE2 inhibi-
tor [103]. Compound 20 increased cGMP levels in the frontal cortex, hippocampus 
and striatum of rats in a dose-dependent manner (1–10 mg/kg), while no increase 
of cAMP was observed in the same rat brain regions. Also, compound 20 was effec-
tive on MK-801-induced episodic memory deficits in a passive avoidance task in 
rat. The ability of compound 20 to reverse deficits in episodic memory produced by 
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MK-801, suggests its potential for the treatment of cognitive deficits seen in a range 
of psychiatric disorders with impaired glutamatergic neurotransmission [103].

Finally, through structure-based drug design approaches and molecular model-
ing, DNS-8254 has been proposed as a potent and selective PDE2 inhibitor with 
good brain-penetrant properties. DNS-8254 was evaluated in a test of rat NOR, and 
improved visual recognition memory was observed 24 h after training [104].

4.1.3 Phosphodiesterase 3 inhibitors

Similar to PDE1 and PDE2, PDE3 is another subfamily responsible for hydrolyz-
ing both cAMP and cGMP and has two isoforms: PDE3A and PDE3B. In the brain, 
the expression of PDE3A and PDE3B is relatively low and is mainly in the cerebel-
lum [72]. Cilostazol is a PDE3 inhibitor clinically used as an antiplatelet drug 
(Figure 5) [105]. As cilostazol increases the cerebral blood flow [106], this drug 
has been explored for its effectiveness in treating the type of dementia associated 
with a decrease and stoppage of the cerebral blood flow in brain blood vessels. A 
study conducted by Hiramatsu and coworkers has revealed that cilostazol prevents 
Aβ25–35-induced memory impairment and oxidative stress in mice [93]. The effect 
of cilostazol was examined on mice with memory impairment induced by treat-
ment with Aβ25–35. Two behavioral testes were performed: the Y-maze and the step-
down type passive avoidance tests. Repeated administration of cilostazol (30 and 
100 mg/kg, p.o.) significantly and dose dependently attenuated the impairment 
of spontaneous alternation the shortened step-down latency induced by Aβ25–35. 
Cilostazol prevented the accumulation of lipid peroxide (malondialdehyde—MDA 
levels) in the frontal cortex and hippocampus in the early period after Aβ25–35 
treatment, as MDA levels in both regions returned to control levels by 7 days after 
Aβ25–35 injection [93]. Interestingly, an in vitro study using N2a cells stably express-
ing human amyloid precursor protein Swedish mutation (N2aSwe) showed that 
cilostazol decreased Aβ and tau phosphorylation levels in the conditioned medium 
and cell lysates [92]. Cilostazol (10–20 mg/kg) also reduced Aβ accumulation 
and tau phosphorylation levels in Aβ25–35-injected mice when given orally 2 weeks 
before and daily for 4 weeks after Aβ25–35 injection. The brain level of apolipopro-
tein E (ApoE), a protein associated with Alzheimer’s neurofibrillary tangles and 
Aβ aggregation, was decreased. These results were consistent with the reduction of 
Aβ aggregation observed in N2aSwe cells and improvement of spatial learning and 
memory detected in Aβ25–35-injected mice [92]. While the aforementioned studies 
assessed cilostazol for its cognitive enhancing properties, Yanai et al. were inter-
ested in understanding the effect of this PDE3 inhibitor on memory function [91]. 
To this end, the effect of cilostazol on wild-type C57BL/6J mice as they perform 
various behavioral tasks was examined. Importantly, cilostazol improved long-
term memory, which was correlated with an increase in phosphorylated CREB-
positive cells in the dentate gyrus.

Figure 5. 
Structures of PDE2 (PF-05085727, PF-05180999, and compound 20, and DNS-8254) and PDE3 (cilostazol) 
inhibitors.
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4.1.4 Phosphodiesterase 5 inhibitors

PDE5 specifically hydrolyzes cGMP and has one isoform, PDE5A. While 
according to Lakics and colleagues the expression of PDE5A in the brain is rela-
tively low [72], others have proved that PDE5 protein is significantly present in 
human brain as well as neurons and the low expression previously detected was 
due to methodological inaccuracies [79]. PDE5 inhibitors have been proposed 
as novel therapeutics for the treatment of AD and other neurological disorders 
(Figure 6). Sildenafil, vardenafil, and tadalafil are PDE5 inhibitors approved by 
the FDA for the treatment of erectile dysfunction and pulmonary arterial hyper-
tension. Both sildenafil and tadalafil have been explored for their effects in neuro-
degenerative disorders. Sildenafil has shown an IC50 of 2.2 nM against PDE5A and 
selectivity across other PDEs, except for PDE1 and PDE6. The ability of sildenafil 
to cross the blood-brain barrier (BBB) together with its lower toxicity, indicate that 
this drug is a suitable candidate in treating neurodegenerative processes related to 
low levels of cGMP and down-regulation of the NO/cGMP/CREB signaling path-
way. Sildenafil produced an immediate and long-lasting improvement of synaptic 
function, CREB phosphorylation, and memory in the APP/PS1 mouse model of 
AD [19]. Furthermore, sildenafil has been shown to regulate the level of Aβ, pos-
sibly by modifying its production, metabolism, or clearance, as well as presenting 
an anti-inflammatory effect [107].

Tadalafil (PDE5 IC50 = 5.0 nM) shows a better selectivity against PDE6 and a 
longer half-life compared to sildenafil [108, 109]. At a dose of 1 mg/kg and adminis-
tered intraperitoneally, tadalafil failed to improve either contextual fear condition-
ing or spatial working memory in APP/PS1 mice, most likely due to the poor brain 
permeability of the drug [19]. A derivative of tadalafil, 3c•Cit, with improved water 
solubility and BBB permeability has been developed and tested on a scopolamine-
induced cognitive impairment mouse model. In the passageway water maze test, 
mice treated with 3c•Cit (10 and 30 mg/kg, orally) showed reduced escape latency 
and number or errors [110].

Lately, two novel PDE5 inhibitors have been generated at Columbia 
University, a quinoline-based compound, 7a, and a naphthyridine-based mol-
ecule, 6c [111, 112]. Both compounds have exhibited a high inhibitory activity 
(IC50 = 0.27 and 0.056 nM, respectively) and better selectivity than sildenafil, 
vardenafil and tadalafil. Levels of cGMP in the hippocampus of mice were 
increased upon in vivo treatment with these two compounds and pharmaco-
kinetic studies showed that 7a and 6c crossed the BBB readily. Compound 7a 
restored LTP and memory damage caused two different mouse model of AD, 
the APP/PS1 and Aβ-induced cognitive impairment model. Similarly, synaptic 
plasticity and spatial and associative memory were improved by compound 6c 
(3 mg/kg, i.p.), which showed a better aqueous solubility compared to 7a.

Figure 6. 
Structures of PDE5 inhibitors.
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4.1.5 Phosphodiesterase 10 inhibitors

PDE10A is a dual-specificity subfamily that hydrolyzes cAMP and cGMP, with 
a higher affinity for cAMP. The highest expression of PDE10A in the brain is in the 
caudate nucleus, and it is also the most prevalent PDE species in this tissue, together 
with PDE1B. The level of PDE10A is relatively high in the nucleus accumbens. In 
other parts of the brain and the peripheral tissues examined, the level of PDE10 
mRNA was very low. Currently, PDE10 is considered a promising target for CNS 
diseases, especially schizophrenia and Huntington’s disease (HD). Although numer-
ous studies have reported that PDE10A expression in the striatum and different 
other brain regions of post-mortem HD patients [113–115] and HD animal models 
[113, 116] is reduced, inhibition of PDE10A has shown rescue of behavioral, neuro-
degenerative, and electrophysiological deficits in HD animal models.

PF-02545920 (also named MP-10) was developed by Pfizer [117] and tested for 
schizophrenia [118] and HD [119] in preclinical and clinical studies (Figure 7).

Developed by Takeda by using structure-based drug design techniques, TAK-
063 has a potency of 0.30 nM against PDE10 and high selectivity over other PDEs 
(Figure 7). The potential antipsychotic-like effects of the compound were evaluated 
in mice showing phencyclidine (PCP)-induced hyperlocomotion. At a minimum 
dose of 0.3 mg/kg, p.o., TAK-063 reversed the induced deficits, while had no effects 
on the hyperactivity produced by PCP in PDE10A-knockout mice [120]. Additional 
studies reported the dose-dependent antipsychotic-life effects of TAK-063 in 
methamphetamine-induced hyperactivity in rodents [121] as well as attenuation of 
PCP-induced and MK-801-induced working memory deficits in a Y-maze behavioral 
test in mice and eight-arm radial maze task in rats, respectively [122].

5. Conclusion

In summary, activation of the NO/cGMP/CREB pathway has been greatly evalu-
ated as a critical molecular mechanism responsible for learning and memory. The 
impact of this signaling pathway on synaptic strengthening and memory formation 
has been explored pharmacologically through the use of activators and/or inhibitors 
of the single components. NO donors, well-known drugs in use for the treatment 
of cardiovascular diseases, have been considered as therapeutics in AD due to their 
ability to activate sGC. A number of analogs of the second messenger cGMP are 
commercially available and have been used to target the pathway by stimulating 
PKG. Moreover, inhibitors of PKG have proven that CREB phosphorylation lead-
ing to improved learning and memory is correlated to the increase in cGMP levels. 

Figure 7. 
Structures of PDE10 inhibitors.
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